Learning from Failure Experiences

Katia Sycara

katia@cs.cmu.edu
The Robotics Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.
(412)621-8825

Abstract

We describe a framework, implemented in CAB-
INS, for iterative schedule revision based on acqui-
sition and reuse of user optimization preferences to
improve schedule quality. Practical scheduling prob-
lems generally require allocation of resources in the
presence of a large, diverse and typically conflicting
set of constrainis and optimization criteria. The ill-
structuredness of both the solution space and the de-
sired objectives make scheduling problems difficult to
formalize. In CABINS, case-based reasoning is used
Jor eliciting situation-dependent user’s tradeoffs about
repair actions and schedule quality to guide schedule
revision for quality improvement. During iterative re-
pair, cases are ezxploited for multiple purposes, such
as (1) repair action selection, (2) cvaluation of inter-
mediate repair results and (3) recovery from revision
failures. The contributions of the work lie in experi-
mentally demonstrating in a domain where neither the
user nor the program possess causal knowledge of the
domain that taking into consideration failure informa-
tion improves the efficiency of rather costly iterative
repair process. The ezperiments in this paper were
performed in the context of job shop scheduling prob-
lems.

1 Introduction

Recently there has been increased interest in ap-
proaches that incrementally modify an artifact (e.g.,
program, plan, design) by reusing previous experi-
ences [1, 2, 3, 4] in order to accommodate changed ar-
tifact specifications or recover from execution failures.
Most current approaches have the following common

1060-3425/94 $3.00 © 1994 IEEE

122

in Case-Based Schedule Repair
Kazuo Miyashita

miyasita@mcec.ped.mei.co.jp
Matsushita Electric Industrial Co. Ltd.

2-7 Matsuba-cho
Kadoma, Osaka 571, JAPAN
+-81-6-905-4809

characteristics: (1) they are motivated solely by con-
siderations of computational efficiency, (2) they are
concerned only with preserving artifact correctness,
and (3) they assume the existence of a strong domain
model that is utilized to guide artifact modification
and repair. These characteristics are limiting in inter-
esting real world tasks since the existence of a strong
domain model can almost never be assumed and arti-
fact quality (as opposed to only correctness) is often
a crucial consideration.

We present an approach, implemented in CABINS,
to demonstrate that reuse of previous relevant experi-
ences is effective not only to ensure artifact correctness
but also to improve quality. Through case-based rea-
soning (CBR), CABINS learns two categories of con-
cepts: (1) what heuristic repair actions to choose in a
particular repair context, and (2) what combinations
of effects of application of a particular repair action
constitutes an acceptable or unacceptable repair out-
come. This distinguishes CABINS from previous case-
based systems. For example, CHEF assumes existence
of rules for repair tactic selection and a model-based
simulator for detecting failures in a derived plan. In
contrast to the knowledge acquisition task [5] where
the program interacts with an expert teacher to ac-
quire domain knowledge, in our approach neither the
user nor the program possess causal domain knowl-
edge. The user cannot predict the effects of modifica-
tion actions on the artifact. The user’s expertise lies in
his/her ability to perform consistent evaluation of the
results of problem solving and impart to the program
cases of problem solving experiences and histories of
evaluation tradeoffs.

CABINS has been evaluated in the domain of iter-
ative improvement of job shop schedules. In contrast
to approaches that utilize a single repair heuristic [6]

Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

—

or use a statically predetermined model for selection
of repair actions [7], our approach utilizes a repair
model that is incrementally learned and encoded in
the case base. Learning allows dynamic switching of
repair heuristics depending on the repair context. In
(8] plausible explanation based learning has been suc-
cessfully used to learn schedule repair control rules for
speed up. Our experimental results show that in the
context of CABINS, keeping the case base rather than
inducing rules gives better results in terms of schedule
quality.

CABINS provides a unified framework for predic-
tive schedule improvement, reactive schedule manage-
ment in response to unforeseen events during sched-
ule execution, and interactive capture of user context-
dependent preferences and re-use of the learned knowl-
edge to differentially select repair actions. Experi-
mental results reported in [9] have shown that CAB-
INS substantially increased schedule quality in pre-
dictive and reactive situations along a variety of op-
timization criteria (improvements ranged from 30-70
percent) without undue degradation in efficiency as
compared with (1) a state of the art constraint-based
scheduler, and (2) a variety of well regarded dispatch
heuristics that are used in production management.

In this paper we experimentally demonstrate that
taking into consideration repair failure information
in multiple ways improves schedule repair results in
terms of quality and efficiency.

1.1 Task Domain

Scheduling assigns a set of tasks to a set of re-
sources with finite capacity over time. One of the
most difficult scheduling problem classes is job shop
scheduling. Job shop scheduling is a well-known NP-
complete problem [10]. In job shop scheduling, each
task (heretofore called a job or an order) consists of
a set of activities to be scheduled according to a par-
tial activity ordering. Each job is assigned a release
date, the date that it will be ready for starting pro-
cessing, a due date, the date on which the job should
finish, and a set of durations of each job activity. The
dominant constraints in job shop scheduling are: tem-
poral precedence constraints that specify the relative
sequencing of activities within a job and resource ca-
pacity constraints that restrict the number of activities
that can be assigned to a resource during overlapping
time intervals.

The activity precedence constraints along with a
Jjob’s release date and due date restrict the set of ac-
ceptable start times for each activity. The capacity
constraints restrict the number of activities that can

123

Figure 1: Example of tight interactions

use a resource at any particular point in time and cre-
ate conflicts among activities that are competing for
the use of the same resource at overlapping time in-
tervals. The goal of a scheduling system is to produce
schedules that respect temporal relations and resource
capacity constraints, and optimize a set of objectives,
such as minimize tardiness, minimize work in process
inventory (WIP) (i.e., the time an order spends in a
factory waiting to be processed), maximize resource
utilization, minimize cycle time etc.

CABINS incrementally revises a complete but sub-
optimal schedule to improve its quality. Revision con-
sists in identifying and moving activities in the sched-
ule. Because of the tight constraint interactions, a re-
vision in one part of the schedule may cause constraint
violations in other parts. It is generally impossible to
predict in advance either the extent of the constraint
violations resulting from a repair action, or the nature
of the conflicts. (see figure 1) Therefore, a repair ac-
tion must be applied and its repair outcome must be
evaluated in terms of the resulting effects on schedul-
ing objectives. The evaluation criteria are often con-
text dependent and reflect user judgment of tradeoffs.
For example, WIP and weighted tardiness are not al-
ways compatible with each other. As shown in figure
2, there are situations where a repair action can re-
duce weighted tardiness, but WIP increases. Trade-
offs are context-dependent and therefore difficult to
describe in a simple manner [11]. In CABINS, user
feedback is used to incrementally acquire context de-
pendent schedule evaluations and their justifications.
These are recorded in the case base and can be re-used
to evaluate future repair outcomes. Hence, user pref-
erences are reflected in the case base in two ways: as
preferences for selecting a repair tactic depending on
the features of the repair context, and as evaluation
preferences for the repair outcome that resulted from

Figure 2: Example of conflicting objectives

selection and application of a specific repair tactic.

2 Overview of CABINS

Figure 3 depicts the overall architecture of CABINS
implementation. CABINS is composed of three mod-
ules: (1) an initial schedule builder, (2) an interactive
schedule repair (case acquisition) module and (3) an
automated schedule repair (case re-usage) module.

To generate an initial schedule, CABINS uses a
state-of-the-art constraint-based scheduler [12]. But
the scheduler can’t always produce an optimal solu-
tion to the job shop scheduling problem, because the
complete knowledge of the scheduling domain model
and user’s preferences are not available to the sched-
uler. In order to compensate for the lack of those types
of knowledge, CABINS gathers the following informa-
tion in the form of cases through interaction with a
domain expert in its training phase.

¢ A suggestion of which repair heuristic to apply :
a user’s decision on what repair heuristic to be
applied to a given schedule for quality improve-
ment.

e An evaluation of a repair result : a user’s overall
evaluation of a modification result. The evalu-
ation categories currently employed are ‘accept-
able’ and ‘unacceptable’.

e An explanation of an evaluation : when a user
evaluates the modification result as unacceptable,
s/he indicates the set of undesirable effects that
have been produced. The explanation given to
CABINS consists of the numerical rating of each
identified effect.

Our basic assumption on case acquisition is that, in
spite of ill-structuredness of the problem, the following

124

Repair by CABINS Contextuat Domein Knowledge ::Im
Mm'tu:l:rem jo—] Fosture Vaiues e—j Flopairby
m* tacte Repeir Tactic

Evalusie resuit
Evaluation Criferia
Optimal Schedule

Figure 3: CABINS Architecture

three types of domain knowledge constitute useful case
features.

o Repair heuristics : a set of local patching heuris-
tics that can be applied to a sub-optimal schedule.

e Descriptive features : attributes of a schedule
that describe a particular scheduling situation
and might be useful in estimating the effects of
applying repair heuristics to the schedule. These
features are of two types, local and global and will
be described in detail in section 2.1.

o Evaluation criteria : quantification of different as-
pects of the effects of applying repair heuristics to
the schedule. The degree of importance on these
criteria is in general user- and state-dependent.

Once a case base is created, CABINS can repair
sub-optimal schedules automatically by using case-
based reasoning in selection of repair tactics and in
evaluation of repaired results.

2.1 Case Representation

Within a job, repair is performed on one activity,
the focal_activity at a time. In CABINS, a case de-
scribes the application of a particular modification to a

CASE

Giobal Feature
Welighted Tardiness
Vaiue Salience

Valve Salience
Resource Utllization Deviation
Value Salience

Local Feature

Walting Time
Value Salience

Predictive Shift Galn
Vaive Salle

nce
Predictive Alt Shift Galn
Value Salience
Predictive Swap Galn
Valve Sallence
Predictive Alt Swap Galn
Vaive Salience

Repair History
Tactlc Valve
Outcome .,

Salience
Salience
Effect
Type Value
T

. Ij

Figure 4: CABINS Case Representation

T

focal_activity. Each case is indexed in terms of surface
features relating to the flexibility of temporal and ca~
pacity constraints surrounding the focal.activity, the
repair tactic used, repair effects and the repair out-
come. Figure 4 shows the information content of a
case. The global features reflect an abstract charac-
terization of potential repair flexibility for the whole
schedule. High resource utilization, for example, often
indicates a tight schedule without much repair flexibil-
ity. High standard deviation of resource utilization in-
dicates the presence of highly contended-for resources
which in turn indicates low repair flexibility.

Associated with the focal_activity are local features
that we have identified and which potentially are pre-
dictive of the effectiveness of applying a particular
repair tactic. These features are in the same spirit
as those utilized in [7]. For example, predictive-shift-
gain predicts how much overall gain will be achieved
by moving the current focal_activity earlier in its time
horizon. In particular, it predicts the likely reduc-
tion of the focal_activity’s waiting time when moved
to the left within the repair time horizon. Because
of the ill-structuredness of job shop scheduling, local
and global features are heuristic approximations that
reflect problem space characteristics.

The repair history records the sequence of applica-
tions of successive repair actions, the repair outcome
and the effects. The repair history is used as a record
of evidences that show an existence of a certain causal
structure in a problem implicitly. Repair effect values

125

describe the impact of the application of a repair ac-
tion on scheduling objectives (e.g., weighted tardiness,
WIP). A repair outcome is the evaluation assigned to
the set of effects of a repair action and takes values
in the set [‘acceptable’, ‘infeasible’, ‘unacceptable’].
Typically the outcome reflects tradeoffs among differ-
ent objectives. The outcome of application of a repair
tactic is “infeasible’, if the application of repair heuris-
tic results in an infeasible schedule, i.e. a schedule
that violates domain constraints. If the application of
a repair tactic results in a feasible schedule, the result
is judged as either acceptable or unacceptable with re-
spect to the repair objectives by a domain expert. An
outcome is ‘acceptable’ if the user accepts the tradeoffs
involved in the set of effects for the current application
of a repair action. Otherwise, it is ‘unacceptable’. The
effect salience is assigned when the outcome is ‘unac-
ceptable’, and it indicates the significance of the effect
to the repair outcome. This value is decided by a do-
main expert subjectively and interactively. The user’s
judgment as to balancing favorable and unfavorable
effects related to a particular objective constitute the
explanations of the repair outcome.

2.2 Case Acquisition

To gather enough cases, sample scheduling prob-
lems are solved by a scheduler. CABINS identifies jobs
that must be repaired in the initial sub-optimal sched-
ule. Those jobs are sorted according to the significance
of defect, and repaired manually by a user according
to this sorting. For example, if the optimization cri-
terion is to minimize order tardiness, the most tardy
order is repaired first. The user selects a repair tactic
to be applied. Tactic application consists of two parts:
(a) identify the activities, resources and time intervals
that will be involved in the repair, and (b) execute
the repair by applying constraint-based scheduling to
reschedule the activities identified in (a). Repairing an
activity, i.e., unscheduling it from its current position
and re-scheduling at another time interval may cause
conflicts with other activities. In each tactic applica-
tion, the conflicting activities are all re-scheduled. For
details of the approach, see [9].

After tactic selection and application, the repair ef-
fects are calculated and shown to the user who is asked
to evaluate the outcome of the repair. For example,
repair of the current focal_activity may decrease WIP
by 200 units and decrease weighted tardiness of the fo-
cal_order by 180 units while at the same time increas-
ing weighted tardiness of another order by 130 units
and increasing WIP by 300 units. If the user evalu-
ates the repair outcome as ‘acceptable’, CABINS pro-

ceeds to repair another focalactivity and the process
is repeated. If the user evaluates the repair outcome
as ‘unacceptable’, s/he is asked to supply an expla-
nation in terms of rating the salience/importance of
each of the effects. The repair is undone and the user
is asked to select another repair tactic for the same
focal_activity. The process continues until an accept-
able outcome for the current focal_activity is reached,
or failure is declared. Failure is declared when there
are no more tactics to be applied to the current fo-
cal_activity . The sequence of applications of suc-
cessive repair actions, the effects, the repair outcome,
and the user’s explanation for failed application of a
repair tactic are recorded in the repair history of the
case. In this way, a number of cases are accumulated
in the case base.

2.3 Case Re-use

Once enough cases have been gathered, CABINS
repairs sub-optimal schedules without user interac-
tion. CABINS repairs the schedules by (1) recogniz-
ing schedule sub-optimalities, (2) focusing on a fo-
cal_activity to be repaired in each repair cycle, 3)
invoking CBR with global and local features as in-
dices to decide the most appropriate repair tactic to
be used for each focal.activity, (4) invoking CBR us-
ing the repair effect features (type, value and salience)
as indices to evaluate the repair result, and (5) in case
of failure, deciding whether to give up or which repair
tactic to use next by using global and local features
and a list of repair history as indices. Experiments of
using different indexing schema in case of failure are
described in the following section.

In CABINS concepts are defined extensionally by
a collection of cases. As a case retrieval mecha-
nism, CABINS uses a variation of k-Nearest Neighbor
method (k-NN). [13] where not the frequency but the
sum of similarity of k-nearest neighbors is used as a
selection criterion. The similarity between i-th case
and the current problem is calculated as follows :

Y. ... CFi—PF
eap(=\| 2 (SL) x —55—))

J=1

where SL} is the salience of j-th feature of i-th case

in the case-base. Salience and values of features are
numeric and have been heuristically defined by the
user. CF}-" is the value of j-th feature of i-th case,
PFj} is the value of j-th feature in the current problem,

1The tactics currently available in CABINS are: left_shift,
left_shift.into.alt, swap, swap_into_alt.

126

E_Dj is a standard deviation of j-th feature value of all
cases in the case-base. Feature values are normalized
by division by a standard deviation of the feature value
so that features of equal salience have equal weight in
the similarity function.

3 Experimental Studies

To evaluate CABINS, we performed a set of con-
trolled experiments where job shop schedule parame-
ters, such as number of bottlenecks, range of due date,
and activity durations were varied to cover a broad
range of job shop scheduling problems. To ensure
that we had not unintentionally hardwired knowledge
of the problem into the solution strategies, we gener-
ated 60 job shop scheduling problems at random from
problem generator functions where the above problem
parameters were varied in controlled ways. Each prob-
lem has 5 resources and 10 jobs of 5 activities each.
Each job has a process routing specifying a sequence
where each job must visit bottleneck resources after a
fixed number of activities, so as to increase resource
contention and make the problem more difficult. We
also varied job due dates and release dates, as well
as the number of bottleneck resources (1 and 2). Six
groups of 10 problems each were randomly generated
by considering three different values of the due date
range parameter (static, moderate, dynamic), and two
values of the bottleneck configuration (1 and 2 bottle-
neck problems). The slack was adjusted as a function
of the due date range and bottleneck parameters to
keep demand for bottleneck resources close to 100 per-
cent over the major part of each problem. Durations
for activities in each job were also randomly generated.
These problems are variations of the problems origi-
nally reported in [12]. Our problem sets are different
in two respects: (a) we allow substitutable resources
for non-bottleneck resources, and (b) the due dates
of jobs in our problems are more constrained by 20
percent.

In the experiments reported here, we used a simple
metric, minimizing weighted tardiness 2, as an objec-
tive function to evaluate the performance of CABINS.
Although there is no straightforward way to modify
a schedule to optimize a realistic multi-criteria objec-
tive function, by using a single-criterion objective we
built a rule-based reasoner (RBR) that goes through
a trial-and-error repair process to optimize a schedule
and forms an experimental baseline against which to

20f course, CABINS does not know this metric but has to
guess it from the contents of the case base.

compare CABINS. Since the RBR is constructed not
to select the same tactic again after tactic failure, it
could go through all the tactics before giving up re-
pairing an activity. For each repair, the repair effects
are calculated and the repair outcome is correctly de-
termined by comparing the change in the objective
function. Since a clearly-defined objective function
used for evaluation, RBR can work as an emulator of
a human scheduler, whose expertise lies in the ability
of consistent evaluation. Therefore, we used RBR not
only to make a comparison baseline for the CABINS
experiment results but also to generate the case base
for CABINS. So far, CABINS has been trained with
1,000 cases.

To make an accurate determination of CABINS’
capabilities, we applied a two-fold cross-validation
method. Each problem set in each class was divided in
half. One half was repaired by RBR to gather cases.
These cases were used to iteratively repair the other
half of the problem set. We repeated the above pro-
cess interchanging the sample set and the test set. Our
results are the average of the two sets of results using
case-based repair.

3.1 Evaluation of Three Repair Strategies

In job shop schedule repair, we don’t know how
many different features are necessary to precisely pre-
dict the most successful tactic to be applied. But,
since scheduling constraints are tightly interconnected
(in time horizon and allocatable resources), the neces-
sary number of features for fully representing a prob-
lem must be very large. Therefore, the number of
features in the current case representation could be
insufficient. But we should keep the number of fea-
tures moderate, because if a case has a large number
of features, the number of cases required for train-
ing increases drastically (i.e., dimensionality prob-
lem). Therefore, with moderate number of features
and training cases, we can’t avoid making some wrong
predictions by using inductive learning. To compen-
sate for the lack of a large number of case descriptive
features, we can use failure experiences to derive use-
ful information (i.e. retrieve more similar cases from
the case base) to improve predictive accuracy.

Our hypothesis is that CBR, enables CABINS to
(1) learn a control model of repair action selection
from cases that are created from superficial rules and
(2) improve its competence both in repair quality and
efficiency by utilizing failure information recorded in
the cases.

To analyze the effectiveness of case based schedule
repair, we divided cases into three categories: imme-

127

diate success cases where the first application of a re-
pair tactic was evaluated as success, eventual success
cases where a focal_activity was repaired after several
failed tactic applications, and failure cases where a fo-
cal.activity couldn’t be repaired. We experimentally
compared the following three repair strategies:

o One-shot repair : CABINS selects a repair tactic
by retrieving the most similar immediate success
cases, applies it to a focal_activity and proceeds to
repair the next focal_activity regardless of repair
outcome.

Ezhaustive repair : CABINS selects a repair tac-
tic and applies it to repair a focal_activity. If the
repair outcome is deemed either unacceptable or
infeasible, another tactic is selected from eventual
success cases to repair the same focal_activity, us-
ing as indices global and local case features, the
failed tactic, and the indication of the failed out-
come. This CBR invocation retrieves similar past
failures of the tactic that were eventually success-
fully repaired and the tactic that was eventually
successful in fixing the past failure. The intuition
here is that similar outcome for the same tactic
imply similarity of causal structure between the
past and current case. Therefore, the eventually
successful tactic of a similar failure can poten-
tially be successful in the current problem.

Limited ezhaustive repair : CABINS gives up fur-
ther repair when it determines that it would be a
waste of time. To decide whether to give up fur-
ther repair, failure cases are utilized in conjunc-
tion with immediate success cases and eventual
success cases to determine case similarity. If the
most similar case is a failure, CABINS gives up
repair of the current focal_activity, and switches
its attention to another focal activity. Since, in
difficult problems, such as schedule repair, fail-
ures usually outnumber successes, if both case
types are weighted equally, overly pessimistic re-
sults could be produced (i.e., CBR suggests giv-
ing up too often.) To avoid this, we bias (nega-
tively) usage of failure cases by placing a thresh-
old on the similarity value. Failure experiences
whose similarity to the current problem is below
this threshold are ignored in similarity calcula-
tions. Since the similarity metric selects the tac-
tic which maximizes the sum of the most simi-
lar k cases, this biases tactic selection in favor of
success cases which are moderately similar to the
current problem.

S—
[Training Dot]

L

Collect defects

—

| Iidentity defect to be repaired In—

Sucocees Case <
Fellure Cane

Select npmu

Select repair-etrategy I
|

Seleot repair-tactlo I lny mllwla tactic?
‘ CASE-BASE

Apply selected tactio I Sucosss Case U m,".,m“m,
I Fallure Case ‘

Evaluate Result] Enlum Result |

[Collect defects }.—
[Tmwpoa] L
L I Kentify defect 10 be repalred
}
I Select repair-strategy I
i
Select ropaicctic [

St

CASE-BASE] /f Y
et A5
Success Case y Apply selsoted tactic I

!

<"

Figure 5: Three repair strategies compared

128

r Collect defects

—

| IdlmlfydMlnlnnpnlud

[Select npdrdnbgy

I

<>

N

Figure 6: Effect of repair strategies in quality and efficiency

129

The flow chart of each repair strategy is shown in fig-
ure 5.

The graphs in figure 6 show comparative re-
sults with respect to schedule quality improvement
(weighted tardiness) and repair efficiency (in CPU
secs) among limited exhaustive repair, exhaustive re-
pair, one-shot repair and rule-based repair. The re-
sults show that one-shot repair is the worst in qual-
ity (even compared to rule-based repair) but best in
efficiency. Exhaustive repair outperformed one-shot
repair and rule-based repair in quality. But, the ef-
ficiency of exhaustive repair was worse than that of
one-shot repair or rule-based repair. We attribute the
increase in CPU time for exhaustive repair to two rea-
sons: (1) greediness - exhaustive repair applies the
tactic from the most similar success cases no matter
how small their similarity is, and (2) stubbornness -
exhaustive repair continues to repair the current fo-
cal_activity without giving up when the problem seems
difficult. The quality of repairs by limited exhaustive
repair is only slightly worse than that by exhaustive
repair, but is still comparable with that of rule-based
repair. The efficiency of limited exhaustive repair is
much higher than both rule-based repair and exhaus-
tive repair. Although the efficiency of limited exhaus-
tive repair is comparable with that of one-shot repair,
the quality of repairs by limited exhaustive repair is
much better than that of one-shot repair. One poten-
tial reason for these effects is that, as we described in
section 1.1, the effects of schedule repair is pretty un-
predictable and there is a good chance that another
application of repair tactic may make the problem,
which once seemed difficult, easier by changing the ex-
isting schedule fundamentally so that we can go back
to the problem afterwards and repair it without wast-
ing much effort. With respect to repair quality, we
can observe the following: (1) immediate success cases
alone do not have enough information to induce a com-
plicated causal model of schedule repair process, and
(2) prediction accuracy of repair tactic selection can
be improved by using information about failed appli-
cation of a repair tactic as additional index feature.

4 Conclusions

We described a framework for acquisition and reuse
of past problem solving experiences for plan revision
in domains, such as job shop scheduling, that do not
have a strong domain model. We examined various
ways of exploiting failure information in such a do-
main. Our experiment results show that our method-
ology can improve its own performance by: (1) using

130

failure experience as contextual index of the problem,
and (2) trading off the use of success and failure cases
depending on the context in which a repair tactic is
applied. This use of CBR in the space of failures is a
domain independent method of failure recovery that
allows the problem solver to access past solutions to
the failure without strong domain knowledge.

References

[1] S. Kambhampati and J. A. Hendler, “A
validation-structure-based theory of plan modifi-
cation and reuse,” Ariificial Intelligence, vol. 55,
pp. 193-258, 1992.

[2] M. M. Veloso, Learning by Analogical Reasoning
in General Problem Solving. PhD thesis, School
of Computer Science, Carnegie Mellon University,
1992.

[3] R. G. Simmons, “The roles of associational and
causal reasoning in problem solving,” Artificial
Intelligence, vol. 53, pp. 159-207, 1992.

[4] K. J. Hammond, Case-Based Planning : View-
tng Planning as a Memory Task. New York, NY:
Academic Press, 1989.

[5] R. Bareiss, Ezemplar-based knowledge acquisition
: a unified approach to concept regression, classi-
fication, and learning. New York, NY: Academic
Press, 1989.

[6] S. Minton, M. D. Johnston, A. B. Philips, and
P. Laird, “Solving large-scale constraint satisfac-
tion and scheduling problems using a heuristic
repair method,” in Proceedings, Eighth National
Conference on Artificial Intelligence, (Boston,
MA)), pp. 1724, AAAI, 1990.

P.S. Ow, S. F. Smith, and A. Thiriez, “Reactive
plan revision,” in Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence, (St-
Paul, Minnesota), pp. 77-82, AAAI, 1988.

M. Zweben, E. Davis, B. Daun, E. Drascher,
M. Deale, and M. Eskey, “Learning to improve
constraint-based scheduling,” Artificial Intelli-
gence, vol. 58, no. 1-3, pp. 271-296, 1992.

(7]

(8]

[9] K. Miyashita and K. Sycara, “A framework
for case-based revision for schedule generation
and reactive schedule management,” Journal of
Japanese Society for Artificial Intelligence, Sub-

mitted.

(10]

[11]

(12]

[13]

S. French, Sequencing and Scheduling: An Iniro-
duction to the Mathematics of the Job-Shop. New
York, NY: Ellis Horwood, 1982.

K. Miyashita and K. Sycara, “Cabins : Case-
based interactive scheduler,” in Working Notes
of AAAI Spring Symposium on Practical Ap-
proaches to Scheduling and Planning, (Stanford,
CA), AAAI 1992.

N. Sadeh, Look-Ahead Techniques for Micro-
Opportunistic Job Shop Scheduling. PhD the-
sis, School of Computer Science, Carnegie Mellon
University, 1991.

B. V. Dasarathy, ed., Nearest Neighbor (NN)
Norms: NN Pattern Classification Techniques.
Los Alamitos, CA: IEEE Computer Society
Press, 1990.

131

