Communication in Domains with Unreliable,
Single-Channel, Low-Bandwidth Communication

Peter Stone and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
{pstone,velosp@cs.cmu.edu
http://www.cs.cmu.edy7pstone, mmy

Submitted to ICMAS’98 in November 1997

Abstract

In most multiagent systems with communicating agents, the agents have the
luxury of using reliable, multi-step negotiation protocols. They can do so primarily
when communication is reliable and the cost of communication relative to other
actions is small. Conversely, this paper considers multiagent environments with
unreliable, high-cost communication. This paper presents techniques for dealing
with the obstacles to inter-agent communication in such environments. A successful
prototype system is fully implemented and tested in the simulated robotic soccer
domain.

Topic Areas:
¢ Communication languages and protocols;
¢ Organization and social structure

*This research is sponsored in part by the DARPA/RL Knowledge Based Planning and Scheduling
Initiative under grant number F30602-95-1-0018. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies or endorsements,
either expressed or implied, of the U. S. Government.

1 Introduction

In most multiagent systems with communicating agents, the agents have the luxury of
using reliable, multi-step negotiation protocols (see [1] for instance). They can do so
primarily when communication is reliable and the cost of communication relative to other
actions is small. For example, in Cohen’s convoy example [2], the communication time
required to form and maintain a convoy of vehicles is insignificant compared to the time it
takes the convoy to drive to its destination. Similarly, message passing among distributed
information agents is typically very quick compared to the searches and services that they
are performing. Thus, it makes sense for agents to initiate and confirm their coalition
while guaranteeing that they will inform each other if they have trouble fulfilling their part

of the joint action.

Conversely, this paper considers multiagent environments with unreliable, high-cost
communication. For example, if there is only a single, low-bandwidth, unreliable com-
munication channel for all the agents, and if the agents must sacrifice valuable resources
in order to communicate, then although inter-agent communication may be beneficial, the
agents’ behaviors must ndependupon it.

One clear example of such an environment s the Soccer Server—a widely used robotic
soccer simulator—with a single, low-bandwidth, unreliable communication channel for
all 22 agents and with high communication costs [8]. We use this domain for the research
reported here. Another example domain is one that uses aural communication in crowded
settings. Both people and robots using aural sensors ([4]) must contend with multiple
simultaneous audible streams. They also have a limit to the amount of sound they can
process in a given amount of time, as well as to the range within which communication
is possible. A third example of such an environment is arbitrarily expandable systems.
If agents aren’t aware of what other agents exist in the environment, then all agents
must use a single universally-known communication channel, at least in order to initiate
communication.

This paper presents techniques for dealing with the obstacles to inter-agent communi-
cation in such environments, particularly those with sevierainsof agents.

2 Team Member Architecture

Our new communication paradigm is situated within a team member architecture suitable
for multiagent domains in which team members must act autonomously while working
towards a common team goal. The team can synchronize ahead of time but while executing
the task, communication is limited. Based on a standard agent architecture, our team
member architecture allows agents to sense the environment, to reason about and select
their actions, and to act in the real world. At team synchronization opportunities, the

team also makes lacker-room agreemerfor use by all agents during periods of low
communication.

An agent keeps track of three different types of statewibedd state thelocker-room
agreementand theinternal state The agent also has two different types of behaviors:
internal behaviorandexternal behaviors

The world state reflects the agent’s conception of the real world, both via its sensors
and via the predicted effects of its actions. It is updated as a result of processed sensory
information. It may also be updated according to the predicted effects of the external
behavior module’s chosen actions. The world state is directly accessible to both internal
and external behaviors.

The locker-room agreement is set by the team when itis able to privately synchronize. It
defines the flexible team structure as presented below as well as inter-agent communication
protocols. The locker-room agreement may change periodically when the team is able to
re-synchronize; however, it generally remains unchanged. The locker-room agreement is
accessible only to internal behaviors.

The internal state stores the agent’s internal variables. It may reflect previous and
current world states, possibly as specified by the locker-room agreement.

The internal behaviors update the agent’s internal state based on its current internal
state, the world state, and the team’s locker-room agreement. The external behaviors
reference the world and internal states, sending commands to the actuators. The actions
affect the real world, thus altering the agent’s future percepts. External behaviors consider
only the world and internal states, without direct access to the locker-room agreement.

Internal and external behaviors are similar in structure, as they are both sets of con-
dition/action pairs where conditions are logical expressions over the inputs and actions
are themselves behaviors. In both cases, a behavior is a directed acyclic graph (DAG)
of arbitrary depth. The leaves of the DAGs are the behavior types’ respective outputs:
internal state changes for internal behaviors and action primitives for external behaviors.

Some internal state variables need to be devoted to communication. When an agent
hears a message, it interprets it and updates the world state to reflect any information
transmitted by the message. It also stores the content of the message as a special variable
last-message . Furthermore, based on the locker-room agreement, an internal behav-
ior then updates the internal state. If the message requires aresponse, three variables in the
internal state are manipulated by an internal behavesponse , response-flag
andcommunicate-delay . response is the actual response that should be given
by the agent as determined in part by the locker-room agreement. All three of these
variables are then referenced by an external behavior to determine when a response
should be given. For example one condition-action pair of the top-level external behavior
might be:if (response-flag set and communicate-delay==0) then
SAY(response)

Locker-room agreements can be used to eliminate or reduce the need for future com-
munication, and they can also be used to increase communication reliability. For example,

2

Communication Environment Challenges
e many agents, teams e message targeting/distinguishing
e single-channel e robustness to active interference
¢ low-bandwidth e multiple simultaneous responses
e unreliable e robustness to lost messages
¢ high cost e _team coordination

Table 1. The characteristics and challenges of the type of communication environment considered
in this paper.

team members could agree upon a code number with which all messages should start in
order to distinguish their messages from those of other teams in case other teams send
similar messages on the single communication channel. They could also synchronize

internal clocks if there is no globally accessible clock.

3 Communication Paradigm

The challenge for an agent to distinguish messages that are meant for it from those that
are not s the first of five challenges that arise in the type of environment considered here.
Second, since there is a single communication channel, agents must be prepared for active
interference by hostile agents. A hostile agent could mimic messages it has previously
heard at random times. Third, since the communication channel has low bandwidth, the
team must prevent itself from all “talking at once.” Many communication utterances call
for responses from all team members. However, if all team members respond simultane-
ously, few of the responses will get through. Fourth, since communication is unreliable,
agents must be robust to lost messages: their behaviors cannot depend upon receiving
communications from a teammate. Fifth, teams must determine how to maximize the
chances that they are using the same team strategy despite the facts that each is acting
autonomously and that communication is unreliable.

In order to meet these challenges, we propose that a team should use messages of the
following form:

(<team-identifier <unique-team-member-tB<encoded-time-stamp<time-
stamped-team-strategy< selected-internal-state<target- <message-type
<message-dats)

Such a formulation assumes that the bandwidth allows for messages of several bytes in
length to be transmitted in a reasonable amount of time. Some aural communication
scenarios may need fewer, or condensed fields.

The contents of these fields are the product of the locker-room agreement. When
forming the team, the agents must agree upon their team nateart-identifier-) and
a unique ID number for each member. For simplicity, the member IDs can be sequential
numbers. These first two fields ensure that any teammate hearing the message knows

3

precisely who uttered it. Teammates also agree ahead of time upon the security code used
to create the field&cencoded-time-stamp. To coordinate, they agree upon a method for
encoding and changing team strategies, and possibly upon positions of their internal states
that should be communicated to help keep teammate information up to date. In addition,
they must choose a set of acceptable message-types. The messages can use any syntactic
and semantic codes (KQML [3] and KIF [5] for example). The only requirement is that
the agents also agree on a mapping from message type to response requirements. Finally,
the <target> field can be used to indicate the intended recipient(s) of the message. It
could be intended for a single team member, for some subset of them, or for all team
members.

The remainder of this section details how these particular message fields can be used
to meet the challenges summarized in Table 1.

3.1 Message Targeting/Distinguishing

Agents can distinguish messages that are intended for them by checkirgehm-
identifier> and <target> fields. An agentA listens to a message from a member of

the same team that is targetedA9 to the entire team, or to some subset of the team
that includesA®. All other messages may be ignored, or since all team members know
the locker-room agreement, agents may use these messages to monitor their teammates’
internal states.

3.2 Robustness to Active Interference

The only further difficulty related to an agent distinguishing which messages are intended
for it arises in the presence of active interference. Consider a hostile Agehich hears
a message that is directedAaat timet. H has full access to the message since all agents
use the same communication channel. Thug ifemembers the message and sends an
identical message at time agentA will mistakenly believe that the message is from a
teammate. Although the message was appropriate attiinmay be obsolete at time
and it could potentially confusé as H intends.

This potential difficulty is avoided with thezencoded-time-stampfield. Even a
simple time stamp is likely to safeguard against interference sthds not privy to
the locker-room agreement: it does not necessarily know which field is the time stamp.
However, if H somehow discovers which field is the time stamp, it could alter the field
based on the time elapsed between timasdw«. Indeed, if there is a globally accessible
clock, H would simply have to replacewith « in the message. However, the team
can safeguard against such interference techniques by encoding the time-stamp using an
injective function chosen as a part of the locker-room agreement. This function can use
any of the other message fields as arguments in order to make decryption as difficult as
possible. The only requirement is that a teammate receiving the message can invert the

1The subsets could also be indicated by tokens if predetermined “units,” or sub-formations, are formed.

function to determine the time at which the message was sent. If the time at which it was
sent is either too far in the past or in the future (according to the locker-room agreement),
then the message can be safely ignored. Of course, it is theoretically possible for hostile
agents to crack simple codes and alter ttencoded-time-stamp field appropriately
before sending a false message. However, the function can be made arbitrarily complex
so that such a feat is intractable within the context of the domain. If secrecy is critical and
computation unconstrained, a theoretically safe encryption scheme can bé used.

3.3 Multiple Simultaneous Responses

The next challenge to meet is that of messages that require responses from several team-
mates. However, not all messages are of this type. For example, a message meaning
“where are you?” requires a response, while “look out behind you” does not. Therefore

it is first necessary for agents to classify messages in terms of whether or not they require
responses as a function of thenessage-type field. Since the low-bandwidth channel
prevents multiple simultaneous responses, the agents must also reason about the number
of intended recipients as indicated by th&arget- field. Taking these two factors into
account, there are six types of messages:

Response requested
Message Target no yes
Single agent al bl
Whole team a2 b2
Part of team a3 b3

When hearing any message, the agent should update its internal beliefs of the other agent’s
status as indicated by thetime-stamped-team-strategyield. However, only when the
message is intended for it should it consider the content of the message. Then it should
use the following algorithm in response to the message:
1. If the message requires no response (cases al-3), the agent simply updates its
internal state.
2. Ifthe message requires a response theresgbonse to the appropriate response
messageresponse-flag =1and
e if the agent was the only target (case b1l), respond immediately:
communicate-delay =0;
¢ ifthe messageis sentto more thanonetarget(cases b2 and e®msetinicate-delay
based on the difference between thenique-team-member-tDof the message
sender and that of the receiver. Thus each teammate responds at a different time,
leaving time for teammate messages to go through.
Then, if an internal behavior keeps decrementngimunicate-delay as time
passes, an external behavior can use the communication condition-action pair presented in

2The degree of complexity necessary depends upon the number of messages that will be sent after the
locker-room agreement. With few enough messages, a simple linear combination of the numerical message
fields may sulffice.

Section 2:if (response-flag set and communicate-delay==0) then

SAY(response) . Players can also set tlm®mmunicate-delay variable in the

event that they need to send multiple messages to the same agent in a short time. This
communication paradigm allows agents to continue real-time acting while reasoning about
the appropriate time to communicate.

3.4 Robustness to Lost Messages

In order to meet the challenge raised by unreliable communication leading to lost messages,
agents must not depend on communication to act. Communication should be structured
so that it helps agents update their world and internal states. But agents should not stop
acting while waiting for communications from teammates. As brought up in [10], such

a case could cause infinite looping if a critical teammate fails to respond for any reason.
In the same way that agents continue acting while waitingcéanmunicate-delay

to expire, agents must do their best to maintain accurate world and internal states without
help from teammates and continue acting while waiting for responses from teammates.

3.5 Team Coordination

Finally, team coordination is difficult to achieve in the face of the possibility that au-
tonomous team members may not agree on<thiene-stamped-team-strategyor the
mapping from teammates to roles within the team strategy. Again, there should be no
disastrous results should team members temporarily adopt different strategies; however
they should always do their best to stay coordinated. One method of coordination is via
the locker-room agreement. Agents could agree on globally accessible environmental
cues as triggers for switches in team strategy. Another method of coordination which
complements this first approach is via the time stamp. When hearing a message from a
teammate indicating that the team strategy is different from the agent’s current idea of the
team strategy, the agent adopts the more recent team strategy: if the received message’s
team strategy has a time-stamp that is more recent than that on the agent’s current team
strategy, it switches; otherwise it keeps the same team strategy and informs its teammate
of the change. Thus changes in team strategy can quickly propagate through the team.
The <selected-internal-statecan also be used to facilitate team coordination by
helping to keep the team members up-to-date regarding each other’s status. Due to
bandwidth constraints, it should notin general be an agent’s entire internal state. However
it might indicate the role that the agent is currently filling within the team strategy and any
other particularly useful information as determined during the locker-room agreement.

3.6 Related Work

Most inter-agent communication models assume reliable point-to-point messages passing
with negligeable communication costs. In particular, KQML assumes point-to-point
message passing, possibly with the aid of facilitator agents [3]. Nonetheless, KQML
performatives could be used for the content portions of our proposed communication

6

scheme. KQML does not address the problems raised by having a single, low-bandwidth
communication channel.

With only a single team present, a situation similar to the one considered here is
examined in [7]. In that case, like in ours, messages sent are only heard by agents
within a circular region of the sender. Communication is used for cooperation and for
knowledge sharing. Like in the examples presented in the soccer domain, agents attempt
to update each other on their own internal states when communicating. However, the
exploration task considered there is much simpler than soccer, particularly in that there
are no opponents using the same communication channel and in that the nature of the task
allows for simpler, less urgent communication.

Even when communication time is insignificant compared to action execution, such
as in a helicopter fighting domain, it can be risky for agents to absolutely rely on commu-
nication. As pointed out in [10], if the teammate with whom an agent is communicating
gets shot down, the agent could be incapacitated if it requires a response from the team-
mate. This work also considers the cost of communication in terms of risking opponent
eavesdropping and the benefits of communication in terms of shifting roles among team
members. However, the problems raised by a single communication channel and the
possibility of active interference are not considered, nor are the challenges raised when
communication conflicts with real-time action.

A possible application of the method described here is to robots using audio commu-
nication. This type of communication is inherently single-channel and low-bandwidth.
An example of such a system is the Robot Entertainment Systems which uses a tonal
language [4]. Agents can communicate by emitting and recognizing a range of audible
pitches. In such a system, the number of bits per message would have to be lowered, but
the general techniques presented above still apply.

4 Implementation in the Robotic Soccer Domain

The soccer server [8] system used successfully at RoboCup’97 [6] during IJCAI'97 models

a communication environment appropriate in a time-pressured, crowded environment. All
22 agents (11 on each team) use a single, unreliable communication channel. When one
agent speaks, agents on both teams can hear the message immediately along with the
(relative) direction from which it came. The speaker is not inherently known. Agents
have a limited communication range, hearing only messages spoken from within a certain
distance. They also have a limited communication capacity, hearing a maximum of 1
message every 200ms (actions are possible every 100ms, so if all other agents are speaking
as fast as they can, only 1 of every 42 messages will be heard). Thus communication
is extremely unreliable. Furthermore, on every 100ms action cycle, agents can either
communicate or move in the world. Since the real-time nature of the domain requires quick
and timely reactions, and since opponents hear all messages, communicating involves a
significant cost.

All 22 agents (including adversaries) on same channel
Limited communication range and capacity

No guarantee of sounds getting through
Instantaneous communication

High communication cost

Table 2 Characteristics of the Soccer Server communication model.

4.1 Our Communication Approach in the Soccer Server

In our team structure, players are organized into team formations with each player filling
a unique role. However players can switch among roles and the entire team can change
formations. Both formations and roles are defined as part of the locker- room agreement,
and each player is given a unique ID number. It is a significant challenge for players
to remain coordinated, both by all believing that they are using the same formation and
by filling all the roles in the formation. Since agents are all completely autonomous,
such coordination is not guaranteed. For more details on the issues relating to this team
structure, see [9].

As proposed in Section 3, all of our agent messages are of the form:

(CMUnited <Uniform-number <Encoded-stamp <Formation-numbes
<Formation-set-time <Position-number <target- <Message-type [<Message-
data>])

For example, player 8 might want to pass to player 6 but not know precisely where player
6 is at the moment. In this case, it could send the meg€aigé&nited 8 312 1 0 7

----> 6 Where are you?) . “CMUnited 8 " is the sender’s team and number;
“312” is the <Endcoded-stamp, in this case an agreed-upon linear combination of the
current time, the formation number, and the sender’s position numbed;*is the team
formation player 8 is using followed by the time at which it started usingrit;i$ player

8’s current position; *---> 6 " indicates that the message is for player 6; awhere

are you? " is a message type indicating that a particular response is requested: the
recipient’s coordinate location. In this case, there is no message data.

Upon hearing such a message, any teammate would update its internal state to indicate
that player 8 is playing position 7. However only player 6 setseégponse and
response-flag internal state variables. In this case, since the target is a single player,
thecommunicate-delay flag remains at 0. Were the message targeted towards the
whole team or to a subset of the team, ttiemmunicate-delay =~ would equal:

¢ |IF (my number > sender number)

((my number— sender number 1)*2)* communicate-interval

e ELSE (((sender number my number— 1)*2)+1)*communicate-interval
wherecommunicate-interval is the time between audible messages for a given
agent (200ms in this case). Thus, assuming no further interference, player 8 would be

8

able to hear responses from all targets.

Once player 6 is ready to respond, it might send back the me¢€agenited 6
342 1 0 5 ----> all I'm at 4.1 -24.5) . Notice that player 6 is using the
same team formation but playing a different position from player 8: position 5. Since this
message doesn’t require a response (as indicated by’'thedt " message type), the
message is accessible to the whole team-¢ all "): all teammates who hear the
message update their world states to reflect the message data. In this case, player 6 is at
coordinate position4.1, —24.5).

Notice that were player 8 not to receive a response from player 6 before passing,
it could still pass to its best estimate of player 6’s location: should the message fail to
get through, no disaster would result. Such is the nature of most communication in this
domain. Should there be a situation which absolutely requires that a message get through,
the sending agent could repeat the message periodically until hearing confirmation from
the recipient that the message has arrived. However, such a technique incurs high action
costs and should be used sparingly.

Notice that in the two example messages above, both players are using the same team-
formation. However, such is not always the case. Even if they use common environmental
cues to trigger formation changes, one player might miss the cue. In order to combat such
a case, players update the team formation if a teammate is using a different formation
that was set a later time. For example, if player 6's message had b&Qhuhited
6 342 3 50 ...”Iindicatingthat it had been using team formation 3 since time 50, an
internal behavior in player 8 would have changed its internal state to indicate the new team
strategy. Thus our team was able to remain coordinated even when changing formations.

Other examples of communication used in our implementation of simulated robotic
soccer players include:

Request/respond ball location

Request/respond teammate location

Inform pass destination

Inform going to the ball

Inform taking/leaving position

We found that the resulting updates of player world states and internal states greatly
improved the performance of our team.

4.2 Results

Detailed empirical testing indicates that the implementation detailed above is successful
in the challenging communication environment of the Soccer Server. In this section,
we report results reflecting the cost of communication, the agents’ robustness to active
interference, their ability to handle messages that require responses from multiple team
members, and their ability to maintain a coordinated team strategy.

To test the cost of communication, we played a team using no communication (team
A) against a team identical to the first in all regards except that its members say random

9

strings periodically (team B). Thus team B gained no benefit from communication, but
its action rate was reduced by the interleaving of random statements. With an average of
18% of its actions taken by these random communications, team B suffered a significant
degradation in performance, losing to team A by an average score of 3.54 to 1.08 over 50
games. Clearly, communication in this domain involves a significant cost.

Relying on communication protocols also involves the danger that an opponent could
actively interfere by mimicking an agent’s obsolete messages. HowevetEndcoded-
stamp> field guards against such an attempt. As a test, we played a communicating
team (team C) against a team that periodically repeats past opponent messages (team D).
Team C set thecEndcoded-stamp field to <Uniform-number «(send-time + 37).

Thus teammates could determsend-time by inverting the same calculation (known

to all through the locker-room agreement). Messages received more than a second after
the send-time were disregarded. The one-second leeway accounts for the fact that
teammates may have slightly different notions of the current global time.

In our experiment, agents from team D sent a total of 73 false messages over the course
of a 5-minute game. Not knowing team C’s locker-room agreement, they were unable to
adjust the<Endcoded-stamp field appropriately. The number of team C agents hearing
a false message ranged from O to 11, averaging 3.6. In all cases, each of the team C agents
hearing the false message correctly ignored it. Only one message truly from a team C
player was incorrectly ignored by team C players, due to the sending agent’s internal clock
temporarily diverging from the correct value by more than a second. Although it didn’t
happen in the experiment, it is also theoretically possible that an agent from team D could
mimic a message within a second of the time that it was originally sent, thus causing it
to be indistinguishable from valid messages. However, in this case, the content of the
message is presumably still appropriate and consequently unlikely to confuse team C.

Next we tested our proposed method of handling multiple simultaneous responses to a
single message. Placing all 11 agents within hearing range, a single agent periodically sent
a “where are you” message to the entire team and recorded the responses it received. In all
cases, all 10 teammates heard the original message and responded. However, as shown in
Table 3, the use of our proposed method dramatically increased the number of responses
that got through to the sending agent. When the team cseununicate-delay as
specified in Section 4, message responses were staggered over the course of about 2.5
seconds, allowing most of the 10 responses to get through. When all agents responded at
once (no delay), only one response (from a random teammate) was heard.

Finally, we tested the team’s ability to maintain coordinated team strategies when
changing formations via communication. One player was given the power to toggle
the team’s formation between a defensive and an offensive formation. Announcing the
change only once, the rest of team had to either react to the original message, or get the
news from another teammate via other communications. As described in Section 4, the
<Formation-number and <Formation-set-time fields are used for this purpose. We
ran two different experiments, each consisting of 50 formation changes. In the first, a

10

Number of Responses Response Time (se¢
Min | Max | Avg Min | Max | Avg
No Delay| 1 1 1.0 0.0| 0.0 0.0

Delay 6 9 8.1 00| 26 0.9
Table 3 When the team usemmunicate-delay as specified in Section 4, an average of

7.1 more responses get through than when not using it. Average response time remains under one
second. Both experiments were performed 50 times.

N—r

midfielder made the changes, thus making it possible for most teammates to hear the
original message. In the second experiment, fewer players heard the original message
since it was sent by the goaltender from the far end of the field. Even so, the team was
able to change formations in an average time of 3.4 seconds. Results are summarized in
Table 4.

Entire Team Change Time (segt) Heard From
Decision-Maker| Min | Max | Avg Var Decision-Maker|
Goaltender 0.0 |238| 34 17.8 46.6%
Midfielder 00| 79 | 13 2.8 80.6%

Table 4. The time it takes for the entire team to change team strategies even when a single agent
makes the decision. Even when the decision-making agent is at the edge of the field (goaltender)
so that fewer than half of teammates can hear the single message indicating the switch, the team
is completely coordinated after an average of 3.4 seconds.

In addition to the above controlled experiments, we used our communication method
in the CMUnited simulator team that competed in RoboCup’97. In a field of 29 teams,
CMUnited made it to the semi-finals, indicating that the overall team construction, of
which this communication model was a significant part, was successful.

5 Conclusion

In domains with low-bandwidth, single-channel, unreliable communication, several issues
arise that need not be considered in most multiagent domains. We have presented a
communication paradigm which successfully addresses these challenges. Having fully
implemented it in the robotic soccer domain, we have tested the paradigm empirically both
in a controlled setting and in competition against several previously unseen opponents.
Using this paradigm, the CMUnited’97 simulator team made it to the semi-finals of
RoboCup’97.

References

[1] Mihai Barbuceanu and Mark S. Fox. Cool: A language for describing coordination in multi

11

agent systems. IRroceedings of the First International Conference ontMéigent Systems
(ICMAS-95) pages 17-24, Menlo Park, California, June 1995. AAAI Press.

[2] Philip R. Cohen, Hector J. Levesque, and Ira Smith. On team formation.

[3] Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. Kgml: An information and
knowledge exchange protocol. In Kazuhiro Fuchi and Toshio Yokoi, edikoreywledge
Building and Knowledge Sharin@hmsha and IOS Press, 1994.

[4] Masahiro Fujita and Koji Kageyama. An open architecture for robot entertainment. In
Proceedings of the First International Conference on Autonomous Ageadss 435442,
Marina del Rey, CA, February 1997.

[5] M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version 3.0 reference
manual. Technical Report Logic-92-1, Computer Science Department, Stanford University,
1992.

[6] H. Kitano, Y. Kuniyoshi, I. Noda, M. Asada, H. Matsubara, and E. Osawa. Robocup: A
challenge problem for AIAl Magazine 18(1):73-85, Spring 1997.

[7] Dario Maio and Stefano Rizzi. Unsupervised multi-agent exploration of structured envi-
ronments. InProceedings of the First International Conference onltiéigent Systems
(ICMAS-95) pages 269-275, Menlo Park, California, June 1995. AAAI Press.

[8] Itsuki Noda and Hitoshi Matsubara. Soccer server and researchesloragant systems.
In Proceedings of the IROS-96 Workshop on Robo@lagwember 1996.

[9] Peter Stone and Manuela Veloso. The cmunited’97 simulator team. In H. Kitano, editor,
RoboCup-97: The First Robot World Cup Soccer Games and ConfereSmasger Verlag,
Berlin, 1998, forthcoming.

[10] Milind Tambe. Teamwork in real-world, dynamic environmentsPmceedings of the Sec-
ond International Conference on Multi-Agent Systems (ICMASMéhlo Park, California,
December 1996. AAAI Press.

12

