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Abstract

This article describes a methodology for programming robots knovpnadmbilistic robotics The proba-

bilistic paradigm pays tribute to the inherent uncertainty in robot perception, relying on explicit represen-
tations of uncertainty when determining what to do. This article surveys some of the progress in the field,
using in-depth examples to illustrate some of the nuts and bolts of the basic approach. Our central con-
jecture is that the probabilistic approach to robotics scales better to complex real-world applications than
approaches that ignore a robot’s uncertainty.
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1 Introduction

Building autonomous robots has been a central objective of research in artificial intelligence. Over the
past decades, researchers in Al have developed a range of methodologies for developing robotic software,
ranging from model-based to purely reactive paradigms. More than once, the discussion on what the right
way might be to program robots has been accompanied with speculations concerning the very nature of
intelligence per se, in animals and people.

One of these approachgspbabilistic robotics has led to fielded systems with unprecedented levels of
autonomy and robustness. While the roots of this approach can be traced back to the early 1960s, in recent
years the probabilistic approach has become the dominant paradigm in a wide array of robotic problems.
Probabilistic algorithms have been at the core of a series of fielded autonomous robots, exhibiting an un-
precedented level of performance and robustness in the real world. These recent successes can be attributed
to at least two developments: the availability of immense computational resources even on low-end PCs
and, more importantly, fundamental progress on the basic algorithmic and theoretical levels.

So what exactly is the probabilistic approach to robotics? At its core is the idea of representing infor-
mation through probability densities. In particular, probabilistic ideas can be foumerdeptioni.e., the
way sensor data is processed, actlon, i.e., the way decisions are made:

¢ Probabilistic perception. Robots are inherently uncertain about the state of their environments. Un-
certainty arises from sensor limitations, noise, and the fact that most interesting environments are—to a
certain degree—unpredictable. When “guessing” a quantity from sensor data, the probabilistic approach
computes a probability distribution over what might be the case in the world, instead of generating a
single “best guess” only. As a result, a probabilistic robot caacefully recover from errors, handle
ambiguities, and integrate sensor data in a consistent way. Moreover, a probabilistic robot knows about
its own ignorance—a key prerequisite of truly autonomous robots.

e Probabilistic control. Autonomous robots must act in the face of uncertainty—a direct consequence
of their inability to know what is the case. When making decisions, probabilistic approaches take the
robot’s uncertainty into account. Some consider only the robot’s current uncertainty, others anticipate
future uncertainty. Instead of considering the most likely situations only (current or projected), many
probabilistic approaches strive to compute a decision-theoretic optimum, in which decision are based on
all possible contingencies.

These two items are the basic characterization of the probabilistic approach to robotics.

What is the benefit of programming robots probabilistically? Our central conjecture is nothing less than
the following: A robot that carries a notion of its own uncertainty and that acts accordingly, will do better
than one that does nalin particular, probabilistic approaches are typically more robust in the face of sensor
limitations, sensor noise, and environment dynamics. They often scale much better to complex environ-
ments, where the ability to handle uncertainty is of even greater importance. In fact, certain probabilistic
algorithms are currently the only known working solutions to hard robotic estimation problems, such as the
kidnapped robot problerf28], in which a mobile robot must recover from localization failure; or the prob-
lem of building accurate maps of very large environments, in the absence of a gloitiahiiog device such
as GPS. Additionally, probabilistic algorithms make much weaker requirements aedbeacy of models
than many classical planning algorithms do, thereby relieving the programmer from the (unsurmountable)
burden to come up with accurate models. Viewed praissically, therobot learning problenms a long-term
estimation problem. Thus, probabilistic algorithms provide a sound methodology for many flavors of robot
learning. And finally, probabilistic algorithms are broadly applicable to virtually every problem involving
perception and action in the real world.



However, these advantages come at a price. Traditionally, the two most frequently cited limitations of
probabilistic algorithms areomputational inefficiengyanda need to approximateCertainly, there is some
truth to these criticisms. Probabilistic algorithms are inherently less efficient than non-probabilistic ones,
due to the fact that they consider entire probability densities. However, this carries the benefit of increased
robustness. The need to approximate arises from the fact that most robot worlds are continuous. Computing
exact posterior distributions is typically infeasible, since distributions over the continuum possess infinitely
many dimensions. Sometimes, one is fortunate in that the uncertainty can approximated tightly with a
compact parametric model (e.g., discrete distributions or Gaussians); in other cases, such approximations
are too crude and more complex representations most be employed.

None of these limitations, however, pose serious obstacles. Recent research has led to a range of algo-
rithms that are computationally efficient and also highly accurateilldstrate probabilistic algorithms in
practice, this article describes three such algorithms in detail, and argues that the probabilistic paradigm is
unique in its ability to solve hard robotics problems in uncertain and complex worlds.

2 Mobile Robot Localization

Let us take a first, deeper look into a specific probabilistic algorithm, which solves an important problem in
mobile robotics, namely that ddcalization Localization is the problem of finding out a robot’s coordinates
relative to its environment, assuming that one is provided with a map of the environment. Localization is a
key component in various successful mobile robot systems (see e.g., [4, 51]). Occasionally is has been re-
ferred to as “ the most fundamental problem to providing a mobile robot with autonomous capabilities” [16].
Particularly challenging is thglobal localization problermwhere the robot does not know its initial position

and therefore has to globally localize itself.

Approached probabilistically, the localization problem is a density estimation problem, where a robot
seeks to estimate a posterior distribution over the space of its poses conditioned on the available data. The
termpose in this article, refers to a robot’sy-coordinates together with its heading directtorbDenoting
the robot’s pose at time by s;, and the data leading up to timeby dy. ;, the posterior is conveniently
written as

p(sildo..c, m). 1)

Herem is the model of the world (e.g., a map). For brevity, we will denote this posteiies), and refer to
it as the robot'delief stateat timet.

Sensor data typically comes in two flavors: Data that characterizes the momentary situation (e.g., camera
images, laser range scans), and data relating to change of the situation (e.g., motor controls or odometer
readings). Referring to the former adservationsand the latter agction data let us without loss of
generality assume that both types of data arrives in an alternating sequence:

do.t+ = 00,00,01,a1,...,0i_1,0. (2)

Hereo, denote the observation angddenotes the action data item collected at time

To estimate the desired posterjar,|do.. ¢, m), probabilistic approaches frequently resort telarkov
assumptiopwhich states that the past is independent of the future given knowledge of the current state. The
Markov assumption is often referred to as #tatic world assumptigrsince it assumes the robot’s pose is
the only state in the world that would impact more than just one isolated sensor reading. Practical experience
suggests, however, that probabilistic algorithms are robust to mild violations of the Markov assumption, and
extensions exist that go beyond this assumption (e.g., [33]).
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Figure 1: Probabilistic generalization of mobil®lvot kinematics: Each dark lindustrates a commandeabot path, and the
grayly shaded shows the posterior distribution of the robot's pose. The darker an area, the more likely it is. The path in the left
diagram is 40 meters and the one on the right is 80 meters long.

The desired posterior is now computed using a recursive formula, which is obtained by applying Bayes
rule and the theorem of total probability to the original expression, exploiting the Markov assumption twice:

bt(St) = P(5t|007 ceey A1, Oy, m)
Bayes
= m P(0t|007 e ooy Ap—1, Sty m) P(5t|007 ceey 0y, m)
Markov
= m P(0t|8t7m) p(5t|007---7at—17m)

Tot.Prob.
otre m p(0t|5t7 m) /P(St|007 ceey A1, St—1, m) P(St—1|007 ceey 0y, m) dsi_q

Mark
= plods, m) /p(5t|at—175t—17m) Psi=loo, .., 01, m) dsi—y

= Tt p(0t|5t7 m) /p(5t|at—17 St—1, m) bt—1(8t—1) dsi_q. (3)

Here, is a constant normalizer which ensures that the result sums up to 1. Within the context of mobile
robot localization, the result of this transformation

bt(St) = 1 p(0t|5t7m) /p(5t|at—175t—17m) bt—l(St—1) ds;_y (4)

is often referred to aMarkov localization9, 32, 45, 49, 81, 87], but it equally represents the basic up-
date equation in Kalman filters [48], Hidden Markov models [70], and dynamic belief networks [18, 75].
Kalman filter [48], which is historically the most popular approach for position tracking, represents beliefs
by Gaussians. The vanilla Kalman filter also assumes Gaussian noise and linear motion equations; however,
extensions exist that relax some of these assumptions [44, 63]. Kalman filters have been applied with great
success to a range of tracking and mapping problems in robotics [58, 83]; though they tend not to work well
for global localization or the kidnapped robot problem. Markov localization using discrete, topological rep-
resentations fob were pioneered (among others) by Simmons and Koenig [81], whose mobile robot Xavier
traveled more than 230 kilometers through CMU'’s hallways over a period of several years [80].

To implement Equation (4), one needs to spepify;|a;—_1, s¢—1, m) andp(o;|s;, m). Both densities are
usually time-invariant, that is, they do not depend dmence the time index can be omitted. The first density
characterizes the effect of the robot’s actiengn its pose, and can therefore be viewed as a probabilistic
generalization of mobile robot kinematics; see Figure 1 for examples. The other defslity/n), is a
probabilistic model of perception. Figure 2 illustrates a sensor model for range finders, which uses ray-
tracing and a mixture of four parametric densities to calcyléiés, m). In our implementation, both of
these probabilistic models are quite crude, using uncertairggdount for model limitations [32].
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Figure 2: Probabilistic sensor model for laser range finders: (a) The depgity, m) relates the actual, measured distance of
a sensor beam to its expected distance computed by ray tracing, under the assumption that the robots posergparison

of actual data and our (learned) mixture model shows good correspondence. Diagram (b) shows a specific laser tarige scan
which diagram (c) plots the densityo|s, m) for different locations in the map.

Figure 3 illustrates global mobile robot localization based on sonar measurements in an office environ-
ment, using our robot Rhino. The robot’s path is outlined in the first diagram, along with four reference
locations. Shown there is also the initial belief, which is uniform, since the robot does not know where it
is. The posterior belief after moving from the first to the second reference location is shown in Figure 3b.
At this point, most of the probability mass is located in the corridor, but the robot still does not know where
it is. This diagram illustrates nicely one of the features of the probabilistic approach, namely its ability to
pursue multiple hypotheses, weighted by sensor evidence. After moving to the third reference position, the
belief is centered around two discrete locations, as shown in Figure 3c. Finally, after moving into one of the
rooms, the symmetry is broken and the robot is highly certain as to where it is (Figure 3d).

Of fundamental importance for the design of probabilistic algorithms is the choice of the representation.
One of the most powerful approximations is knowirmagortance samplinfy4], and the resulting algorithm
is known under names likgarticle filters[22, 23, 61, 68]condensation algorithi§d2, 43] andMonte Carlo
localization[19, 29]; here we refer to it as Monte Carlo localization (MCL). The basic idea of MCL is to
approximateb(s) with a weighted set of samples (particles), so that the discrete distribution defined by
the samples approximates the desired one. The weighting factors areical@dance factor§74]. The
initial belief is represented by a uniform sample of sizethat is, a set ofn samples drawn uniformly
from the space of all poses, annotated by the constant importancefactoMCL implements the update

equation (4) by constructing a new sample set from the current one in response to an actign jtand
an observation;:

1. Draw arandom sample_; from the current belief;_; (s;—1), with a likelihood given by the importance
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Figure 3: Example of grid-based Markov localization in a symmetric environment. (a) robot path, highlighting four robot poses,
(b) to (d): belief at 2nd, 3rd, and 4th pose, respectively.

factors of the belieb;_;(s;-1).
2. For thiss;_1, guess a successor paseaccording to the distributiop(s;|a;—1, s¢—1, m).

3. Assign a preliminary importance factpfo;|s,, m) to this sample and add it to the new sample set repre-
sentingb(s:).

4. Repeat Step 1 throughn times. Finally, normalize the importance factors in the new sampli g}
so that they add to 1.

Figure 4 shows MCL in action. Shown in the first diagram is a belief distribution (sample set) at the
beginning of the experiment when the robot does not (yet) know its position. Each dotis a three-dimensional
sample of the robot’s-y-location along with its heading directigh The second diagram shows the belief

after a short motion segment, incorporating several sonar readings. At this point, most samples concentrate
on two locations; however, the symmetry of the corridor makes it impossible to disambiguate them. Finally,
the third diagram in Figure 4 shows the belief after the robot moves into one of the rooms, enabling it to
disambiguate its location with high confidence.

The MCL algorithm is in fact quite efficient; slight modifications of the basic algorithms [56, 92] re-
quire as few as 100 samples for reliable localization, consuming only a small fraction of time available
on low-end PC. It can also be implemented as any-time algorithm [17, 95], meaning that it can adapt to
the available computational resources by dynamically adjusting the number of sampl@gth slight
modifications—such as sampling from the observation [92]—MCL has been shown to recover gracefully
from global localization failures, such as manifested inKkiltmapped robot probleri27], where a well-
localized robot is teleported to some random location without being told. For these reasons, probabilistic
algorithms like MCL are currently the best known methods for such hard localization problems.

Another feature of MCL is that its models—in particufds|a, s, m), p(o|s, m) and the map—can be
extremely crude and simplistic, since probabilistic models carry their own notion of uncertainty. This makes
probabilistic algorithms relatively easy to code. In comparison, traditional robotics algorithms that rely on
deterministic models make much stronger demands on the accuracy of the underlying models.



]

Robot position

Robot position

Figure 4: Global localization of a mobile robot using MCL.

3 Mapping

A second area of robotics, where probabilistic algorithms have proven remarkabolyssiul, ismapping
Mapping is the problem of generating maps from sensor measurements. This estimation problem is much
higher-dimensional than the robot localization problem—in fact, in its pure form one could argue the prob-
lem possesses infinitely many dimensions. What makes this problem particularly difficult is its chicken-
and-egg nature, which arises from the fact that position eacesied during mapping are difficult to com-
pensate [71]. Put differently, localization with a map is relatively easy, as is mapping with known locations.
In combination, however, this problem is hard.

This section will review three major paradigms in mobile robot mapping, all of which are probabilistic
and follow from the same mathematical framework. Let us begin by the most obvious idea, which is the
idea of using the same approach for mapping as for localization. If we augment the gtatés being
estimated via Equation (4) by the map—the subscript indicates that we allow the map to change over
time—Equation (4) becomes

bt(stymt) = 772 p(0t|5t7mt) //P(St7mt|at—175t—17mt—1) bt—l(st—hmt—l) dsi_y dmy_y. (5)

If the map is assumed to be static—which is commonly assumed throughout the literature—the maps at
timest andt — 1 will be equivalent. This implies that(s;, m|a;—1, S¢—1, m—1) IS zero ifm; # m,_;, and
p(silai—1, si—1, m—1) if my = my_1. The integration over maps in (5) is therefore eliminated, yielding

bt(Snm) = 772 p(0t|5t7m) /p(5t|at—175t—17m) bt—l(st—hm) dsi_q. (6)

The major problem with (6) is complexity. The beliefs;, m) is a density function in &V+3)-dimensional

space, wheréV is the number of free parameters that constitute a map (e.g., a constant times the number
of landmarks), and the additional 3 parameters specify the robot’s posan be very large (e.g., 1,000),
which makes the posterior estimation problem hard. To make matters worse, theolislief:) cannot

easily be factorized, since the uncertainty of map items and robot poses are often highly correlated [83].

The most successful attempt to implement (6) employs Kalman filters [13, 14, 57, 58], which goes back
to a seminal paper by Smith, Self, and Cheeseman [83]. Recall that Kalman filters represent beliefs by
Gaussians; thus, they requit N?) parameters to represent the posterior oveNadimensional space.
Calculating (6) involves matrix inversion, which can be don®iniV?) time [63]. This critically limits
the number of features that can be mapped (see [59] for a recent attempt to escape this limitation using
hierarchies of maps). In practice, this approach has been applied to mapping several hundreds of free
parameters [57].

The basic Kalman filtering approach to mapping is also limited in a second, more important way. In
particular, it requires that features in the environment can be uniquely identified—which is a consequence
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of the Gaussian noise assumption. For example, it does not suffice to know that the robat daces

instead, it must knowvhich door it faces, to establish correspondence to previous sightings of the same
door. This limitation is of great practical importance. It is common practice to extract a small number

of identifiable features from the sensor data, at the risk of discarding all other information. Some recent
approaches overcome this assumption by “guessing” the correspondence between measurements at different
points in time, but they tend to be brittle if those guesses are wrong [36, 62]. However, if the assumptions
are met, Kalman filters generate optimal estimates, and in particular they outperform any non-probabilistic
approach.

An alternative approach, proposed in [91], seeks to estimatetiteof the posteriorargmax,,, b(m),
instead of the full posteriok(m). This might appear quite modest a goal compared to the full posterior
estimation. However, if the correspondence is unknown (and noise is non-Gaussian), this in itself is a
challenging problem. To see, we note that the posterior over maps can be obtained in closed form:

bt(m) = P(m|d0...t) = /bt(Snm) ds;

t t
= U;lp(m) //“‘/HP(07|877m) Hp(37|a7—1737—17m) dsy dsy ... ds, (7)
7=0 T=1

where the initial pose is—somewhat arbitrarily—setgo= (0, 0, 0). This expression is obtained from (6)

by integrating oves;, followed by recursive substitution of the belief from time1 to time0, and resorting

of the resulting terms and integrals. For convenience, we will assume a unifornpprigr transforming

the problem into a maximum likelihood estimation problem. Notice that Equation (7) integrates over all
possible paths, a rather complex integration. Unfortunately, we know of no way to calagatex,,, b (m)
analytically for data sets of reasonable size.

To find a solution, we notice that the robot’s path can be considered “missing variables” in the optimiza-
tion problem; knowing them indeed greatly simplifies the problem. The statistical literature has developed a
range of algorithms for such problems, one of which is the EM algorithm [20, 64]. This algorithm computes
a sequence of maps, denote!, m[!], ..., which secessively increasing likelihood. The supersctipt
is not to be confused with the time indexr the index of a particle; all it refers to is the iteration of the
optimization algorithm.

EM calculates a new map by iterating two stepsegpectation stepr E-step and amaximization step
or M-step

¢ In the E-step, EM calculates an expectation of a joint log-likelihood function of the data and the poses,
conditioned on thé&-th mapm!*! (and conditioned on the data):

Qm|m™] = E_wllog p(so, - - ., se,do_|m™) | do_)]. 8)

This might appear a bit cryptic, but the key thing here is that compuiinigvolves calculating the
posterior distribution over poses, . .., s; conditioned on the:-th modelm!¥]. This is good news, as

we have already seen how to estimate the posterior over poses given a map. Technically, calculating (8)
involves two localization runs through the data, a forwards run and a backwards runalideéa has

to be taken into account when computing the posterier|dy. ;) (the algorithm above only considers

data up to timer). We also note that in the very first iteration, we do not have a map. Thusmn!*]
calculates the posterior for a “blind” robot, i.e., a robot that ignores its measurements, o;.

¢ In the M-step, the most likely map is computed given the pose estimates obtained in the E-step. This is

formally written as
ke+1]

ml = argmax Q[m|m)]. 9)
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Figure 5: (a) Raw data of a large open hall (the Dinosaur Hall in the Carnegie Museum of Natural History, Pittsburgh, PA) and (b)
map constructed using EM and occupancy grid mapping. (c) Occupancy grid map of another museum (The Tech Museum in San
Jose, CA), and (d) architectural blueprint for comparison.

Technically, thisis still a very difficult problem, since it involves finding the optimum in a high-dimensional
space. However, it is common practice to decompose the problem into a collection of one-dimensional
maximization problems, by stipulating a grid over the map and solving (9) independently for each grid
cell. The maximum likelihood estimation for the resulting single-cell random variables is mathematically
straightforward.

Iterations of both steps tends to increase the likelihood (currently we lack a proof of convergence due to
the decomposition in the M-step). However, we found that this approach works very well in practice [91],
solving hard mapping problems that were previously unsolved (see also [77, 78]).

The decomposition in the M-step is quite common for mapping algorithms that assume knowledge of the
robot’s pose. It goes back to the seminal work by Elfes and Moravexompancy grid mappinf26, 66],
a probabilistic algorithm that is similar, though not identical, to the M-step above. This brings us to the
third mapping algorithm. Occupancy grid mapping is currently the most widely used mapping algorithm for
mobile robots [3, 25, 37, 88, 93], often augmented by ad-hoc methods for localization during mapping. Itis
another prime example for the success of prdlstiz algorithms in robotics.

Occupancy grid mapping addresses a much simpler problem that the one above, namely the problem of
estimating a map from a set of sensor measurenggvesithat one already knows the corresponding poses.
Let (z, y) denote a specific grid cell, alrnd,ﬁm"> be the random variable the models its occupancy at time
Occupancy is a binary concept; thus, we will Wrmém:l if a cell is occupied, andz§xy>:0 if it is not.



Substitutingnf"y> into Equation (4) under the consideration that this is a discrete random variable yields

1
be(m™) = e plodmi™y 3T pm sy, mf™Y) by (), (10)

m§$y>20
which in static worlds can be simplified to

m(=¥)|o;) p(0y)

Bty = g plodm) by (mi) = g P
p(mley))

be—1(mt™¥)). (11)

The second transformation pays tribute to the fact that in occupancy grid mapping, one often is given
p(m{*¥)|0,) instead ofp(o,|m{*¥)). One could certainly leave it at this and calculate the normalization
factoryn, at run-time. However, for binary random variable the normalizer can be eliminated by noticing that
the so-calleabdds which is the following quotient:

bt(m<“’y>:1) B p(m(xy>:1|0t) p(m(l’w:o) bt_l(m(ﬂvy):l)
b(mEN=0) ~ p(mI=0]or) p(mEI=1) by (m=0)

(12)
As is easily shown [88], this expression has the closed-form solution

(e9)=1) t (m=1lo,) 1 — p(mt¥)=1) -1
b <wy>:1 = 1—-<1 p(m P T P 1
((m ) { + 1 — p(mfiev)=1) el p(mv=1lo,) p(mlzv1=1) (13)

All three of these algorithms have shown to be highly robust and accurate in practice, and there are among
the best algorithms in existence. For example, Figure 5a shows a raw data set of a large hall (approximately
50 meters wide), along with the result of first applying EM, and then occupancy grid mapping using the
poses estimated with EM (Figure 5b). The map in Figure 5¢ has been generated using a similar probabilistic
algorithm that runs on-line (unlike EM) [90] (see also [35]); Figure 5d shows an architectural blueprint for
comparison. Cyclic environments are among the most difficult ones to map, since the odometry error can
be very large when closing the cycle. These results illustrate that EM and occupancy grid mapping yield
excellent results in practice. While the maps shown here are two-dimensional, probabilistic algorithms have
also successfully been applied to build three-dimensional maps [90].

These results illustrate that probabilistic algorithms are well suited for high-dimensional estimation and
learning problems; in fact, we know of no comparable algorithm that can solve problems of equal hardness
but does not explicitly address the inherent uncertainty in perception. To date, the best mapping algorithms
are probabilistic, and most of them are versions of the three algorithms described above. Our analysis
also suggests that probabilistic algorithms are somewhat of a natural fit for problems like the ones studied
here. Past research has shown that many estimation and learning problems in robotics have straightforward
solutions when expressed using the language of probability theory, with mapping just being one example.

4 Robot Control

Finally, let us turn our attention to the issue of robot control. The ultimate goal of robotics is to build robots
that do the right thing. As stated in the introduction, we conjecture that a robot that takes its own uncertainty
into account when selecting actions will be superior to one that does not.

Unfortunately, the field of probabilistic robot control is much poorer developed than that of probabilistic
perception. This is because of the enormous computational complexity of decision making. However, within
Al this issue has recently received considerable attention. Even in robotics, some noticeable successes have
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been achieved, where probabilistic algorithms outperformed conventional, hon-probabilistic algorithms [45,
81].

One such algorithm is theoastal navigatioralgorithm [72, 73] (see also [45]), a motion planning
algorithm for mobile robots that takes uncertainty into account. The algorithm was originally motivated by
the observation that ships that navigate through open water without GPS often stay in close proximity to the
coast, to reduce the danger of getting lost. The same applies to mobile robots: The choice of control can
have a profound impact on the likelihood of localization errors. The coastal navigation algorithm selects
paths accordingly, explity considering uncertainty.

To study this algorithm, let us step back a little and consider the mathematical framework that underlies
this and many other probabilistic control algorithms: POMDPs. POMDP (shopdudrally observable
Markov decision processes a framework for acting optimally under uncertainty in sequential decision
tasks. While POMDPs can be traced back to the Seventies [65, 82, 84], the Al community has only recently
begun to pay attention to this framework, motived by the work by Littman, Cassandra, and Kaelbling [46,
60]. POMDPs address the problem of choosing actions so as to minimize a(soat@diate) cost functign
denoted”'(s). For example, in robot motion planning, one might 6€t) = 0 for goal locations;, and
—1 elsewhere. Since reaching a goal location typically requires a whole sequence of actions, the control
objective is to minimize thexpected cumulative cost

t+T

J = > E[C(s,)]. (14)

T=t+1

Here the expectation is taken over all future statésnay becc—in which case cost is often discounted
over time by an exponential factor.

Many important POMDP algorithms [46, 60] andf-line algorithms, in the sense that they calculate a
policy for action selection for arbitrary situations (i.e., belief states) in an explicit, off-line phase. The policy
is denotedr and maps belief states into actions.

The most prominent approach to calculating value iteration1, 41], a version of dynamic program-
ming for computing the expected cumulative cost of belief states that has become highly popular in the field
of reinforcement learning [47, 85]. Value iteration in belief space computes a value function, denoted by
V', which in the ideal case measures the expected cumulative cost if one starts insadséata according
to the belief distributior, and acts optimally thereafter. Thus, the valug) of the belief state is the best
possible cumulative costs one can expect for beirg This is expressed as

t+T
V() = / S E[C(s,)]s: = 5] b(s) ds. (15)
T=t+1
Following [1, 85], the value function can be computed by recursively adjusting the value of individual belief
stateg according to
V() «— min / V(') + C()] p(t]a, b, m) db', (16)

which assigns td” (b) theexpectedialue at the next belied/. Here the immediate cost of a belief statés
obtained by integrating over all stat€$b’) = [ C'(s') b'(s’) ds’. The conditional distributiop(b’|a, b, m)
is the belief space counterpart to the next state distribution, which is obtained as follows:

p(bla,b,m) = /p(b’|0’,a,b,m)p(0’|a,b,m) do’, a7
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Figure 6: Coastal plans: the robot actively seeks the proximity of obstacles to improve its localization. The large open area in the
center of this Smithsonian museum is approximately 20 meters wide and usually crowded with people.

wherep(b'|0’, a, b, m) is a Dirac distribution defined through Equation (4), and

p(d|a,b,m) = //p(0’|s’,m) p(s'|a, s,m) b(s) ds" ds. (18)

OnceV has been computed, the optimal policy is obtained by selecting actions that minimize the expected
V-value over all available actions:

T(b) = arginin/V(b’) p(b'|a,b,m) db’. (19)

While this approach defines a mathematically elegant and consistent way to compute the optimal policy
from the known densities(s’|a, s, m) andp(o’|s’, m)—which are in fact the exact same densities used in
MCL—there are two fundamental problems. First, in continuous domains the belief space is the space of all
distributions over the continuum, which is an infinitely-dimensional space. Consequently, no exact method
exists for calculating” in the general case. Second, even if the state space is discrete—which is commonly
assumed in the POMDP framework—the computational burden can be enormous. This is because for state
spaces of size, the corresponding belief space is&a— 1)-dimensional continuous space. The best known
solutions, such as thwitness algorithnid6], can only handle problems of the approximate size of 100 states,
and a planning horizon of no more than= 5 steps. In contrast, state spaces in robotics routinely possess
orders of magnitude more states, even under crude discretizations. This makes approximating imperative.

Coastal navigation is an extension of POMDPs that relies on an approximate representation for belief
stated. The underlying assumption is that teeactnature of the uncertainty is irrelevant for action selec-
tion; instead, it suffices to know thegree of uncertaintgts expressed by themtropyof a belief stated [b].

Thus, coastal navigation represents belief states by the following tuple:

b = (argmaxb(s); H[b]). (20)
While this approximationis coarse, it causes value iteration to scale exponentially better to large state spaces
than the full POMDP solution, while still exhibiting good performance in practice.

Figure 6 shows an example trajectory calculated by the coastal navigation algorithm for a large, fea-
tureless environment: a Smithsonian museum in Washington, DC. The goal of motion is to reach a target
location with high probability. By considering uncertainty, the coastal planner generates paths that actively
seeks the proximity of known obstacles so as to minimize the localization error—at the expense of an in-
creased path length when compared to the shortest path. Experimental results [73] have shown that the
success rate of the coastal planner is superior to conventional shortest path planners that ignore the inherent
uncertainty in robot motion.
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Figure 7: Probabilistic algorithms were used pervasively for the museum tour-golmes Rhino (left image) and Minerva (right
two images), which guided thousand of people through crowded museums fully autonomously.

Coastal navigation is only one out of many examples. It highlights an important principle, namely
that crude approximations can go a long way when implementing probabilistic control algoritecentR
research had led to a range of other control algorithms that rely on approximate probabilistic representa-
tions. Of particular importance are algorithms for maximizing knowledge gain, which typically rely on a
single-step search horizon to generate robot control. Examples include the rich work on robot exploration,
in which robots (or teams thereof) select actions so as to maximally reduce their uncertainty about their
environments [24, 50, 54, 79, 88, 94]. They also include work on active localization [11, 30], where a robot
moves to places that maximally disambiguate its pose. Another class of approaches rely on tree search for
policy determination, such as the work on active perception and sensor planning by Kristensen [52, 53].
His approach uses models of uncertainty to select the appropriate sensors in an indoor navigation task. All
these approaches have demonstrated that probabilistic algorithms lead to more robust solutions to important
control problems in robotics.

5 A Case Study: Museum Tour-Guide Robots

Probabilistic algorithms have been at the core of a number of state-of-the-art robot systems (see e.g., [2, 21]),
such as the Xavier robot mentioned above [80]. In fact, recently the number of publications on statistically
sound algorithms for perception and control has increased dramatically at leading robotics conferences.

In our own work, we recently developed two autonomous museum tour-guide robots [8, 89] (see
also [40]), which pervasively employed probabilistic algorithms for navigation and people interaction. Pic-
tures of both robots are shown in Figure 7. The robot shown on the left, Rhino, was the world’s first museum
tour-guide robot, which was deployed at the Deutsches Museum in Bonn in 1997. The other robot, Minerva,
led thousands of people through a crowded Smithsonian museum in Washington, DC. Both robots were
developed to showcase probabilistic algorithms in complex and highly dynamic environments. They were
unique in their ability to navigate safely and reliably in the proximity of people.

The task of these robots was simple: to attract people, interact with them, and guide them from exhibit
to exhibit. Several factors made this problem challenging. To find their way around, the robots had to know
where they were. However, large crowds of people almost permanently blocked the robots’ sensors, making
localization a difficult problem. In fact, people frequently sought to confuse the robot, or force it close to
hazards such as downward staircases. To make matters worse, the roitiptsbaense suchéwards was
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extremely limited. For example, the sensors consistently failed to sense glass cases put up for the protection
of certain exhibits, and neither robot possessed a sensor to detect staircases. Thus, accurate localization
played a prime role in avoiding collisions with such “invisible” obstacles aazhids such as staircases,
whose location was modeled in the map.

To challenge the autonomy of our robots, we did not modify the environment in any way. And even
though the museums were crowded, the robots had to navigate at approximate walking speeds to sustain
people’s interest, while avoiding collisions with people at all costs.

Detailed descriptions of the robots’ software architecture and experimental findings are beyond the scope
of this paper (see [8, 89]); here we remark that probabilistic algorithms were employed at virtually all levels
of the software architecture. In total, both robots traversed a distance of more than 60km, with average
speeds between 30cm/sec and 80cm/sec, and top speeds well above 160cm/sec. In Rhino’s case, we carefully
evaluated every failure, and concluded that only one major localization failure was observed over a period
of six days [8]; however, this localization failure coincided with a malfunctioning of the sonar sensors.
Rhino employed a probabilistic collision avoidance routine that guaranteed, with high likelihood, that the
robot does not collide with “invisible” obstacles even when the robot is highly uncertain where it is [31].

In addition, Minerva employed probabilistic algorithms to learn occupancy grid maps of the museums. In
other experiments, we have devised practical probabilistic algorithm for active exploration, both in pursuit
of finding out where a robot is [11] and learning maps of unknown terrain [88] with teams of collaborating

robots [10].

In all these cases, the probabilistic nature of the algorithms has been essential for achieving robustness
in the face of uncertain and dynamic environments. And all these algorithms rely on sometimes remarkably
simple approximations and shortcuts that make hard problems computationally tractable.

6 Discussion

The last few decades have led to a flurry of different software design paradigms for autonomous robots.
Early work on model-based robotics often assumed the availability of a completeamcte model of the

robot and its environment, relying on planners (or theorem provers) to generate actions [12, 55, 76]. Such
approaches are often inapplicable to robotics due to the difficulty of generating models that are sufficiently
accurate and complete. Recognizing this limitation, some researchers have advocated model-free reactive
approaches. Instead of relying on planning, these approaches require programmers to program controllers
directly. A popular example of this approach is the “subsumption architecture” [7], where controllers are
composed of small finite state automata that map sensor readings into control while retaining a minimum
of internal state. Some advocates of this approach went as far as refusing the need for internal models
and internal state altogether [7, 15]. Observing tkia world is its own best model[6], behavior-based
approaches usually rely on immediate sensor feedback for determining a robot’s action. Obvious limits in
perception (e.g., robots can't see through walls) pose clear boundaries on the type tasks that can be tackled
with this approach. This leads us to conclude that while the world might well be itsanostatemodel, it

is not necessarily its moatcessibl®ne [86]. And accessility matters!

The probabilistic approach is somewhere between these two extremes. Probabilistic algorithms rely on
models, just like the classical plan-based approach. For example, Markov localization requires a perception
modelp(o|s, m), @ motion modep(s’|a, s), and a map of the environment. However, since these models
are probabilistic, they only need to be approximate. This makes them much easier to implement (and
to learn!) than if we had to meet the accuracy requirements oftitvadl approaches. Additionally, the
ability to acknowledge existing uncertainty and even anticipate upcoming uncertainty in planning leads to
qualitatively new solutions in a range of robotics problems, as demonstrated in this article.
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Probabilistic algorithms are similar to behavior-based approaches in that they place a strong emphasis
on sensor feedback. Because pralistic models are insufficient to predict the actual state, sensor measure-
ments play a vital role in state estimation and, thus, in determining a robot’s actual behavior. However, they
differ from behavior-based approaches in that they rely on planning, and in that a robot’s behavior is not
just a function of a small number of recent sensor readings. As an examplBuistaates the importance
of the latter, imagine placing a mobile robot in an a crowded place full of invisible hazards! Surely, the
problem can be solved by adding more sensors; however, such an approach is expensive at best, but more
often it will be plainly infeasible due to lack of appropriate sensors. Our robot Rhino, for example, was
equipped with five different sensor systems—uvision, laser, sonar, infrared and tactile—yet it still could not
perceive all the hazards and obstacles in this fragile environment with the necessailtygsaie [8] for
a discussion). Thus, it seems unlikely that a reactive approach could have performed anywhere nearly as
reliably and robustly in this task.

Probabilistic robotics is closely related to a rich body of literature on uncertainty in Al ([39, 67] are
good starting points, as are any recent proceedings of UAI). In fact, many of the basic algorithms in robotics
have counterparts in the UAI community, the major difference being that their focus tends be on discrete
spaces, whereas robots typically live in continuous spaces. Also, building real robotics systems constrains
the assumptions under which one can operate. Consequently, approximations and real-time algorithms play
a greater role in robotics than they play currently in mainstream Al.

One of the most exciting aspect of the probabilistic paradigm is that it opens great new opportunities for
basic research in robotics and Al, with great potential for high impact in robotics and beyond. Probabilistic
algorithms are still far from mainstream in robotics, and there is a range of problems that appear to be
highly amenable to probabilistic solutions. We therefore conclude this article by laying out five broad areas
of research which we deem to be highly important.

¢ Representations. The choice of representation is crucial in the design of any probabilistic algorithm,
as it determines its robustness, efficiency, and accuracy. Recent research has already led to a range of
representations for probabilistic information in continuouacgs, such as the particle representation in
the example described above. However, the development of new representations is absolutely essential
for scaling up to more complex problems, such as the control of highly articulated robots or multi-robot
coordination.

e Learning. The probabilistic paradigm lends itself naturally to learning, yet very little work has been
carried out on automatically learning models (or behaviors) in real-world robotic applications using prob-
abilistic representations. Many of today’s best learning algorithms are grounded in statistical theory
similar to the one underlying the current approach. We conjecture that a better understanding of how to
automatically acquire probabilistic models and behaviors over the lifetime of a robot has the potential to
lead to new, innovative solutions to a range of hard open problems in robotics.

¢ High-Level Reasoning and Programming. Current research on probabilistic robotics predominately
focuses on low-level perception and control. However, the issues raised in this paper transcend to all
levels of reasoning and decision making [5]. The issue of probabilistic high-level reasoning and program-
ming for robots remains poorly explored. Research is needed on algorithms that integrate probabilistic
representations into high-level robot control (see e.g., [34, 38, 69]).

e Theory. The groundedness in statistical theory makes probabilistic approaches to robotics well-suited
for theoretical investigation. However, existing models are often too restrictive to characterize robot
interaction in complex environments. For example, little is known about the consequences of violating
the Markov assumption that underlies much of today’s work on localization and mapping, even though
virtually all interesting environments violate this assumption. Little is also known about the effect of
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approximate representation on the performance of robotic controllers. A better theoretical understanding
of probabilistic robotic algorithms is clearly desirable and would further our understanding of the benefits
and limitations of this approach.

e Innovative Applications. Finally, we see a tremendous opportunity to apply probabilistic algorithms to a
range of important robotic problems, including multi-robot coordination, sensor-based manipulation, and
human robot interaction.

We hope that this article motivated the probabilistic approach to robotics, and stimulates new thinking in
this exciting area. Ultimately, we believe that probabilistic algorithms is essential for a much broader class
of embedded systems equipped with sensors and actuators.
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