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Abstract

Recovering scene geometry and camera motion from
a sequence of images is an important problem in com-
puter vision. If the scene geometry is specified by depth
measurements, that is, by specifying distances between
the camera and feature poinis in the scene, noise sen-
sitivity worsens rapidly with increasing depth.

In this paper, we show that this difficulty can be
overcome by computing scene geometry directly in
terms of shape, that is, by computing the coordinates
of feature points in the scene with respect to a world-
centered system, without recovering camera-centered
depth as an intermediate quantity.

More specifically, we show that a matriz of image
measurements can be factored by Singular Value De-
composition into the product of two matrices that rep-
resent shape and motion, respectively.

The results in this paper extend to three dimensions
the solution we described in a previous paper for planar
camera motion.

1 Introduction

Recovering scene geometry and camera motion
from a sequence of images is an important problem
in computer vision. It admits a solution [18], [13] for
perfect images, but is very sensitive to noise [2]. In this
paper, we observe that this sensitivity is due in part to
the representation of shape as a depth map, and show
that by reformulating the problem in world-centered
coordinates can lead to a simpler and better-behaved
solution.

In Ullman’s proof of existerice of a solution [18], as
well as in the perspective formulation in {13], the co-
ordinates of feature points in the world are expressed
in a world-centered coordinate system.

However, this choice has been replaced by most
computer vision researchers with that of a retinotopic,
or camera-centered, representation of shape [12], [5],
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07, ), [19], (3), (9], (71, (8], [11], [14], [4]. With this
representation, the position of feature points is speci-
fied by their image coordinates and their depths, de-
fined as the distances between the camera center and
the feature points, measured along the optical axis.

Unfortunately, although a camera-centered repre-
sentation simplifies the equations for perspective pro-
jection, it makes shape estimation harder and, for in-
creasingly distant scenes, eventually impossible. This
is due to two reasons. First, the computation of shape
via depth is very semsitive to noise for remote ob-
jects: since even large changes in depth produce small
changes in the image, computing small depth differ-
ences from image variations is virtually impossible
with any amount of image noise.

Second, as the camera moves, the camera-centered
feature coordinates change. This leads to the difficult
problem of relating depth values in different camera
coordinate systems to each other in the presence of
motion uncertainties (see for instance [11], [8]}).

In this paper, we show that both difficulties dis-
appear if feature corodinates are expressed with re-
spect to a world-centered frame. With this formu-
lation, object-centered shape can be linked to image
motion directly, without using retinotopic depth as an
intermediate quantity.

Furthermore, the mutual independence of shape
and motion in world-centered coordinates makes it
possible to cast structure-from-motion as a factoriza-
tion problem, in which a matrix representing image
measurements is decomposed directly into camera ro-
tation and object shape.

More specifically, an image sequence can be repre-
sented by a 2F x P measurement matrix, which gath-
ers the horizontal and vertical coordinates of P points
tracked through F frames. If image coordinates are
measured with respect to their centroid, we prove the
following rank theorem: under orthography, the mea-
surement matrix is of rank 3. As a consequence of this
theorem, we show that the measurement matrix can
be factored into the product of two matrices of size



2F x 3 and 3 x P, respectively, where the first matrix
encodes camera rotation, the second shape.

The rank theorem captures precisely the nature of
the redundancy of an image sequence, and allows deal-
ing with a large number of points and frames in a con-
ceptually simple and computationally efficient way to
reduce the effects of noise. The resulting algorithm
is based on Singular Value Decomposition, which is
numerically well-behaved and stable.

We first introduced this factorization method in
[15], where we treated the simple case of single-
scanline images in a flat, two-dimensional world. We
now develop the idea into a working system for ar-
bitrary camera motion in three dimensions, and full,
two-dimensional images.

In the next section we show how to build the mea-
surement matrix from an image sequence, prove that
the measurement matrix is of rank 3, and show how to
use this result to factor the measurement matrix into
shape and camera rotation. Section 3 describes an il-
lustrative experiment on a real image sequence. To
reduce the printing cost of extra pages in these pro-
ceedings, we refer to [16] for a discussion of the relation
of our work with relevant results in the literature.

2 The Factorization Method

In the next Subsection, we show how to represent
an image stream as a measurement matrix collecting
the feature coordinates to be fed to the algorithm that
computes shape and motion. We then introduce the
main result on the rank of the measurement matrix in
the absence (Subsection 2.2) and presence (Subsection
2.3) of noise. Subsection 2.4 shows that the motion
and shape result is essentially unique, and Subsection
2.5 summarizes the factorization method.

To track features from frame to frame, we used a
method based on [10], which we extended to allow for
the automatic selection of features. The description
of both detection and tracking are beyond the scope
of this paper.

2.1 The Measurement Matrix

If we track P feature points over F' frames in the
image stream, we obtain a sequence of image coordi-
nates {(uf,,v%,)|f=1,...,F,p=1,...,P}.

Some of the features disappear during tracking, be-
cause of occlusion. Some others change in appear-
ance so much that they are discarded as unreliable.
Only the features that survive from the first to the
last frame are used in the shape and motion recovery
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stage. In the future, we plan to investigate how to
modify our algorithm to deal with a variable number
of feature points over the image stream.

The horizontal feature coordinates u}, are written
into an F x P matrix U’: there is one row per frame,
and one column per feature point. Similarly, an F' x P
matrix V' is built from the vertical coordinates v’,_.

The rows of the matrices U’ and V' are then reg-
istered by subtracting from each entry the centroid of
the entries in the same row:

Ugp = u;fp __Uf (1)
Vip = Vip — Vs
where
1 P
— _ ’
s = p z“fp
p=1
1 P
- ’
’l)f = ﬁ Z vfp .
p=1

This produces two new F x P matrices U = [uyy)
and V = [vsp]. The matrix

v

is called the measurement matriz. This is the input to
our shape-and-motion algorithm.

2.2 The Rank Theorem

We now analyze the relation between camera mo-
tion, shape, and the entries of the measurement ma-
trix W. This analysis leads to the key result that W
is highly rank-deficient (the rank theorem).

The orientation of the camera reference system cor-
responding to frame number f is determined by a pair
of unit vectors, iyand j;, pointing along the scanlines
and the columns of the image respectively, and defined
with respect to a world reference system with coordi-
nates z, y, and z. Under orthography, all projection
rays are then parallel to the cross product of iyand j;:

kf:i_( ij .

The origin of the camera reference system is at the
center of the image.

The projecfjion (u}p,‘v}p) of point s, = (5, Yp» 2p)
onto frame f is then given by the equations

T

- ty)
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where t; is the vector from the world origin to the
image center of frame f.

We can now write expressions for the entries ujp
and vy, of the measurement matrix by substituting
the projection equations above into the registration
equations (1). For the horizontal coordinates we have

1
Ufp = ufp—-uf

P
. 1 .
= i (sp —ty)— pzlf -(sg —ty)
g=1

1 &
5o n)
q=1
= -8,
where & Zf;:l s, is the centroid of the scene points
in space. Thus, the fact that the projection of the
centroid is the centroid of the projections allows us
to compute the visible components of translation, and
remove them from the projection equations.
We can write a similar equation for the registered
vertical image projection vg,. To summarize,

Ufpp = i_f " Sp (2)
Vigp = JfSpo
where s, = (zp,yp,2p) gathers the coordinates of

scene point number p with respect to the centroid of
all the points being tracked.

Because of the two sets of F' x P equations (2), the
measurement matrix W can be expressed in a matrix
form:

W=MS (3)
where
_ if
iT
M=k (4)
J1
it

represents the camera motion, and

S:[Sl (5)

is the shape matrix. In fact, the rows of M repre-
sent the orientations of the horizontal and vertical
camera reference axes throughout the sequence, while
the columns of S are the coordinates of the P feature
points with respect to their centroid.

Since M is 2F x 3 and S is 3 x P, the matrix pro-
jection equation (3) implies the following rank theo-
rem.

sp ]

Without noise, the measurement malriz %%
is at most of rank three.

The rank theorem expresses the fact that the 2F x P
image measurements are highly redundant. Indeed,
they could all be described concisely by giving F frame
reference systems and P point coordinate vectors, if
only these were known.

When noise corrupts the images, the measurement
matrix W will not be exactly of rank 3. However, the
rank theorem can be extended to the case of noisy
measurements in a well-defined manner. The next
subsection introduces this extension, using the con-
cept of Singular Value Decomposition [6] to introduce
the notion of approximate rank.

2.3 Approximate Rank

Assuming ! that 2F > P, the matrix W can be
decomposed [6] into a 2F x P matrix L, a diagonal
P x P matrix £, and a P x P matrix R,

W =LZR, (6)
such that LTL = RTR=RRT =Z,and 0y > ... >
op. Here, T is the P x P identity matrix, and the
singular values oy,...,0p are the diagonal entries of
¥. This is the Singular Value Decomposition (SVD)
of the matrix U.

If we now partition the matrices L, X, and R as
follows:

L = [L'|L"]})erF
—_ ~—

3 P-3
_[=lo }s
ro= | O E”] }p-3

NN (7)
3 pP3
[ rR 13
o= R—] }ps
-
P

we have
LECR=L'YR + L"S"R".

Let W* be the ideal measurement matrix, that is,
the matrix we would obtain in the absence of noise.

1This assumption is not crucial: if 2F < P, everything can
be repeated for the transpose of W.



Because of the rank theorem, the non-zero singular
values of W* are at most three. Since the singular
values in T are sorted in non-increasing order, £’ must
contain all the singular values of W* that exceed the
noise level. As a consequence, the term L”X"” R"” must
be due entirely to noise, and the product L'/ R’ is the
best possible rank-3 approximation to W*.

We can now restate our rank theorem for noisy
measurements.

All the shape and motion information in W
ts contained in ils three greatlest singular val-
ues, together with the corresponding left and
right eigenvectors.

Thus, the best possible approximations to the ideal
measurement matrix W* is the product

W = L'YR

where the primes refer to the partition (7). With the
definitions

M L [EI]IIQ

S = [E']I/ZR',

we can also write
W=MS. (8)
The two matrices M and S are of the same size as
the desired motion and shape matrices M and S: M
is 2F x 3, and S is 3 x P. However, the decomposition
(8) is not unique. In fact, if 4 is any invertible 3 x 3

matrix, the matrices M A and A~1S are also a valid
decomposition of W, since

(MAYA™IS) = M(AA™H)S=MS =W .

Thus, M and § are in general different from M
and S. A striking fact, however, is that, except for
noise, the matrix M is a linear transformation of the
true motion matrix M, and the matrix S is a linear
transformation of the true shape matrix S. Indeed,
in the absence of noise, M and M both span the col-
umn space of the measurement matrix W = W* = W.
Since that column space is three-dimensional, because
of the rank theorem, M and M are different bases for
the same space, and there must be a linear transfor-
mation between them.

Whether the noise level is low enough that it can
be ignored at this juncture depends also on the cam-
era motion and on shape. Notice, however, that the
singular value decomposition yields sufficient informa-
tion to make this decision: the requirement is that the
ratio between the third and the fourth largest singular
values of W be sufficiently large.
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2.4 The Metric Constraints

To summarize, the matrix M is a linear transfor-
mation of the true motion matrix M. Likewise, S is
a linear transformation of the true shape matrix S.
More specifically, there exists a 3 x 3 matrix A such
that
MA
AT1S.

M =
s ©)

In order to find A it is sufficient to observe that the
rows of the true motion matrix M are unit vectors,
and that the first F' are orthogonal to corresponding
F in the second half. These meiric constraints yield
the over-constrained, quadratic system

iTAATY = 1

AT o pe

JfTAAT_]f = (10)
iy AATj; = 0

in the entries of A. This is a simple data fitting prob-
lem which, though non-linear, can be solved efficiently
and reliably.

A last ambiguity needs to be resolved: if A is a
solution of the metric constraint problem, so is AR,
where R is any orthonormal matrix. In fact,

;T (AR)RTAT)Y; = i) A(RRT)AT
= i, 44T,
= 1,

and likewise for the remaining two constraint equa-
tions. Geometrically, this corresponds to the fact that
the solution is determined up to a rotation, since the
orientation of, say, the first camera reference system
with respect to the world reference system is arbitrary.
This arbitrariness can be removed, if desired, by rotat-
ing the solution so that the first frame is represented
by the identity matrix.

2.5 Outline of the Complete Algorithm

Based on the development in the previous sections,
we now have a complete algorithm for the computation
of shape and rotation from the measurement matrix
W derived from a stream of images. To summarize,
the motion matrix M and the shape matrix S defined
in equations (4) and (5) can be computed as follows.

1. Compute the singular-value decomposition W =
LYR.



2. Define M = L'(¥)}/? and § = (£')'/2 R/, where
the primes refer to the block partitioning defined
in (7).

3. Compute the matrix A4 in equations (9) by impos-
ing the metric constraints (equations (10)).

4. Compute the motion matrix M and the shape
matrix S as M = MA and S = A™!S.

5. If desired, align the first camera reference system
with the world reference system by finding the
rotation matrix R’ that minimizes the residue

100
010 |-R[i it k]|,
001

where the columns of the identity matrix on the
left represent the axis unit vectors of the world
reference system, i; and j; are the first and F +1-
st row of M, and k; = i; x ji. This is an absolute
orientation problem, and can be solved by the
procedure described in [9].

3 An Experiment

In this chapter, we illustrate the factorization
method with an experiment on a real sequence of im-
ages. The images depict a small plastic model of a
building. The camera is a Sony CCD camera with
a 200 mm lens, and is moved by means of a high-
precision positioning platform. Some frames in the
sequence are shown in figure 1. Camera pitch, yaw,
and roll around the model are all varied as shown by
the dashed curves in figure 2. The translation of the
camera is such as to keep the building withing the field
of view throughout the sequence.

For feature tracking, we extended the method de-
scribed in [10] to allow also for the automatic selec-
tion of image features. The entire set of 430 features
is displayed in figure 3, overlaid on the first frame of
the sequence. Of these features, 42 were abandoned
during tracking because their appearance changed too
much. The remaining 388 features are used in the
computation of shape and motion.

The plots in figure 2 compare the rotation compo-
nents computed by the algorithm (solid curves) with
the values measured mechanically from the mobile
platform (dashed curves). The differences are mag-
nified in figure 4.

The errors are everywhere less than 0.4 degrees.
The computed motion follows closely also rotations
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with curved profiles, such as the roll profile between
frames 1 and 20 (second plot in figure 2), and faithfully
preserves all discontinuities in the rotational velocities.
This is a consequence of the fact that no assumption
was made on the camera motion: the algorithm does
not smooth the results.

Between frames 60 and 80, yaw and pitch are nearly
constant. This means that the image sequence con-
tains almost no shape information along the opti-
cal axis during that subsequence, since the camera is
merely rotating about its optical axis. This demon-
strates that it is sufficient for the sequence as a whole
to be taken during non-degenerate motion. The al-
gorithm can deal without difficulty with sequences
that contain degenerate subsequences, because the in-
formation in the sequence is used all at once in our
method.

The shape results are shown qualitatively in fig-
ure 5, which shows the computed shape viewed from
above. The view in figure 5 is similar to that in fig-
ure 6, included for visual comparison. Notice that the
walls, the windows on the roof, and the chimneys are
recovered in their correct positions.

To evaluate the shape performance quantitatively,
we measured some distances on the actual house model
with a ruler, and compared them with the distances
computed from the point coordinates in the shape re-
sults. Figure 7 shows the selected features superim-
posed on the first frame of the sequence, with the
number assigned to them by our feature detection al-
gorithm. The diagram in figure 8 shows the distances
between pairs of features, both as measured on the
actual model and as computed from the results of our
algorithm. The results of the algorithm were scaled so
as to make the computed distance between feature 117
and 282 equal to the distance measured on the model.
Lengths are in millimeters. The measured distances
between the steps along the right side of the roof (7.2
mm) were obtained by measuring five steps and divid-
ing the total distance (36 mm) by five. The differences
between computed and measured results are of the or-
der of the resolution of our ruler measurements (one
millimeter).

In order to be able to measure the ground truth
even more precisely than is possible in laboratory ex-
periments, we studied the performance of our method
with a series of simulations, in which we corrupted the
image measurements with Gaussian noise. The find-
ings indicate that even for noise levels as high as three
pixels standard deviation the algorithm converges to
within 1 percent of the correct motion and shape es-
timates, provided that there are at least, say, fifty



frames and fifty features, and that the camera rotates
at least five degrees around the scene. More details
about the simulations can be found in [16].

4 Conclusion

Formulating the structure-from-motion problem in
terms of shape and motion, rather than depth and
motion, has two important advantages. First, shape is
no more computed by taking small differences between
large depth values, but is directly related to the image
displacements. This greatly improves the conditioning
of the problem, yielding both better shape and better
motion estimates.

Second, with the shape-and-motion formulation we
compute two mutually independent quantities: while
depth is a function of both scene geometry and cam-
era motion, shape and motion are independent of each
other. This key observation leads to our factorization
method. Writing an image sequence as the product
of motion and shape results into a well-behaved al-
gorithm that capitalizes on the intrinsic redundancy
of the sequence to achieve good performance in the
presence of noise.
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Figure 1: Some frames in the sequence. The whole

sequence is 150 frames.
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Figure 2: True and computed camera yaw, roll, pitch.
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Figure 5: A view of the computed shape from approx-
imately above the building (compare with figure 6).

Figure 6: A real picture from above the building, sim-
ilar to figure 5.
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Figure 7: For a quantitative evaluation, distances be-
tween the features show in the picture were measured
on the actual model, and compared with the computed
results. The comparison is shown in figure 8.
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Figure 8: Comparison between measured and com-
puted distances for the features in figuré 7. The num-
ber before the slash is the measured distance, the one
after is the computed distance. Lengths are in mil-
limeters. Computed distances were scaled so that the
computed distance between features 117 and 282 is
the same as the measured distance.



