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Abstract:  This paper describes the CHIMERA 1l programming environ-
ment and operating system, which was developed for implementing real-time
robotic systems. Sensor-based robotic systems contain both general and spe-
cial purpose hardware, and thus the development of applications tends to
be a very tedious and time consurming task. The CHIMERA Il environ-
ment is designed to reduce the development time by providing a convenient
software interface between the hardware and the user. CHIMERA Il sup-
ports flexible hardware configurations which are based on one or more
VME-backplanes. All communication across multiple processors is trans-
parent to the user through an extensive set of interprocessor communication
primitives. CHIMERA II also provides a high-performance real-time ker-
nel which supports both deadline and highest-priority-first scheduling. The
flexibility of CHIMERA II allows hierarchical models for robot control,
such as NASREM, to be implemented with minimal programming time and
effort. CHIMERA II is currently being used with a variety of robotic sys-
tems, including the CMU Direct Drive Arm Il and the CMU Reconfigurable
Modular Manipulator System.
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1 Introduction

Sensor-based control applications, such as robotics, process control, and
manufacturing systems, present problems to conventional operating systems
because of their need for several different hierarchical levels of control,
which typically fall into three broad categories: servo levels, supervisory
levels, and planning levels. The servo levels involve reading data from sen-
sors, analyzing the data, and controlling electro-mechanical devices, such
as robots and machines. The timing of these levels is critical, and often in-
volves periodic processes ranging from 100 Hz to 1000 Hz. The supervisory
levels are higher level actions, such as specifying a task, issuing commands
like turn on motor 3 or move to position B, and selecting different modes
of control based on data received from sensors at the servo level. Time at
these levels is a factor, but not as critical as for the servo levels. In the
planning levels time is usually not a critical factor. Examples of processes
in this level include generating accounting or performance logs of the real-
time system, simulating a task, and programming new tasks for the system
to take on.

In order to satisfy the needs of sensor-based control applications, a flexible
real-time, multitasking and parallel programming environment is needed.
For the servo levels, it must provide a high performance real-time kernel,
low-overhead communication, fast context switching and interrupt latency
times, and support for special purpose CPUs and I/O devices. For the
supervisory levels, a message passing mechanism, access to a file system,
and scheduling flexibility are desired. The real-time environment must be
compatible with a software development workstation that provides tools
for programming, debugging, and off-line analysis, which are required by
the planning levels. A popular high level language must be available to
minimize the learning time of the system. The details of the hardware should
be isolated from the user, providing the user with a common software base
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regardless of hardware configuration. Finally, the real-time operating system
should be designed so that programs running in simulation under a time-
sharing environment can be incorporated into the real-time environment with
minimal effort. CHIMERA II provides such an environment that is capable
of supporting all levels of real-time sensor-based robot control applications
on a multiprocessor computer system.

Although the motivation for developing CHIMERA 11 is similar to the ide-
ology behind its predecessor CHIMERA([1], its implementation is radically
different and includes significant improvements, mostly in the areas of sup-
port for multiple processors and VME backplanes, and a higher perfos-
mance kemel with improved real-time scheduling. A previous paper (2]
provides background into the motivation and issues considered in redesign-
ing CHIMERA.

CHIMERA II is not the only system designed to address real-time control
applications. Several real-time operating systems currently exist for such ap-
plications. Thése include the commercial operating systems such as VRTX,
by Ready Systems [3]; iRMX II, by Intel [4]; and VxWorks, by Wind
River Systems[5]; and research operating systems, such as CONDOR[6];
SAGE[7]; and Harmony[8]. In general, these systems suffer from one or
more of the following: lack of multiprocessing capabilities, poor or insuf-
ficient interprocessor communication and synchronization mechanisms, no
provisions for joining the simulation and real-time environment, both in
terms of UNIX compatibility and communication primitives, or a lack of
support for easily incorporating I/O devices and special purpose processors
into the environment. The above systems require users to spend a large
amount of their time developing features that should be in the operating
system. CHIMERA II was designed especially for robotics systems; it pro-
vides the necessary features for reducing development time and increasing
performance of real-time robotic applications.

One of the more elaborate hierarchical control architectures proposed is the
NASA/NBS Standard Reference Model for Telerobot Control System Archi-
tecture (NASREM) (9], which heavily influenced many of the CHIMERA 11
design decisions. The NASREM architecture is described in more detail
in the next section. Section 2 describes the hardware required to support
CHIMERA II; while the software is described in Section 3. The perfor-
mance of CHIMERA II is outlined in Section 4. CHIMERA 1I is then
summarized in Section 5 as the recommended underlying system for devel-
oping real-time robotic systems.

1.1 Overview of the NASREM Model

Figure 1 shows a block diagram of NASREM. It consists of a hierarchy of
several levels (nominally six levels). Each level is implemented as sets of
three distinct modules, called sensory processing, world modeling, and task
decomposition, The sensory processing modules are responsible for obtain-
ing and integrating information from the system. At the lowest levels, this
involves reading the data from different sensors in a system, while for the
upper levels sensory information is more general and hardware indepen-
dent. The world modeling modules control access to information within the
global database, and provide the necessary synchronization for other mod-
ules which must update the world model. Models are applicalion specific,
and can be in the form of algorithms, data sets (typically for Jower levels)
and knowledge bases (for the upper levels). The task decomposition mod-
ules initiate actions based on user input and information within the world



model. The upper-level commands would typically be of the form move to
point B, while the servo-levels produce low-level commands such as apply
torque X to joint Y,

A major goal of NASREM is to provide a standard architecture for in-
corporating multiple sensors and robots into a single application. Using a
standard architectural model allows efforts in various research organizations
to be leveraged and new technologies to be brought together quickly. Other
advantages of standardization include portability and expandability of real-
time code, ease of code development, and the provision of guidelines for
system integration. CHIMERA II has the ability to hide the details of the
hardware from the user, thus allowing the implementation of hardware in-
dependent code, which is a first and necessary step towards standardization.
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Figure 1: NASA/NBS Standard Reference Model for Telerobot Control System
Architecture (NASREM) (from [9]).

2 Hardware Configurations

A typical hardware configuration for applications supporting hierarchical
robot control would consist of multiple general purpose processors, pos-
sibly on multiple backplanes. The system may contain special processing
units, such as floating point accelerators, digital signal processors, and im-
age processing systems. The system will also contain several sensory and
control devices, such as force sensors, cameras, tactile sensors, and range
finders to gather data about the environment, and a variety of actuators,
switches, and amplifiers to control robotic equipment.

Figure 2 shows one of many possible hardware configurations, and is based
on the hardware architecture recommended by NASREM[9]. The hardware
for each level of the hierarchy is on a separate VME bus, separated by
gateways. In larger systems, there may be multiple VME buses dedicated
to the same level, possibly connected in a star configuration. In a very
simple system, there may be only one VME bus for the entire system.

Tasks at the same level will typically have high volume communication.
A dedicated VME bus for that level reduces the memory bandwidth for
intertask communication, since different levels need not compete for the
same VME bus. In smaller applications where memory bandwidth is not
a problem, multiple levels can share the same VME bus. In addition to
the VME buses for each level, other high speed data buses can be used
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Figure 2: Generalized hardware configuration supported by CHIMERA II

either for fast local communication between neighboring processors, or as
dedicated data paths for sensor and actuator signals.

The highest level of the hierarchical control consists of the non-real-time
environment. One or more workstations can be connected via ethemet, with
at least one of them connected via a gateway to the real-time environment,
which we call the host workstation. Various utilities such as simulators,
debuggers, graphical interfaces, and file systems are located at this level.

2.1 A Sample Application

CHIMERA 11 is currently implemented to run with a Sun host workstation,
running SunOS 4.0.3. The effort required for porting the code to a different
host should be minimal if the operating system on the new host supports
System V interprocess communication and the enhanced mmap() facility
that Sun provides. The Real-Time Processing Units (RTPUs) are VME-
based single-board computers. Thus far, supported RTPUs are the Ironics
IV32XX series with M68020 processors, and Heurikon M68030 processors.
Porting to other M68020 or M68030 processors would require minimal
effort. Porting to an entirely different processor family, such as the SPARC
or 80X86 would require substantial effort. The VME to VME gateways are
typically VME-VME adaptors, with the BIT3 Models 411 and 412 currently
supported. These adaptors operate only in master/slave mode, where the
address space of the slave VME bus is mapped into a part of the address
space of the master VME bus through an address window. CHIMERA 1
has been designed to use these master/slave adaptors since they are the most
popular type of adaptor on the market. Adaptors that use DMA to transfer
data can be used, but the code required to support them has not yet been
implemented.

The hardware currently supported is based on the needs of the Advanced
Manipulators Laboratory at Carnegie Mellon University (CMU). Within our
own labs, three very different systems are currently using CHIMERA IL
These are the CMU Direct Drive Arm II (DDAmm II)[10], The CMU
Reconfigurable Modular Manipulator System[11], and the Flexible Arm



Manipulator{12]. The diverse requirements of these systems have proven
the flexibility of CHIMERA 1II to support a wide variety of actuators and
Sensors.

The CMU DDAmn II is an example of a multi-sensor robotic system. Its
current hardware configuration is shown in Figure 3. The system consists
of three VME backplanes, separated by BIT3 adaptors, and a Multibus
backplane separated by a VME-Multibus adaptor. No RTPUs reside on
the Multibus; all processors on that bus are treated as devices. A Sun
3/260 is used as the host workstation, with one Heurikon M63030 and two
Tronics M68020 processors as the RTPUs. Also included in the system is a
Mercury 3200 floating point accelerator with 20 Mflop peak performance,
an Imaging Technology vision system, and six Texas Instrument TMS320
digital signal processors. Several serial and parallel I/O poris are used
to connect to position, force, and tactile sensors, while an analog input
connects to a camera on the end effector. A six-degree-of-freedom joystick,
a terminal, and the Sun keyboard and mouse provide the interfaces for
human interaction with the system.
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Figure 3: CMU Direct Drive Arm II hardware configuration

3 Software Architecture

The concept of a layered hardware platform eases system planning and
integration, and provides convenient guidelines for developing large sys-
tems. Such layered hardware with multiple processors, however, presents
nightmares to system programmers who must worry about the multitude of
different addresses, address spaces, specialized devices, and hardware de-
pendencies. It becomes extremely difficult to write standardized software
when the hardware is very diverse.

CHIMERA 1I was designed to remove these problems from the user. First it
provides a communications layer that makes all the interprocessor commu-
nication complexities transparent to the user. Second, it provides a kernel
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with device drivers that makes the very different hardware look similar.
3.1 Overview of CHIMERA II Software

Control processes running at the servo levels involve reading data from
sensors, analyzing the data, and controlling electro-mechanical devices, such
as robots or machines. The timing of these levels is critical, also known as
hard real-time, and often involves periodic processes ranging from 100 Hz
to 1000 Hz. CHIMERA 1I provides both minimum-laxity-first and highest-
priority-first schedulers for programming in real-time. The minimum-laxity-
first scheduler allows the user to specify tasks with execution deadlines. A
failure handler is called whenever a task fails to meet its deadline as a result
of a system overload.

In most robotic systems, the CPU bandwidth provided by a single processor
is insufficient, thus creating the need for multiple processors. If the cost
or complexity of communication between multiple processors is too high,
however, it may nullify the effect of parallelism. CHIMERA II addresses
this problem by exploiting the fact that all processors are on the VME
bus, and uses direct block copies for all communication, instead of using
time-consuming network protocols such as TCP/IP. The interface to these
communication primitives is transparent across multiple processors, thus
simplifying the programming of multiprocessor applications.

The planning levels do not necessarily require a real-time scheduler. In many
cases, the non-real-time environment offered by a typical UNIX workstation
is desirable to provide both a graphics terminal and a development envi-
ronment. Traditional methods of linking non-real-time to real-time systems
via ethernet and using network protocols is both difficult to program and
requires a huge amount of overhead. Ideally, from the user’s point of view,
there is no difference between the real-time and non-real-time systems. Our
design of CHIMERA II allows processes on the host UNIX workstation to
communicate directly with the processors in the real-time environment, us-
ing the same synchronization primitives. There is no need for any complex
network protocol to establish such communication.

Applications for CHIMERA II are programmed using the C language. Using
languages other than C should be possible; however no consideration was
given to this aspect during the development of CHIMERA II. Assembly
language can also be used for specialized applications, but it is usually not
necessary, since CHIMERA II provides the necessary features for writing
exception handlers and device drivers in C.

Many standard C library calls are available, such as the stdio, strings, and
math libraries, and also various utilities such as guicksort, binary search,
and an optimized block copy. With the exception of the stdio library, these
libraries provide identical functionality to their UNIX counterparts. The
stdio library has been enhanced to run within a shared memory environment.
Files can be shared among multiple tasks on the same processor. The stdio
library incorporates the appropriate mutual exclusion to ensure the integrity
of the file buffers. In addition to the standard library routines, CHIMERA Il
emulates many of the UNIX system calls, such as open(), read(), write(),
and mmap(). These routines all generate remote procedure calls when the
needed resource belongs to a different processor within the system.

3.2 Real-Time Kernel

A copy of the CHIMERA II real-time kemel executes on each RTPU. The
kemel provides all the scheduling and task control primitives through a C
library. The low-level details such as the model or manufacturer of the
RTPU are built-in to CHIMERA II and are hidden from the user.

One of the major goals when developing the kernel was to provide the
required functionality at the highest performance possible, by sacrificing
traditional operating system features which are hardly used. Our basis for
measuring performance is the amount of CPU time during normal execu-
tion which must be dedicated to the operating system functions, such as
scheduling, task switching, and communication overhead. Some of the ma-
jor design decisions made in developing a kernel especially for real-time
sensory control are described below. For the sake of brevity, we have left
out many details of the software. These are available in [15].

Tasks: A task in CHIMERA II is also known as a thread or lightweight



process in other operating systems. A user program which is downloaded
into an RTPU consists of a single executable file. The kemel is supplied
as a C library and is linked into the executable image. When a program
is downloaded to an RTPU and executed, some kemel initialization is per-
formed, following which the user’s main() routine is spawned as a task.
Any other task can then be started from main().

Task communication: There is no parent/child relationship among tasks.
Any task can communicate with any other task either through local shared
memory or local semaphores. Within a single executable file, all global
variables are automatically shared among all tasks. Local semaphores are
available and can be used either to provide mutual exclusion during crit-
ical sections (binary semaphores), or to provide synchronization among
tasks (general or counting semaphores). Global shared memory, remote
semaphores, and message passing are also available to tasks when commu-
nication across multiple processors is required. The global communication
is described in Section 3.4.

Intertask security: In general, all of the tasks running on a given RTPU
(or set of RTPUs) are written and invoked by a single user. It is reasonable
to assume that these tasks are designed to cooperate. We have thus sacrificed
the intertask protection, allowing one task to access the address space of
any other task. This has resulted in the elimination of a lot of overhead
incurred in performing system calls or their equivalents.

Memory management: The total address space used by all tasks on
one system is limited by the physical memory available on the RTPU.
CHIMERA 1I does not provide any virtual memory, as the memory man-
agement and swapping overhead not only decreases the performance of a
system drastically, but it also causes the system to become unpredictable,
thus violating one of the major rules of real-time systems. CHIMERA II
provides its own version of the malloc() family of routines to allocate real-
memory.

Special purpose processors and devices: The CHIMERA II kemel uses
a UNIX-like approach of using device drivers to isolate the user from the
details of special hardware. The kernel supports the open, close, read, write,
ioctl, and mmap drivers. These drivers are usually much simpler to write
than their UNIX counterparts because of the lack of intertask security, as
described above. Special purpose processors usually have memory which
can be memory mapped, thus making the entire address space of the pro-
cessor available to the tasks using it. Accessing special purpose processors
is strictly via master/slave relationships, where tasks on the RTPUs control
the execution of code on the special processor.

Exception and interrupt handlers: User-defined exception and interrupt
handlers can be defined either on a per-task or per-RTPU basis. This allows
users to alter the default action of various exceptions, which is to halt
the task. For example, a bus error exception can be trapped so that a
task that tries to access unavailable memory on the VME bus does not
die. Similarly, a task can catch a division-by-zero exception and modify
its computation accordingly, instead of having to check for zero on every
calculation. CHIMERA II provides the facilities to write these handlersin C.
The C routine is declared with a special header, and installed dynamically by
a subroutine call. Routines are also provided to enable or disable interrupts,
or to lock the CPU for short periods.

3.2.1 Real-Time Task Scheduler

One of the main components of any real-time kemel is its scheduler.
CHIMERA 11 provides a policy/mechanism separation scheme[13] which
allows the user to replace the standard schedulers with application specific
algorithms. The CHIMERA. II default scheduler algorithm was developed
by incorporating various standard algorithms with extensive experimenta-
tion and tuning to obtain the best performance for typical job mixes. The
scheduler is based on a combination of minimum-laxity-first[14], highest-
priority-first, and round-robin scheduler techniques.

The heart of the scheduler is the minimum-laxity-first deadline scheduler. A
task can specify its timing requirements in terms of a deadline time, and
an estimate of the execution time as a range from minimum execution time
required to maximum execution time required. The scheduler will then
choose tasks to run based on which task has the smallest laxity. Laxity is
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calculated as follows:

laxity = deadline_time ~ present_time — cpu_time_still_needed

‘When more CPU power is requested from all tasks than is available, one or
more tasks may fail to meet their deadline, in which case the CHIMERA II
kemel automatically calls a failure handler. The failure handler is specified
by the user on a per-task basis. Typical uses of the failure handler include
the following: aborting the task and preparing it to restart the next period;
sending a message to some other part of the system to handler the error;
performing emergency handling, such as a graceful shutdown of the system
or sounding an alarm; maintaining statistics on failure frequency to aid in
tuning the system; or in the case of iterative algorithms, returning the current
approximate value regardiess of precision.

One important criterion with a deadline scheduler in an overload situation
is selecting which tasks to run and which to let fail. The user not only
specifies the failure handler, but also a failure handler priority. The failure
handler can thus run at higher or lower priority than all other tasks in the
system.

The CHIMERA II scheduler will use a highest-priority-first to distinguish
between multiple tasks with equal laxity, and when there are no ready-to-run
tasks with deadlines. Equal priority tasks are scheduled in a round-robin
manner. There may be times when a non-deadline high priority task is
extremely important and must execute ahead of any other task, even if the
other tasks have deadline. The kernel allows tasks to set their criticalness
to a value higher than the default value, which will then allow that task to
run ahead of any task with a deadline.

Use of the deadline scheduler is optional. Some applications are better
programmed just using a highest-priority-first scheduler as is available in
commercial real-time operating systems. By not specifying any task dead-
lines within the system, the CHIMERA II scheduler behaves as a highest-
priority-first preemptive scheduler. In such cases, however, there is no way
to specify a failure handler since the tasks do not have deadlines.

3.3 System-Level Communication

One of the major strengths of CHIMERA II is that all the details of the
hardware environment are transparent to the user. For example, to perform
work with a file system, such as opening the file, reading it, then closing
it, the user uses the standard UNIX syntax of open(), read(), and close(), or
optionally using the C standard I/O (stdio) library. The CHIMERA II system
determines which processor owns the file, sends the appropriate message,
performs the operation, then retums the result. The user is thus unaware
that any file operation is remote.

Every processor, including the host workstation, has a server task and an
express mail mailbox which are used to provide transparent access to the
remote devices and the host file system from any other RTPU. The server
is capable of translating symbolic names into pointers, performing any nec-
essary address calculations to account for the various address spaces and
offsets within the multiple-VME-bus system, and performing system calls
on behalf of remote tasks.

A low-overhead message passing mechanism, which we call express mail,
is used to send system messages to the servers. System messages are mes-
sages sent only by built-in kemel routines, as opposed to user messages as
described in Section 3.4. Any task can (indirectly) send a system message;
however, only the servers can read these messages.

Many UNIX system calls, including open(), close(), read(), write(), mmap(),
and ioctl() have been emulated as C procedures, with the ability to send mes-
sages when the required resource belongs to a remote processor. Whenever
these calls have to access a remote processor, a message is sent to the re-
mote processor’s express mailbox. Each RTPU has at least one mailbox,
which is in a part of memory known to all other processors. A server task
on the remote process handles all incoming messages by performing the
system cafl on behalf of the originator’s task. Pointers to the data blocks
to be read or written are passed as part of the message, as opposed to in-
cluding the entire data in the message. This guarantees short messages and
no additional buffering, which is especially important in calls such as read



and write, where the data can be sizeable. After the server completes the
system call and all data to be retumed has been placed into the originator’s
memory, an express mail message is returned to the originator, with the
return value of the system call included within the message. Upon failure
of a system call, the standard UNIX errno is also returned.

3.4 User-level Interprocessor Communication

CHIMERA II’s express mail facility can only be used by system utilities.
However, it provides the underlying facilities required for setting up shared
memory segments, remote semaphores, and message passing among differ-
ent processors in the real-time environment.

Any task can create or attach to a shared memory segment using a single
procedure call. When any other task wants to attach to that segment, a
procedure call is made which returns a pointer, with all address conversions
performed, so that the user can use the pointer as though the memory was
local. Even tasks running on the host workstation can access the shared
memory segment transparently. This method not only makes accessing the
global shared memory transparent to the user, but also provides a speed
limited only by the VME bus, since there is no operating system overhead
involved in accessing the shared memory.

Semaphores are created in the same manner as a shared memory segments,
except that instead of a shared memory pointer being returned, a pointer
to a semaphore structure is returned. That pointer is used in subsequent
semaphore operations, which are functionally equivalent to their local coun-
terparts, but can be used remotely across processors. These semaphores can
be used both to control access to critical sections and to synchronize multiple
tasks on different RTPUs.

There are times when interprocessor communication is better performed via
messages than by using shared memory and semaphores. CHIMERA 1I
also provides a user-level message passing where the user has the ability to
specify the size of the queues and messages, the location of the queues, the
type of the messages, and the priority of the messages.

All of these interprocessor communication primitives provide a level of
transparency to the user. The user can send a message, perform a semaphore
operation, or access some part of global shared memory without having to
specify its physical location within the system. All of these facilitics also
offer the ability to communicate over a secondary local bus (e.g. the VSB
bus) if one exists. The result of CHIMERA II’s interprocessor communi-
cation features is much faster development time of applications requiring
multiple processors and possibly multiple VME buses.

3.5 Host Interface

The entire hardware configuration requires at least one workstation to op-
erate as host. The host provides access to the tools needed to compile and
download programs to the real-time environment, and acts as a file server
to those tasks requiring file access.

On the host workstation, three categories of processes are executing: the
server process, console processes, and user processes. These processes com-
municate via shared memory and semaphores using the same interface as
described in section 3.4, These facilities are a front end to the interpro-
cessor communication supplied by the host UNIX operating system. The
server process provides similar functionality as the servers on the RTPUs,
except that it can access the host file system directly, and it includes special
primitives to support the console processes. The console process provides
the user interface which serves to download and execute programs on the
RTPUs. The console process also provides the stdin, stdout, and stderr
files for tasks executing on the RTPUs. Only one console process is nceded
to control an entire CHIMERA II system. However, if multiple RTPUs
use stdin, only one of them can have it active at any given time. Other
tasks attempting to read from stdin would block, and send a Waiting for
TTY Input message to the user’s terminal, similar to what UNIX does with
background processes. If multiple RTPUs require stdin simultancously, then
multiple instances of the console process can be created, each on a separate
terminal or within a separate window on the host workstation.

User processes are just like any other UNIX process running on the host,
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except that an additional CHIMERA II library is linked in, allowing the pro-
cess to use the interprocessor communication package. These processes can
then read from and write into the memory of any real-time processor, send
or reccive messages, or synchronize using remote semaphores. This fea-
ture allows users to create their own custom user interfaces, which possibly
include the graphics or windowing facilities offered by the host workstation.

4 Performance

The success of a real-time operating system in developing robotic appli-
cations is based both on the ease of use and on its performance. Writing
code to run under the CHIMERA II environment is as simple as writing a
C language program to run under UNIX. As for the performance, several
critical operating system features were timed to provide a general idea of the
capabilities of CHIMERA II. The timings shown in Table 4 were performed
on Ironics model IV3220 RTPUs, each with a 20 MHz M68020 CPU and
a 20MHz M68882 floating point coprocessor (FPU).

Table 1: CHIMERA I Performance

Context Switching:

Timer-driven reschedule, no task swapping 28 jrsec
Timer-driven reschedule, with context switch 94 jisec
Resource contention context switch 85 sisec
Interrupt Latency (for handlers written in C:)

VME Interrupt 28 jisec
Mailbox Interrupt 33 yisec
Express Mail:

32-byte message 87 jisec
Local Semaphores:

P() operation, no blocking 7 psec
P() operation, blocking 92 jisec
V() operation, no waking up 7 jisec
V() operation, waking up a task 30 psec
Remote Semaphores:

semP() operation, no blocking, semaphore onboard 20 yisec
semP() operation, no blocking, semaphore offboard 22 jyisec
semP() operation, blocking add 85 jisec
semV() operation, no waking up, semaphore onboard 23 ysec
semV() operation, no waking up, semaphore offboard 25 pisec
semV() operation, waking up onboard task add 30 jisec
semV/() operation, waking up offboard task add 63 jisec
Shared Memory:

Overhead for reading from shared memory 0 jisec
Overhead for writing into shared memory 0 jisec

Possibly the most important performance criterion of a multitasking kemel
is the reschedule and context switch time. Upon the expiration of a time
quantum, a timer interrupt is generated, forcing a time-driven reschedule. If
the currently running process has the minimum laxity or is highest priority,
it remains running, and the timer interrupt results in no task swapping. The
scheduling time in this case is 28 jisec, resulting in a peak CPU utilization of
97 percent with a one millisecond time quantum. At the other extreme, a full
context switch is needed, which performs in 94 jisec, providing minimum
CPU utilization of 91 percent for CPU-bound jobs. A full context switch
involves suspending the current task by saving its entire context, including
the FPU registers, selecting the next task to run using the minimum-laxity-
first deadline scheduler, and resuming that task by restoring its entire context.
Note that saving and restoring the FPU registers accounts for over half the
context switch time alone. Although it is possible to improve the context
switch time for tasks which do not use the FPU, it was decided that most
control tasks use at least some floating point operations. Instead of keeping
track of when floating point operations were used, the full FPU context is
saved and restored at each context switch. A context switch arising as a



result of the running process blocking due to resource contention does not
have to recalculate any dynamic priorities; it takes 85 psec. Worst case
CPU utilization can be increased to over 99 percent by increasing the time
quantum to 10 milliseconds, which can be done for all but the servo level
tasks which must run at frequencies typically above 100Hz.

The interrupt latency for the highest priority VME interrupt is 28 usec for
routines written in C. Shorter latencies are possible for exception handlers
written in assembly language, but no performance timings are available.
The savings are estimated at 8 ysec. Mailbox interrupts have a latency of
33 psec.

For the express mail facility, sending a 32-byte message (a typical system
level message) from one RTPU to another (or to the host) takes 87 sisec.
No timings are available yet for user-level message passing, although it is
expected to be only a few microseconds slower than the express mail.

The local P() (wait) and V() (signal) semaphores each execute in 7 ssec
when there is no blocking or waking-up occurring. A blocking process
adds the time of the resource contention context switch before the next
process begins executing. The V() operation takes an additienal 23 jisec to
wakeup a blocked process.

Inevitably, remote semaphores take longer than local semaphores. A non-
blocking sermP() remote semaphore operation takes 20 ysec if the semaphore
is physically stored on the same board as the executing task performing the
operation. The same operation takes only 2 psec more if the semaphore is
off-board. If the semP() operation results in blocking the running task, then
the time of the resource contention context switch is also needed before
the next task can execute. The semV() remote semaphore wakeup opera-
tion takes 23 ;isec for an onboard semaphore and 25 usec for an offboard
semaphore, if no tasks are to be waken up. Waking up a blocked task with
the remote V() operation which is on the same RTPU takes an additional
23 jisec, while waking up an offboard task takes another 33 isec to send a
mailbox interrupt to the proper RTPU.

There is no software overhead involved in accessing shared memory. The
speed of shared memory transfers across the VME bus are limited only be
the hardware. As a result, interprocessor shared memory is by far the fastest
means of communication among tasks within a multiprocessor system.

Note that the times above are subject to smail variations as the code becomes
more developed. For example the ready queue is currently not sorted. It
is expected that speed increases of 5 to 10 percent per reschedule can be
achieved with such modification. On the other hand, adding new features
may increase the length of some commands by a small percentage. Never-
theless, the timing measurements provide a fairly good representation of the
performance of CHIMERA 1II. The high performance of CHIMERA 1I al-
lows it to maintain over 90 percent CPU utilization for control tasks running
up to 1000 Hz, thus allowing it to be used even with the most computational
and time demanding servo levels of a hierarchical architecture.

5 Summary

When implementing a real-time robotics system, too much time is typically
spent with low-level details to get the hardware to work, as opposed to
higher level applications which allow the system to do something useful.
CHIMERA 1I is an operating system and programming environment that
adds a layer of transparency between the user and the hardware by pro-
viding a high-performance real-time kernel and a variety of communication
features. The hardware platform required to run CHIMERA II consists en-
tirely of commercially available hardware, and the design aflows it to be
used with almost any type of VME-based processors and devices. It allows
radically differing hardware to be programmed using a common system, thus
providing a first and necessary step towards the standardization of robotic
systems. This results in a reduction of development time and an increase
in productivity.
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