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Abstract

Inferring the depth and shape of remote objects and the
camera motion from a sequence of images is possible in
principle, butis anill-conditionedproblemwhen the objects
are distant with respect to their size. We overcome this
problem by inferring shape and motion without computing
depth as an intermediate step.

On a single epipolar plane, an image sequence can be
represented by the F x P matrix of the image coordinates
of P points tracked through F frames. We show that under
orthographic projection this matrix is of rank 3.

Using this result, we develop a shape-and-motion al-
gorithm based on singular value decomposition. The algo-
rithm gives accurate results, without relying on any smooth-
ness assumption for either shape or motion.

Introduction

In principle, the shape of an object can be computed from a
sequence of images by first estimating camera motion and
depth, and then inferring shape from the depth values.

In practice, however, when objects are distant from
the camera relative to their size, this computation is ill-
conditioned. First, the translation component along the
optical axis is difficult to determine, because the image
changes that it produces are small. Second, shape values
are very sensitive to noise if they are computed as the small
differences between large depth values.

These difficulties can be circumvented by inferring shape
directly from variations in the relative position of image
features, without computing depth as an intermediate step.

In this paper, we show that shape and camera motion
can be inferred precisely from many features and frames,
without assuming any model for the motion, and reduce the
computation to decomposing a matrix of image measure-
ments.

The resulting algorithm, tested in simple situations, gives
remarkably precise motion and shape estimates, without
introducing smoothing effects into the result.

For simplicity, we will limit our consideration to one
epipolar plane at a time, and assume that motion occurs in
that plane. In other words, our images are single scanlines.

Our theory is based on the observation that the incidence
relations among projection rays can be expressed as the

CH2934-8/90/0000/0091$01.00 © 1990 IEEE

degeneracy of a matrix that gathers all the image measure-
ments. More specifically, on a single epipolar plane, an
image sequence can be represented by the F x P matrix of
the image coordinates of P poinis tracked through F frames.
We show that under orthographic projection this matrix is
of rank 3.

In the following, we introduce our scenario, summarize
the results, and sketch the relations of our work with pre-
vious literature on the subject. The next section introduces
the degeneracy principle mentioned above. We then show
how to use it to decompose the measurement matrix into
shape and camera motion. The experimental results in the
following section show the ability of the algorithm to deal
with jerky motions without introducing smoothing artifacts
in its output.

The Scenario

The world is still, and the camera moves in a plane, within
which it can freely rotate and/or translate. P feature points,
far away from the camera, are visible in a given scanline,
parallel to the plane of motion. Since the frames are taken
frequently, it is easy to track the features from frame to
frame. As the camera moves, it is panned so as to keep the
features in the field of view.

After F frames, an F x P matrix U of image measurements
is available. This matrix is the input to the algorithm.

This scenario approximates what happens with a camera
on an airplane, with suitable control mechanisms to align
the camera scanlines with the direction of flight, and to keep
the same object within the field of view. Because objects
are distant from the camera, we can assume orthographic
projection.

The Results

This paper first shows that if the measurements are noise-
free, the image coordinate matrix U is highly degenerate: its
rankis 3. As aresult, U can be decomposed into the product
of two smaller matrices: an F x 3 matrix that encodes the
F camera positions, and a P x 3 matrix that encodes the
positions of the P world points.

When noise corrupts the measurements, the rank of U
can be defined in an approximate sense, and is still 3.




The noisy matrix U is factored by Singular Value Decom-
position [3], which is known to be efficient and numerically
well behaved. If more points and frames are used than pre-
scribed by equation-counting arguments (which require a
minimum of three points and three frames), the effects of
noise can be reduced.

The resulting shape and motion algorithm is simple and
efficient, and has been implemented and tested on objects
as distant as one hundred times their size. The rotation
errors are always smaller than one tenth of a degree. The
relative precision in the computed shape is of the order of
the relative depth range, defined as the ratio between the
size of the object and its distance from the camera.

Relations with Previous Work

Our algorithm does what photogrammetrists for more than
thirty years have done by hand and with two frames at a
time [7]. Ullman proposed an automated solution to this
problem eleven years ago [10], and called it structure-from-
motion. He also considered only two frames at once, and
as few points as theoretically possible.

Most of the initial efforts in this area have been devoted
to finding closed-form solutions with a minimal or nearly-
minimal number of points and/or frames.

In general, structure-from-motion is hard to solve, be-
cause of the inherent sensitivity of shape and motion to
noise in the image, especially when objects are distant. If
depth is explicitly represented as an intermediate stage in
the computation, performance degrades with reductions in
the relative depth range. For instance, the algorithm pre-
sented in [9] works very well for close objects (which is
the intended goal of that algorithm), but the performance is
likely to degrade when objects become more remote, and
the relative depth range becomes smaller.

The remedy is to by-pass the computation of depth,
as we do in this paper, to remove the main cause of ill-
conditioning.

Even with a well-conditioned algorithm, however, noise
degrades performance. Few points and/or few frames give
bad results, regardless of how good the math is. Our al-
gorithm allows using many frames and many points, thus
exploiting redundancy to counteract noise.

Many, tightly spaced frames have been used in [1] and
[5], but only for the inference of depth when the motion of
the camera is known.

The Decomposition Principle

This section introduces the fundamental principle on which
our shape-and-motion algorithm is based: the F x P matrix
of the image coordinates of P points tracked through F
frames is higly rank-deficient.

As we stated in the introduction, we consider only one
scanline per frame, and assume that the camera moves in a

plane parallel to the scanline. In this plane, we define an
arbitrary orthogonal system of coordinates (X, Z).

The images are orthographic projections of P points,
tracked through F frames.

Let ¢r and sy be the cosine and sine of the angle oy that
frame f forms with the X axis. The projection uy, of point
(X,,Z,) onto frame f is then given by the equation

Urp=CrXp+Spdp+1tr . 1)
The scalar & is the projection onto the f -th image of the
translation vector between frames 1 and f .

The measurements uy , can be collected in an F x P matrix
U. Then, the F x P equations (1) can be expressed in matrix
form:

U=MS )
where
1 51 4
M=| i ®
CrF Sp IF
is the motion matrix, and
X, --- Xp
S=1|2, --- Zp )
T |

is the shape matrix.
Since M is F x 3 and S is 3 x P, we have thus proven the
following fact.

The Rank Principle

Without noise, the rank of the measurement ma-
trix U is at most three.

Intuitively, the rank principle expresses the simple fact
that the F x P image measurements are redundant. Indeed,
they could all be described more concisely by giving F
frame angles and P points, if only these were known.

Geometrically, the rank principle expresses an incidence
property. In fact, equation (1) says that the projection lines
of point (X,, Z,) form a pencil.

In the next section, we show how to use the rank principle
to determine the motion and shape matrices M and S.

The Algorithm

When noise corrupts the images, the measurement matrix
U will not be exactly of rank 3. However, the rank prin-
ciple can be extended to the case of noisy measurements
in a well-defined manner. The next subsection introduces
this extension, using the concept of Singular Value Decom-
position (SVD) [3] to introduce the notion of approximate
rank.

The rank principle actually determines the matrices M
and S only up to an arbitrary affine warping of the plane. We
thus introduce the additional constraints needed to complete
the solution. Finally, we outline the complete shape-and-
motion algorithm.




Approximate Rank

Assuming * that F > P, the matrix U can be decomposed
[3] intoan F x P matrix L, a diagonal P x P matrix X, and
a P x P matrix R,

U=LXR, *)

such that LTL = RTR = RRT =1, and 01 > ... > op.
Here, I is the P x P identity matrix, and the singular values
o1,...,oparethediagonal entries of X. ThisistheSingular
Value Decomposition (SVD) of the matrix U.

We can now restate our key point.

The Rank Principle for Noisy Measurements

The first three singular values of the noisy mea-
surement matrix U are much greater than the oth-
ers:

©)

It can be shown [2] that the rank-3 matrix U* that is clos-
est to U in the L,-norm sense is obtained by setting to zero
all the singular values after the third in the decomposition:

U* = L*2*R*, 0]

where L* collects the first three columns of L, 2* is the first
third-order principal minor of ¥, and R* gathers the first
three rows of R.

01, 02,03 > 04y...,0p .

The Metric Constraints

Since the rank principle expresses an incidence relation, it
only determines the two matrices M and S up to an affine
transformation of the plane. In fact, if A is any invertible
3 x 3 matrix, the matrices MA and A~!S are also a valid
decomposition of U, since

(MAYA™'S) = M(AA™)S=MS=U .

The ambiguity can be resolved by noticing that the first two
columns of M gather cosines and sines of the frame angles
(see equation (3)), and must therefore be normalized. Fur-
thermore, the third row of S contains all ones (equation 4)).
These are metric constraints, as opposed to the incidence
constraints expressed by the rank principle.

Given any initial decomposition /, § of U, it can be
shown that the metric constraints uniquely determine a ma-
trix A that transforms M and § into the actual motion and
shape matrices M and S according to

M
S

= MA™!
AS. ®

This leads to a simple data fitting problem which, though
non-linear, can be solved efficiently and reliably.

*This assumption is not crucial: if ¥ < P, everything can be
repeated for the transpose of U.
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Outline of the Algorithm

Given an image measurement matrix U, the algorithm for
computing the motion matrix M and the shape matrix S de-
fined in equations (3) and (4) can be summarized as follows.

1. Compute the singular value decomposition of U:

U=LYR.
2. Define the initial factors of U as follows:
M = LT
S‘ (Z&)l /ZR* ,

where L* collects the first three columns of L, £ is the
first third-order principal minor of X, and R* gathers
the first three rows of R.

3. Compute the matrix A in equations (8) by imposing
the metric constraints (see [8] for details).

4. Compute the motion matrix M and the shape matrix §
as

M

S

MA™!
AS .

An Experiment

The experiment described in this section illustrates the rank
principle and demonstrates the good quality of the results.

The conclusion drawn from this and other experiments
is that the relative errors in the computed shape are of the
same order as the relative depth range, which we defined
as the ratio of the object size along the optical axis and the
distance between camera and object.

We put a one-dollar coin (about 4 cm in diameter) ap-
proximately 3.5 meters away from a Sony CCD camera
with a 300 mm Tokina lens. Thus, the relative depth range
was 4/350 = 0.011.

The camera was moved in the plane of the coin, so that
only the edge of the coin was visible in every frame. The
motion was roughly circular around a point in the vicinity
of the coin. The rotation component was controlled with
an accurate positioning mechanism, so that precise ground
truth was available for performance evaluation. Translation
was such as to keep the coin in the field of view, but was
otherwise uncontrolled.

The edge of the coin was approximately aligned with the
image scanlines, thus yielding easy-to-track image features
(the thin vertical notches on the coin’s edge). The first 101
frames were taken in steps of 0.1 degrees of camera rotation.
After that, 100 more frames were taken at 0.2 degrees per
frame. Thus, the overall rotation was 30 degrees. The
resulting 201 scanlines are stacked together in figure 1, top
to bottom.

The image was filtered with a thirteen-tap finite-impulse-
response approximation to the Laplacian of a Gaussian, and




the 104 zero crossings of the result, shown in figure 2, were
used as features in the experiment.

The measurement matrix was thus 201 x 104 in size.
Its singular values are plotted in figure 5. Notice that the
first three singular values are dominant. If it were not for
noise, and if the projection were exactly orthographic, the
remaining values would be zero.

Figure 3 shows the computed and the true rotation. The
difference between the two graphs, hardly visible in figure
3, is enlarged in figure 4. The error is always smaller than
one tenth of one degree. The algorithm assumes no motion
model, and does no smoothing. As a result, the sharp
change in rotational velocity after frame 100 is faithfully
preserved in the motion output.

Figure 6 shows the shape results, and the best circular fit
to them. The difference between computed and true shape
isenlarged in figure 7. The accuracy of shape is of the order
of the relative depth range (1 percent), even if variations in
depth during the motion of the camera were of the order of
the coin size.

Conclusions

The algorithm presented in this paper infers the shape of
remote objects and the motion of the camera. It is a shape
algorithm. It does not compute the depth of the scene.

Algorithms such as the ones described in [4], [6], [9], on
the other hand, represent depth explicitly, and compute it
from the image sequence. They are depth algorithms.

Depth algorithms do not work if objects are very dis-
tant from the camera with respect to their size. When the
relative depth range is very small, as for instance in aerial
cartography and reconnaissance, the completeness of depth
algorithms is not only useless, but harmful.

A shape algorithm gives a more stable and accurate an-
swer, because it computes shape and camera motion directly
from image deformations, without using depth as an inter-

mediate step.
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Figure 1: The input to the algorithm; each scanline is a new frame. In [1], this is called an epipolar plane. We use it to
recover shape and rotation, rather than depth given known motion.

94




100000.00

T T 1
0 20 40 60 80 100 120
i

sigma(i)

Figure 2: The zero crossings of figure 1 filtered with a Figure 5: Singular values of the measurement matrix. No-
Laplacian of a Gaussian. tice the logarithmic scale along the ordinate axis.
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Figure 3: Camera rotation. Computed (solid) and true Figure 6: Shape. One hundred points along the edge of
(dashed) rotation are so close that they can hardly be dis- a one-dollar coin, as computed by our algorithm (dots),

tinguished (see also figure 4 below). compared to the best fit circle (see also figure 7 below).
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Figure 4: Camera rotation — detail. Blow-up of the differ-  Figure 7: Shape — detail. Blow-up of the radial distance
ence between the two graphs of figure 3. between the dots and the circle of figure 6.
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