DARPA/VISION & NAVIGATION

Toward Autonomous Driving:
The CMU Naviab

Part Il — Architecture and Systems

Charles Thorpe, Martial Hebert, Takeo Kanade, and Steven Shafer

Carnegie Mellon University

AN AUTONOMOUS MOBILE

robot requires perception, planning, and
control to act intelligently. Our goal in the
Navlab project is to build a robot that can
operate autonomously under a variety of
conditions. Once we had developed the
first versions of reliable perception soft-
ware (detailed in the article on p. 31), we
developed novel planning methods for rough
terrain, and we designed and built systems
software to forge the separate perception
and planning modules into integrated sys-
tems. By directly confronting the central
areas of perception, planning, and system
building, we are filling in the missing links
that will enable us to build reliable high-
speed mobile robots.

Although they are important components,
such other technologies as vehicle design,
high-speed computing, and control theory
are not the main bottlenecks; they have been

or are being developed by other groups, often |

outside the mobile robotics community.

We designed and built the Navlab vehi-
cle in 1986 as a testbed for vision and
navigation experiments (see Figure 1). It
is based on a standard commercial van,
with a rooftop air conditioner, plus at least
one video camera and a laser range finder
mounted over the cab. Inside, the Navlab is
a computer room, with five electronics

A MOBILE ROBOT’S SOFTWARE ARCHITECTURE
ASSEMBLES ITS SENSING, PLANNING, AND CONTROL
COMPONENTS INTO A COHERENT SYSTEM. EDDIE,

THE ARCHITECTURE FOR THE NAVI.AB MOBILE

ROBOT, PROVIDES A TOOLKIT THAT LETS US BUILD

SPECIFIC SYSTEMS QUICKLY AND EASILY.

racks, 20 kilowatts of on-board power, and |
miscellaneous consoles and monitors. Over

the course of our experiments, the vehicle
has carried Sun 3 and 4 workstations, sev-
eral generations of the Carnegie Mellon
University/General Electric Warp super-
computer, various specialized real-time
controllers, gyrocompasses, an inertial nav-
igation system, and a satellite positioning
system. We currently use only a small
portion of the available rack space and
electrical power. Our current real-time con-
troller occupies four slots in a VME cage,
and our general-purpose computers con-
sist of three Sun 3sin a single cage and two
Sun 4s in another. The operating system is
Sun OS, so we have a standard environ-
ment for development and debugging.

The role of planning is to generate tra-
jectories that meet goal requirements (such
as positioning to see a landmark) without
endangering the robot. It must also make
sure that the robot is kinematically able to
execute these trajectories, all in the pres-
ence of uncertainty in the robot’s control
and environment.

A number of systems address a subset of
these issues. Early planners were designed
for indoor mobile robots and assumed that
the environment could be modeled as a flat
surface with polygonal or polyhedral objects.
The robot also was assumed to be circular
and omnidirectional. Later, Laumond'
and Jacobs? relaxed the omnidirectional

44

0885/9000/91/0800-0044 $1.00 © 1991 IEEE

IEEE EXPERT




requirement by modeling a car-like robot
with a minimum turning radius. Hughes
later developed a system that relaxed the
indoor environment constraint, and a plan-
ner that planned paths in off-road environ-
ments.> However, none of these systems
could reason about sophisticated goal re-
quirements and uncertainty in perception
and control. The theoretical foundation in
this area was laid by Smith, Self, and Cheese-
man,* but without actually building a us-
able planner. Planning with uncertainty
has been explored in manipulation, but
it is unclear how to apply the domain-
specific nature of these techniques to plan-
ning for mobile robots.

While these contributions are important,
it is often difficult to extend them to ad-
dress the remaining issues or to generalize
to other robots or environments. Our plan-
ner addresses these problems by providing
a framework for building efficient plan-
ners for different types of robots, environ-
ments, goals, and uncertainty models.

The first step in building a planner is
defining the constraints that must be used
to compute a safe trajectory and to reach
the goal. We have defined three types of
constraints: sensing, environmental, and
kinematic. First, we select positions at which
the robot has to take some action, such as
registering its position relative to the world
or acquiring new sensor data. These posi-
tions are intermediate goals that give the
planner additional constraints.

Second, we identify placements (con-
figurations) in the environment that will
incapacitate the robot or render it unable to
move. These are environmental constraints
that a trajectory must satisfy. Such config-
urations include those that bring the robot
in contact with other objects in the envi-
ronment (as have been modeled in tradi-
tional indoor robotics). Outdoor robots face
other hazards: Configurations that cause
the robot to tip over or place it in situations
where it cannot propel itself forward are
also to be avoided. Figure 2 shows a set of
environmental constraints.

Third, we define kinematic constraints.
Most robots are not omnidirectional. They
cannot travel between two arbitrary con- |
figurations within given bounds. For ex- ‘
ample, car-like vehicles cannot move !
directly sideways. (The Navlab’s minimum
turning radius is seven meters.)

In addition to these three basic con- w
straints, we must also account for uncer-

(b)

{c)

Figure 2. Environmental constraints: () filt constraint; (b) support constraint; (c) body

clearance constraint.

tainty in the robot’s position. Sources of

uncertainty range from random error in
the robot’s control to gross errors such as
wheel slippage. Our local-path planner
accounts for control-based uncertainty to

avoid collisions and to guarantee attain-

ing the goal.

The planner generates trajectories to the
next sensing point using a range map of the
terrain in front of the robot (acquired from

a laser range finder). Since the Navlab’s
pose can be represented by two translation-
al parameters and one heading parameter,
the planner must find an admissible trajec-
tory through a 3D configuration space.
Conceptually, each constraint is represent-
ed by a functional inequality of the form

fip)<K, where p is the vector of robot

configuration parameters. The constraint
is satisfied if the inequality is satisfied.

AUGUST 1991




Applying the constraints divides the con-
figuration space into admissible subspaces.
The sensing positions form a subspace of
this configuration space that comprises the
goal of the path. The environmental con-
straints form a subspace representing un-
safe configurations for the robot. The kine-
matic constraints dictate the functional form
of the trajectory. The uncertainty constraints
dictate an envelope about the trajectory
guaranteed to contain the robot.

Analytic approaches to the problem are
infeasible given the complexity of some of
the constraint functions. Furthermore, the
constraints depend on the terrain itself,
which does not have a functional form. A
straightforward approach is to tesselate the
space into pixel-sized points, evaluate the
constraints at each point, and search the
resultant lattice. However, even for mod-
erately-sized planning spaces, the number
of points (states) makes the search prohib-
itively expensive.

Instead, our planner finds paths using a
parameter resolution hierarchy. In this hier-
archy, all constraints (sensing, environ-
mental, kinematic, uncertainty, and so on)
are evaluated across a subspace of config-
urations at a time (rather than individual
configuration points), thus reducing the
number of states in the search. Sensing and
environmental constraints are evaluated
across 3D voxels in configuration space,
kinematic constraints are enforced between
faces of the voxels, and uncertainty con-
straints determine the voxel expansion
needed to bound the robot’s pose.

The planner finds a trajectory by search-
ing connected sequences of voxels. For a
given subspace, it evaluates each constraint
to determine whether all, none, or some
configurations in the subspace satisfy the

constraint. The planner begins by consid- :

ering large subspaces. Passage through the
subspace is permitted if all constraints are
satisfied for all configurations. If at least
one constraint fails for all configurations,
the entire subspace is untraversable and is
removed from further consideration. In the
remaining case (at least one constraint is
not satisfied by at least one configuration),
the subspace may be traversable, so the
planner subdivides the subspace into smaller
spaces and continues to plan at a higher
resolution. Most of the constraints are mod-
eled uniformly as functional inequalities.
Thus, the planner can classify a subspace
into one of the three cases by computing

the upper and lower bounds for the func-
tion across the subspace and comparing
them to a constant. A cost can be assigned
to each subspace, and a standard depth-
first, breadth-first, or heuristic search can
be used.

The quadtree representation of the ter-
rain described above provides an efficient
way to implement the hierarchical search.
Relevant terrain parameters, such as the
minimum and maximum elevation, are
maintained for each quadrant so that the
planner does not have to go back to the

A MOBILE ROBOT’S
SOFTWARE ARCHITECTURE IS

THE FRAMEWORK THAT
ASSEMBLES THE SEPARATE
COMPONENTS (FOR SENSING,
PLANNING, AND CONTROL)
INTO A COHERENT SYSTEM.

highest resolution map to evaluate its con-
straints. Figure 3 shows one slice of the
constraint space generated by running the
cross-country planner on the elevation map

of Figure 4. The crossed areas represent !

inadmissible terrain areas, that is, areas on
which it is illegal to place the center of the

vehicle. Due to the uniform way in which ;

the constraints are modeled and the resolu-
tion hierarchy is built, we can apply the
framework used in this planner to other
classes of robots, environments, and goal
specifications. Future work will include
building a complete system around the
planner to autonomously drive the Navlab
off-road, implementing algorithmic improve-
ments and using faster computer hardware
to increase performance, and extending
this work to operate on more capable off-
road vehicles.

Architectures and systems

A mobile robot’s software architecture
is the framework that assembles the sepa-
rate components (for sensing, planning,
and control) into a coherent system. Simple

46

robots, performing simple tasks, often have
an architecture that consists of a fixed
sequence of subroutine calls, repeated with-
out variation. More complex robots and
missions require more structure to allow
changing behaviors and conflicting sub-
goals and to specify functions and inter-
faces so groups of researchers can contrib-
ute to building the system.

The Navlab’s current architecture is based
on a toolkit called the Efficient Decentral-
ized Database and Interface Experiment
(EDDIE), which provides communications
and a tight interface to our low-level vehi-
cle control. On top of EDDIE we have built
tools such as the annotated map, a mecha-
nism for storing object and mission infor-
mation. Our most ambitious system, the
Autonomous Mail Vehicle, uses EDDIE
and annotated maps for navigating subur-
ban streets.

Background. The most conventional
architectures separate robot software into
separate modules for sensing, thinking, and
control. This has the advantage of giving
one module control of the vehicle, another
control of all sensors, and a third control of
modeling and planning. This decomposi-
tion groups design tasks according to the
likely areas of expertise of separate re-
search groups. However, this approach does
not allow for high-speed special-purpose
reflexes that require sensing, thinking,
and control all in one tightly integrated
module.

Brooks’ subsumption architecture typi-
fies the opposite approach.’ In his robots,
each module covers the complete range
from sensory input to control output. He
divides his modules into a hierarchy of
functions, each “subsuming” the lower
levels. The first module watches sensor
data and moves the vehicle away from
obstacles. The next layer moves the vehi-
cle randomly, unless the lowest layer takes
over to avoid hitting an object. Higher
layers add purpose to the wandering (mov-
ing toward open doorways, for example),
look for objects of interest, and so forth.
Each layerisrelatively simple to build, and
(in principle) mostly decoupled from adja-
cent layers. But with no central world mod-
el, it takes careful design to ensure that
various modules are not working at cross
purposes. Related ideas include reactive or
reflexive planning, which emphasizes quick
responses rather than careful preplanning,

IEEE EXPERT |



and behaviors. which package sensing
and control modes appropriate for specific
situations.®

Several attempts have been made to build g B
architectures that combine the best of both |
approaches, These systems typically pro- |
pose a hierarchy in which sensor interpre-
tation at each level feeds into both same-
level planning and higher-level sensor
interpretation.’ Plans at each level are de- A
composed into lower-level steps and given
ter the next lower level for execution. The a
hisrarchies are often structured by time
{from quick reflexes at the Jow level to

: s at higher levels). data "‘F’ u
abstraction (from raw signals to symbolic ] =
reasoning), and space (from local effects to T
global dutabases). In trying to encompass

ssible systems, these general-purpose
architectures lose their prescriptive power.
Their main contribution might instead be
descriptive: providing a common vocabu-
lary in which to discuss the differences
hetween architectures.,

For the Navlab. our first real architec-
ture was the Communications Database for
Geometric Reasoning, or Codger.fCo
is a centralized architecture, focused on a
module called the local-map builder. We
designed the architecture to handle all com-
munications and geometric transforms,
aking it easier to build and interface indi-
idual modutes. Communications are anon-
vmous; modules send data and requests to
the local-map builder, and they receive
responses when available, without know-
ing which other modules are generating or
using data or where those modules are
running. The local-map builder stores all
geometric objects and maintains a history
list of vehicle motion and position updates.
Codger uses this list fo answer geometric
quertes involving multiple coordinate
frames. The local-map builder can take a
location, specified relative to the vehicle
ata particufar time, and return the coordi-
nates of that point either in the world
frame or relative to the vehicle ata differ-
ent time.

At the time, we did not know the nature
of the modules and their interactions, and
Oar major concern was to not preciude any

faEs

ger

conceivable systern design. Thus, we made
Codger very general and provided easy
reconfiguration thr ouuh anony mzty of ddld

Figure 4. Range image und corresponding elevation map.




48

communicate and synchronize with each |
other, we sought the simplicity and higher
performance of a more specialized archi-
tecture. EDDIE is that design.

EDDIE. EDDIE does not specify a par-
ticular architecture. Instead, it provides a
toolkit that lets us build specific systems
quickly and easily. Much of the data that
Codger put in a central database properly
belongs in a single module or pair of com-
municating processes, as EDDIE encour-
ages. Vehicle positions — the most impor-
tant models that an architecture maintains
—— are maintained by the lowest-level con-
troller, which has the closest access to the
vehicle and therefore the most accurate
information. Communications are greatly

simplified and are point to point, increas-
ing their efficiency. The map is divided
into local and global representations. By
splitting architectural functions into sepa-
rate pieces for local communications, ve-
hicle history, and map handling, the indi-
vidual modules are much smaller and easier
to maintain.

EDDIE’s first part is its real-time con-
troller. This module handles low-level
vehicle control, manages communication
with higher-level modules, and maintains
the current vehicle position. Vehicle motion
commands arrive at the controller labeled
as either “immediate” or “queued.” The
controller parses incoming commands,
handles the queue, and talks to the hard-
ware motion controller to set new steering-

45.00 ‘

Dead reckoned
Inertial navigation system

L n '
-30.00 -20.00 -10.00

1 . )
0.00 10.00 20.00 30.00

Figure 5. Position estimation during a robot run, The solid line shows the accurate vehicle track

given by inertial navigation sensors. The dotted
estimated by dead reckoning.

line shows the less accurate vehicle track

| wheel positions and vehicle velocities. By
frequently querying the vehicle’s encoders,
the controller can maintain an accurate
dead-reckoned position estimate. EDDIE
does not maintain the vehicle’s position
history. The only time EDDIE needs to
know the vehicle’s position is when new
data is acquired or during trajectory plan-
ning. It is easier and more accurate to
dispense with history mechanisms and in-
stead to query the controller for the current
vehicle position each time an image is
digitized and whenever a planner needs to
know the location.

The vehicle controller uses different
tracking strategies to keep the vehicle on
the desired path. It can also follow a previ-
ously recorded map if the perception
clients are temporarily unable to navigate
the vehicle. This keeps the vehicle on a
safe path while it turns sharp corners that
are outside the camera’s field of view or
while it travels through featureless or con-
fusing visual scenes. Another safety con-
sideration is smoothly regulating velocity,
trading some reduction in velocity accura-
cy for smooth accelerations and reduced
vehicle roll around sharp curves. The con-
troller warns against system failures and
records a log of events for future reference.
This is extremely valuable in system con-
figuration and debugging. The controller
also uses data from the inertial navigation
system and the encoder to find the best
estimate of the vehicle’s current position,
and it relays this estimate to external
clients through the Ethernet. Figure 5
shows an accurate estimation of the vehi-
cle’s position using the inertial navigation
system (solid line), and a less accurate
but still stable estimation using only dead
reckoning (dotted line). The clients are
managed by a software server that priori-
tizes the connections to meet the needs of
many clients without degrading the perfor-
mance level required by critical system
components.’

Closing all position-estimation loops
through the controller allows transparent
path modifications. We have implemented
a joystick interface that lets the user
modify commanded trajectories. Joystick
input is simply summed with computer
input, so the user has the sensation of
“nudging” the vehicle away fromits planned
path. We are also equipping the Navlab
with a “soft bumper,” a ring of ultrasonic
range sensors to detect nearby objects

IEEE EXPERT




before collision. When completed, the soft
bumper will interact with the controller in
the same manner as the joystick (by adding
its control input to the planning input), but
it will have progressively higher gains as
the time to collision decreases. Previous
systems would have been destroyed by this
subversion of planned paths, since Codger
kept the vehicle’s position history by an
open-loop expectation of perfect path track-
ing. In EDDIE , all position queries are
handled directly by the low-level control-
ler and are therefore answered correctly,
even if the path has been modified.

Communications in EDDIE are unexotic
and uninteresting, but fast, with point-to-
point connections. We currently use trans-
mission-control protocol/Internet protocol
over the Ethernet, but we could use shared
memory or other protocols for particular
connections, as needed. Instead of build-
ing special-purpose synchronization mech-
anisms, EDDIE simply uses a blocking
read to pause module execution until data
arrives.

Annotated maps. EDDIE does not have
a global map at its center. It uses local
positions only for obstacle avoidance or
path following, and it never writes them
into a map. Global, permanent maps are
handled by a separate mechanism, called
annotated maps.

Annotated maps start with a geometric
representation of objects, such as roads,
intersections, and landmarks. The annota-
tions are tied to particular locations or
objects and contain a wide variety of infor-
mation — both procedural (actions and
methods) and declarative (data) — not
usually contained in maps. Annotations
can range from high level (“church”) to
‘geometric (“steeple height 25 meters”) to
sensor specific (“look for long, nearly-
vertical edges”) to raw data (“color R1 G1
B1”). The knowledge in an annotation can
come from many sources, such as human

experts, mission-planning software, and |

even the vehicle’s own observations and
experiences on previous missions.

A map-manager module controls the
annotated map. The module provides two
forms of access: queries and triggers. Que-
ries let a module fetch information on de-
mand, and they return all annotations of the
requested type within a specified polygon.
Typical queries ask for descriptions of land-
marks or for which recognition methods

have worked for this landmark on previous
vehicle runs. Triggers are a special form of
annotation, monitored by the map manager.
When the vehicle reaches a trigger’s loca-
tion, the map manager automatically sends
a specified message to a named module.
Triggers can be set up during mission plan-
ning and used to awaken “sleeping” pro-
cesses at specified locations or to alert a
running module to a change in conditions.
In a typical run, triggers tell the vehicle
i when and where to look for landmarks and

WE BEGAN WITH THE FIRM
CONVICTION THAT THE BEST
WAY TO MAKE REAL PROGRESS
WAS TO BUILD COMPLETE
SYSTEMS AND TO ELIMINATE
THE BOTTLENECK OF
INADEQUATE PERCEPTION.

when to switch from road-following code
‘ to the slower intersection-navigation code.
Annotated maps are not designed to be a
master control. Rather, they serve as a
scratch pad (for queries) and alarm clock
(for triggers). Annotations have a standard
format for header information, such as type
and location. The format for the rest of the
annotation is defined by the modules that
post and retrieve the annotations, and need
| not be interpreted by the map manager.
Annotated maps provide a convenient
framework for organizing knowledge.
Tying the knowledge in annotations to
particular locations in the map lets the
system preplan difficult mission segments
and retrieve that information efficiently
during execution. This framework enables
missions that would not otherwise be pos-
sible due to real-time constraints and limits
in processing and algorithmic power.

Autonomous Mail Vehicle. We have
built several systems on top of EDDIE and
the annotated maps. The Navlab’s road-
following system is the Autonomous Mail
Vehicle. This system draws its inspiration
from postal deliveries in suburban and
i rural areas, which follow the same route

day after day, deterred by neither “‘rain nor
snow nor dark of stormy night.” The mail
carriers drive at relatively slow speeds,
often on many different kinds of roads.
They perform gross navigation through a
network of roads and intersections, and
perform fine-position “servoing” to mail
boxes.

This type of system is part of a broader
class of applications that focuses on map
building and reuse, positioning, road fol-
lowing, and object recognition. Our AMV
project is investigating these issues, in-
cluding strategies for using different sen-
sors and image-understanding operators
for the perception components.

Our most ambitious mission so far is
a 0.4-mile run on unmodified suburban
streets in Pittsburgh’s North Hills area.
This involved

» driving along curving suburban streets
with no pavement markings, including many
different types of driveways;

« traversing four intersections, at two of
which the Navlab had to make a 90-degree
left turn;

« stopping for unexpected obstacles and
resuming motion when clear; and

« locating landmarks for position up-
dates and for finding the destination.

We built an annotated map of the route,
driving the Navlab by hand and using the
laser scanner to record the location of 3D
objects. Object positions were measured in
multiple images, to discard moving objects
(pedestrians, cars, dogs) and to improve
the accuracy of measured positions. The
map was then annotated with triggers that
controlled execution of the vehicle path.
During the run, the vehicle began slowly as
it found landmarks to initialize its position.
A trigger then caused the vehicle to speed
up until it approached the first turn. At that
point, triggers caused various modules to
slow the Navlab, find 3D objects, match
them against the map, and update the vehi-
cle’s position estimate. Through the turn,
the vision sensors could not see the road,
so another trigger caused the vehicle to
rely on dead reckoning until the vehicle
was lined up with the next road, when the
road was again in the field of view and
vision could resume control. The run pro-
ceeded in this fashion until the final trig-
gers, which matched the mailbox at the
destination with the map and brought the
vehicle to a stop.

AUGUST 1991

19




I—

Figure 6 shows the map used in this
system. The roads are parallel lines, and
the map shows two intersections. The small
circles and dots are landmark annotations,
each indicating the location of an object
used for matching. Triggers are indicated
by line segments across the road. The vehi-
cle takes appropriate action whenever it
crosses one of the lines.

Contributions and lessons

We began the Navlab project six years
ago with the firm conviction that the best
way to make real progress on outdoor mo-
bile robots was to build complete systems
and to concentrate our efforts on eliminat-

ing the bottleneck of inadequate percep-
tion. We still agree with and follow those
convictions. However, we have been sur-
prised (usually unpleasantly) by several
other aspects of building mobile robots:

sensor problems, the difficulty of using
experimental computers, questions of how
to evaluate our work and compare it with
results from other groups, and the critical
importance of simplicity and of defining
the environment in which the vehicle must
operate.

Contributions. The Navlab experiments
have validated and demonstrated several
new ideas. Cross-country trajectory plan-
ning requires not only a representation of
obstacles, but also reasoning about vehicle
capabilities, limits, and inaccuracies. These
constraints can be combined efficiently
and powerfully to guide the vehicle up to
the limits of its sensory and mechanical
abilities. Simple architectures work best.
Dictating the structure of the data and con-
trol flow is not needed. It is better to build
atoolkit that provides communication, syn-
chronization, map-data handling, and clean
interfaces to the low-level control, and to

ﬁgureib. An annotated mJ of a suburban neighborhood, showing roads, intersections,
landmark annotations (small circles and dots), and trigger annotations (lines across the road).

let individual system builders tailor the
system structure to their own needs.

Lessons. Mobile robots operate in a cer-
tain environment to carry outa certain task.
There is currently no such thing as a com-
pletely general-purpose robot, a universal
vision system, or a generic architecture.
Tracking a highway requires substantially
different processing from driving cross-
country. Some of the concepts are shared
(local-map building, control), and some
systems use shared modules (such as neu-
ral nets) which adapt to different situa-
tions. But the way to build mobile robot
systems now is to incorporate knowledge
of the task and the environment in the
design, from the beginning. Too often,
neat ideas are investigated in perception
or planning and then artificially matched
to an environment and a task. While this
is great for demonstrating new research
results, it usually does not contribute much
to mobile robots.

Simplicity. The simplest approach is
always the best. Designing a complex sys-
tem does not solve any problems, especially
if the components of the system have not
been considered yet. The research commu-
nity is full of proposed architectural stan-
dards that needlessly complicate mobile
robots and that are not based on experience
with working perception systems. Simpler
is better. For example, the approach we
have followed in our AMV system is to

(1) Define the task — Track roads with
the help of a map, and perform actions at
specific locations.

(2) Develop and analyze the necessary
components (road following, object detec-
tion, map building).

(3) Build and evaluate the components
separately to understand their limitations
— For example, we first built a smaller
system that tracks a road map and stops at
specific objects; then we expanded to
annotated maps and the AMV.

(4) Define representations that match
the task, such as the annotated maps.

(5) Assemble components and represen-
tations in a system configured for the task—
The system is “simple” in that it includes
only the functionality needed for the task
using the selected components.

(6) Experiment — The experimental
phase should be used to evaluate how well

IEEE EXPERT




the mission is carried out and perhaps to
add new perception components or modify
the representations. It should not be used
for debugging a large, complex system.

Computation. Of course, fast computa-
tion is of great help in building a mobile
robot system. Not only does it improve the
performance of the final system, it also
holds the promise of more images pro-
cessed, faster runs, more experiments, and
thus faster progress in the basic research.
We have found, however, that faster com-
putation should not be the highest priority.
Especially in the early stages of a mobile-
robot project, researchers should try many
different approaches to perception. It is
more important to have easy-to-use com-
puters with well-supported and efficient
compilers than to have the ultimate in run-
ning speed. Good support for I/O is also
crucial, both for image digitization and for
communicating results. After six years,
our algorithms are now stable enough that
we can properly take advantage of non-
standard high-speed machines. Still, those
machines should be stable and well sup-
ported. It is difficult to perform robotics
research at the same time as hardware or
operating-systems research.

Vehicles. The vehicle itself is an integral
part of a mobile robot system, not just a
platform on which experiments are con-
ducted. The Navlab was specialized for our
early systems, and it provides the high-
accuracy motion and slow speeds we need-
ed.'Y It was not designed for rough-terrain
motion, nor for highway speeds. We are
now building new testbed vehicles that
will be capable of the higher speeds that
our perception and control systems can
now handle. It will also be more capable of
rough-terrain operation. We are selecting
and modifying our testbed vehicles to com-
plement the capabilities of our sensors,
perception algorithms, and planners.

Controllers. Real-time mobile robot con-
trollers need to integrate a wide range of
capabilities beyond just control theory:
position estimation, path mapping and track-
ing, human interfaces, fast communica-
tion, multiple-client support, and monitor-
ing vehicle status for safety and debugging.
Most mobile robots do not push the limits
of current control theory. However, the
major issue in controller design is not

control theory, but rather, design for
system integration.

Debugging and monitoring. At slow
speeds, it is easy to watch a system’s per-
formance. Our first color road trackers, for
instance, ran in tens of seconds, which
gave us ample opportunity to watch graph-
ics, save files to disk, note the vehicle’s
responses, and so forth. It is much more
difficult to debug a system running at
higher speeds. Our YARF system (for
“yet another road follower”; see the article

THE SIMPLEST APPROACH IS
ALWAYS THE BEST. DESIGNING
A COMPLEX SYSTEM DOES NOT
SOLVE ANY PROBLEMS,
ESPECIALLY IF THE SYSTEM’S
COMPONENTS HAVE NOT BEEN
CONSIDERED YET.

on p. 31) now runs in less than a second,
which is faster than we can write an image
to disk (for later examination), examine
the debugging graphics, or even read text
output. As a corollary, YARF can now
process hundreds of images in a typical
run, or thousands of images during a day’s
experiments, which makes examining the
output by hand tedious at best. We need
both better technology (faster disks, better
video recorders, and so on) and better ideas
for debugging complex real-time systems.

Experimental evaluation. But even with
proper tools to monitor a system, it is
difficult to measure progress. The basic
problem is answering the questions “Does
it work?” and “Does it work better?”
Some systems are easy to measure: Did an
obstacle-avoidance system run over a tree
or not? Others are more difficult: Did the
vehicle clip a corner because of bad cali-
bration, bad trajectory planning, bad im-
age processing, or bad control? The prob-
lems become worse when comparing work
from different research groups. All papers
on road following claim success. Most are
missing crucial details that would let oth-
ers evaluate competing algorithms. Even

where all the details of the software are
spelled out, crucial differences in hard-
ware (processing rates, camera capabili-
ties, vehicle and camera control, and so
on) make head-to-head comparisons diffi-
cult. Common image databases provide
only a small part of the solution, since
different algorithms and vehicles might
need different sensor vantage points,
image-collection frequency, auxiliary data,
and so forth.

WE ARE STILL IN THE EARLY

stages of understanding how to build reli-
able outdoor mobile robots, both at CMU
and in the community as a whole. It is too
early to define standards for most modules
or architectures. We are still far from being
able to design a robot top-down from gen-
eral specifications, and from being able to
build perception algorithms with specified
performance on demand.

The progress in our group and others is
largely attributable to the experimental
approach and the emphasis on building
complete systems. Mobile robot research
is not just research in perception algo-
rithms, or sensors, or architectures, or com-
puters, or vehicles, or controllers. Many
fine modules, developed in isolation in the
laboratory, have proved difficult to use or
incomplete in the context of real outdoor
systems. Our greatest advances have come
by developing modules to fit a certain sys-
tem need, using real vehicle data for devel-
opment and debugging, and then testing
the modules in a complete vehicle running
realistic experiments.

This experimental approach will contin-
ue to be fruitful. In our project’s first six
years, we have gone from excruciatingly
slow motion in benign conditions (two
centimeters per second along clean side-
walks) to the vehicle’s top speed (20 miles
per hour) on a variety of real roads. Big
challenges remain, bothin driving onroads
(changing lighting conditions, changing
road shapes and lane markings, traffic) and
in driving cross-country (higher speeds,
mapping terrain, avoiding obstacles). We
are working in both these areas. In addition
to our perception research, we are refining
our software architecture, continuing to
develop maps and planning systems, and
building new testbed vehicles for both on-
and off-road systems.

AUGUST 1991

51




While general-purpose systems are still
far off, the large amount of experimental
work over the past few years has brought
several mobile-robot research groups to
the threshold of applications in limited
domains. Prototype robots are being pro-
posed or built for several environments.
Barren terrain, such as planetary surfaces
or some hazardous-waste sites, allows eas-
ier perception. Limited-access environ-
ments, such as underground or strip mines,
decrease the need for safety checks and
eliminate unknown moving obstacles. The
task of convoy following relies on a person
driving the lead vehicle to avoid difficult
situations, while subsequent robotic vehi-
cles have the much simpler task of tracking
the leader. Other applications involve a
human supervising one or more semi-
autonomous vehicles, so the vehicles can
handle routine cases and decrease operator
workload. All these applications will not
only be useful in themselves, but also will
continue to build the components needed
for the truly intelligent autonomous vehi-
cles of the future.

Acknowledgments

Navlab work is the product of many people.
Planning and systems have been done by Tony
Stentz and Eddie Wyatt. The new controller is
the work of Omead Amidi. Dave Simon built the
first AMV prototype, and Jay Gowdy continues
its development. Karl Kluge is following struc-
tured roads with explicit models, while Jill
Crisman and Didier Aubert work on unstruc-
tured roads with simple appearance models.
Dirk Langer is working on the “soft bumper.”
Ken Rosenblatt is developing new system inte-
gration approaches. Dean Pomerleau, a student
of Dave Touretzky, does neural nets on the
Navlab. Thanks also to those who keep the
Navlab alive and productive, especially Jim Fra-
zier, Bill Ross, Jim Moody, and Eric Hoffman.
This article benefited from comments and figure
contributions from many people, especially Dirk
Langer, Didier Aubert, Karl Kluge, Omead
Amidi, Jill Crisman, Dean Pomerleau, and Jay
Gowdy.

This research is sponsored in part by con-
tracts from DARPA (titled “Perception for Out-
door Navigation” and “Development of an Inte-
grated ALV System”), by NASA under contract
NAGW-1175, by the National Science Founda-
tion contract DCR-8604199, and by the Digital
Equipment Corporation External Research Pro-
gram.

I. J.-P. Laumond, “Finding Collision-Free
Smooth Trajectories for a Nonholonomic
Mobile Robot,” Proc. Int’l Joint Conf. Ar-
tificial Intelligence, 1987, Morgan Kauf-
mann, San Mateo, Calif.

|3V}

. P. Jacobs and J. Canny, “Planning Smooth
Paths for Mobile Robots, Proc. IEEE
Int’l Conf. Robotics and Automation, CS
Press, Los Alamitos, Calif., 1989, pp. pp.
2-7.

w

. M. Daily, J. Harris, and K. Reiser, “An
Operational Perception System for Cross-
Country Navigation,” Proc. Image-
Understanding Workshop, Morgan Kauf-
mann, San Mateo, Calif., 1988.

4. R. Smith and P. Cheeseman, “On the Rep-
resentation and Estimation of Spatial Un-

certainty,” Int’l J. Robotics Research, Vol. !

5, No. 4, Winter 1986, pp. 56-67.

5. R. Brooks, “A Robust Layered Control
System for a Mobile Robot,” IEEE J.
Robotics and Automation, Vol. RA-2, No.
1, 1986, pp. 14-23.

Charles Thorpe is a senior research scientist at
Carnegie Mellon University’s Robotics Insti-
tute, where he directs research on the Navlab.
His photo appears on p. 42. He is also involved
with robots for planetary exploration and under-
water mapping. His research interests include
computer vision, planning, and the control of
robot vehicles in unstructured outdoor environ-
ments. He is also editor of the book, Vision and
Navigation: The Carnegie Mellon Navlab.

Thorpe received his PhD in computer science
from CMU in 1984.

Martial Hebert is a research scientist at Car-
negie Mellon’s Robotics Institute, where his
current projects include modeling environments
fromrange data for autonomous vehicles, super-
vised mapping of plants, and object modeling
for manipulation in unstructured environments.
His photo appears on p. 42. His research inter-
ests include building and recognizing 3D envi-
ronment models from sensor data.

6. D. Payton, “An Architecture For Reflexive
Autonomous Vehicle Control,” Proc. IEEE
Int’l Conf. Robotics and Automation, CS
Press, Los Alamitos, Calif., 1986, pp. 1,838-
1,845.

~J

. J. Albus,H.McCain, and R. Lumia, “NASA/
NBS Standard Reference Model for Tele-
robot Control System Architecture,” Tech.
Report 1235, National Bureau of Standards,
1987.

=

. A. Stentz, “The Codger System for Mobile
Robot Navigation,” in Vision and Naviga-
tion: The Carnegie Mellon Naviab, C.
Thorpe, ed., Kluwer Academic Publishers,
Norwell, Mass., 1990, pp. 187-200.

9. O. Amidi, “Integrated Mobile Robot Con-
trol,” tech. report, Carnegie Mellon Univ.
Robotics Inst., Pittsburgh, Pa., 1990.

10. K. Dowling et al., “Navlab: An Autono-
mous Navigation Testbed,” in Vision and
Navigation: The Carnegie Mellon Naviab,
C. Thorpe, ed., Kluwer Academic Publish-
ers, Norwell, Mass., 1990, pp. 259-282.

Takeo Kanade is a professor of computer sci-
ence, codirector of the Robotics Institute, and
chair of the PhD program in robotics at Carnegie
Mellon. His photo appears on p. 42. He is the
principal or coprincipal investigator for the uni-
versity’s projects on image understanding, vi-
sion systems for autonomous land vehicles, and
the NASA Mars Rover.

Kanade received his PhD in electrical engi-
neering from Kyoto University, Japan, in 1974.
He is an AAAI fellow and a founding editor of
the International Journal of Computer Vision.

Steven Shafer in an associate professor at
Carnegie Mellon, and associate director of the
PhD program in robotics. His photo appears on
p. 42. His work in the Calibrated Imaging Lab of
the Robotics Institute examines how a computer
can analyze images using optical models of illu-
mination, reflection, and the imaging process.
His research interests also include architectures for
mobile robot perception, planning, and control.

Shafer received his PhD in computer science
from Carnegie Mellon in 1983.

Readers can contact the authors at the Robotics Institute, Carnegie Mellon University, 5000

Forbes Ave., Pittsburgh, PA 15213.

52

IEEE EXPERT




