
have a broad application to interactive communication between rural surgeons and
experts, which helps the delivery of expert care to geographically or socioeconomi-
cally isolated areas.

References
1. E.R. John, L.S. Prichep, J. Fridman and P. Easton, Neurometrics: computer-assisted dif-

ferential diagnosis of brain disfunction, Science Vol. 239, pp.162-169 (1988).
2. L.S. Hibbard, J.S. McGlone, D.W. Davis, R.A. Hawkins, Three-Dimensional Representa-

tion and Analysis of Brain Energy Metabolism, Science, Vol. 236, pp.1641-1646 (1987).
3. C. Nastar and N. Ayache, Non-Rigid Analysis in Medical Images: a Physically Based

Approach, Proc. 13th Int. Conf. on Information Processing in Medical Imaging, Berlin,
Germany, pp. 17-32 (1993).

4. W.E.L. Grimson, T. Lozano-Perez, W.M. Wells , G.J. Ettinger, S.J. White, R. Kikinis, An
Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and
Enhanced Reality Visualization, Proc. CVPR’94, pp.430-436, Seattle, WA (1994).

5. C. Pelizzari, K. Tan, D. Levin, G. Chen, J. Balter, Interactive 3D Patient - Image Registra-
tion, Proc. 13th Int. Conf. on Information Processing in Medical Imaging, Berlin, Ger-
many, pp.132-141 (1993).

6. D. Gennery, Tracking known three-dimensional objects, Proc. 2nd Nation. Conf. Artif.
Intell., Pittsburgh, pp.13-17 (1982).

7. D.G. Lowe, Robust Model-Based Motion Tracking Through the Integration of Search and
Estimation, Int. J. Computer Vision, Vol. 8, No.2, pp. 113-122 (1992).

8. D.G. Lowe, Fitting Parameterized Three-Dimensional Models to Images, IEEE Trans.
Patt. Anal. Mach. Intell. Vol. 13, No.5, pp. 441-450 (1991).

9. D.B. Gennery, Visual Tracking of Known Three-Dimensional Objects, Int. J. Computer
Vision, Vol. 7, No. 3, pp. 243-270 (1992).

10. M. Turk and A. Pentland, Face Recognition Using Eigenfaces, Proc. CVPR’91, pp.586-
591, Maui, U.S.A. (1991).

11. H. Murase and S. Nayar, Parametric Eigenspace Representation for Visual Learning and
Recognition, Tech. Rep. CUCS-054-92, Columbia University, NY (1992).

12. S. Yoshimura and T. Kanade, Fast Template Matching Based on the Normalized Correla-
tion by Using Multiresolution Eigenimages, Proc. IROS’94, Munchen, Germany (1994).

13. O. Amidi, Y. Mesaki, T. Kanade, and M. Uenohara, Research on an Autonomous Vision-
Guided Helicopter, Proc. RI/SME Fifth World Conf. on Robotics Research, Cambridge,
Massachusetts (1994).

14. I. Weiss, Geometric Invariants and Object Recognition, Int. J. Computer Vision, Vol.10,
No.3, pp. 207-231 (1993).

15. J. Mundy and A. Zisserman, Introduction-Towards a New Framework for Vision. In Geo-
metric Invariance in Machine Vision, MIT Press, Cambridge, MA (1992).

16. H. F. Durrant-Whyte, Uncertain Geometry in Robotics, IEEE J. Robotics and Automation,
Vol.4, No.1, pp.23-31 (1988).



tion gives us reliable matching and we did not use invariants for feature selection. As
in the PC case, the overlaid image of the bone appears to remain attached to the leg
despite three-dimensional motions of the leg, camera, and certain occlusions.

7.3 Pin Overlay without Models
The last task is to overlay a virtual pin onto a phantom leg (Fig.6 (b)). In the case of
interactive video, when experts touch the screen to indicate the specific position of
patients’ bodies, the touched position is transferred to the remote site as the given pin
tip position and the virtual pin is superimposed on the image of patients. Surgeons can
recognize the place on patients to which the experts point, even after some motion of
the patients’ bodies.

The initial pin tip position is given in advance in this experiment. An overlaid
image of the pin remains fixed onto the image of the leg over some motion of the leg.
The tip of the pin is supposed to be attached on the leg. Four marks around the pin tip
are kept tracking and the position of the pin tip is computed directly from these 2D
mark positions as described before.

8   Conclusions
This paper has presented an image overlay system that uses real-time object registra-
tion and tracking. The system utilizes intensity images and detects feature points by
template matching by normalized correlation. The change of intensity patterns due to
view change is compensated by skewing reference images with computed object pose.
Use of geometric invariants increases robustness in the feature correspondence
between features in the image and the model. Real-time tracking of objects and over-
laying image at frame rate (30 Hz) is achieved by the multiple DSP system with low
latency vision hardware. It should be noted that no explicit model of object or display
position was used in the experiment of overlaying a virtual pin on a phantom leg. This
is made possible by using geometric invariants. Capable, real-time image overlay will

(b) Overlay of a virtual pin on a leg.Fig.6 (a) Overlay of a bone on a leg.

(a) (b)



on the PC. Eleven images of the PC under different illumination conditions had been
precaptured. Three 32 x 32 regions are extracted from each image as reference images,
and template spaces are generated by four major eigenvectors.

When the three regions are successfully found, the pose of the PC is calculated
from three feature positions in the image by Newton’s method [8]. Feature points for
tracking are projected onto the image with the computed pose. Small windows of size
16 x 12 of eight feature points are extracted from the image and are then used as refer-
ence images in the tracking phase (Fig. 5). In the tracking phase, the maximum nor-
malized correlation of the extracted window image is searched for in 14 x 14 a region
whose center position of the search area is usually set to the feature position in the last
frame. In the case where the feature point is missed in the last frame, the projected fea-
ture position in the image, computed using the pose of the PC in the last frame, is used
to define the center position of the search area. This allows for the recovery of track-
ing.

The tracking results of eight features are checked by calculating cross ratios of
areas of five coplanar points. The best five points which have minimum change are
selected, and the pose of the PC is computed with these five points. Feature points
whose normalized correlation value is less than 0.7 are rejected before the computation
of invariants. A check by geometric invariants, combined with the normalized correla-
tion peak score, makes the tracking much more robust. The system can track the PC
and superimpose the information as the camera and the PC translates and rotates in
3D, even when up to three feature points are occluded by other objects such as human
hands. The system operates at the video frame rate (30 Hz). Three C40s are used in
parallel: two C40s for tracking eight feature points and one for checking tracking
results, pose calculation, and image overlay.

7.2 Overlay of an Image of a Bone onto a Leg
The task is to overlay a bone surface model derived from CT data on a phantom leg
(Fig. 6(a)). Since there are no complex features around marks, the normalized correla-

Fig.5 Real-time overlay of information (“Board”) on a desktop PC image.



the value of invariants. That means that we can track a “virtual” feature point which
may not have any particular pattern. We use a certain number of real trackable feature
points around it, track them, and calculate the position of the virtual feature point by
means of the invariant.

For example, referring to Fig. 4, with five coplanar points, the fifth pointp5 on the
surface can be tracked. The values of two invariantsI1, I2 in the first frame are calcu-
lated from the positions ofp5 and four other coplanar points. They remain constant
over frames. Since they are functions of the positions of the five points, the unknown
parameters are (x5, y5), x-y coordinates of the fifth pointp5  when we keep tracking
four pointsp1, p2, p3, p4. We have two invariantsI1, I2, so that we can calculate the
position of thep5 by solving these two linear equations in terms of (x5, y5).

7   Experimental System for Real-Time Image Overlay
We will present a real-time image overlay system. It is used for three example tasks.
The first example is the tracking of a desktop PC and image overlay of the image of an
I/O board. The second is the tracking of a phantom leg with some marks on it and the
overlay of a bone model on its view. The third is the overlay of a virtual pin onto a leg
model.

The system is implemented on multiple TMS320C40 (C40), Texas Instruments
digital signal processors. We use low latency vision hardware developed at CMU[13]
which has a digitizer with the high-speed data link. Image data are transferred through
this high-speed data link into C40 communication ports, and then transferred to the
local memory of the processor and other processors’ communication ports by DMA in
order to minimize the delay.

7.1 Overlay of an Image on a PC
Visual tracking of objects without attaching specific marks is tested on a desktop PC.
The hypothetical task is to consistently overlay the word “Board” to indicate the I/O
board that the repair person should service. At the beginning of the operation, the sys-
tem displays a wire frame of the PC on the monitor and requires a user to move the
camera so that the PC and the wire frame are approximately aligned (Fig.1). When the
PC is roughly aligned to the wire frame, the system recognizes it, “latches” onto it, and
starts tracking it. Initial recognition is executed by template matching of three regions

p1
p2

Fig.4  five coplanar points.

p5

p3 p4
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straints between feature points are quite useful.

5.1 Geometric Invariants
Geometric invariants [14, 15], popular in object recognition as useful descriptors of
objects, are properties in the image that stay invariant under some transformation. Five
coplanar points have the familiar cross ratio as their invariant. The cross-ratiosI1 and
I2 of four areas of triangles are invariant under projective transformation:

whereSijk is the area of a triangle with three points,i, j, andk. These values remain the
same over view changes.

Another candidate is affine algebraic moment invariants [15], which are applicable
to curved objects because they do not require feature points to be coplanar. If the geo-
metric invariant values computed for tracked feature points change, it indicates that
some of feature points are misrecognized.

5.2 Sensitivity of Invariants
Due to observation errors in tracking feature positions (typically 0.5 pixel), invariants
vary. The sensitivity of invariants is also dependent on configuration of feature points.
This makes it difficult to use constant thresholds to judge whether or not invariants are
violated and thus tracking has failed. We adjust thresholds by the standard deviation of
each invariant. Assume that observation errors of each feature position have a zero-
means Gaussian distribution with covariance . Invariants then have the distribution
with a expected variance  [16]:

whereJ is the Jacobian matrix  of  that relates x-y coordinates of
feature points to the invariant. The threshold for each invariant is set to the standard
deviation of invariants multiplied by some constantc.

Feature correspondence is carried out as follows, when cross ratios of areas of five
coplanar points are used as invariants. The valuesI1, I2 in equation (6) are computed
for all combinations of five points out of all feature points. The combinations whose
variations ofI1 andI2 from initial values are both below their thresholds are selected.
If there is more than one combination of five feature points that satisfy the condition,
we select the five feature points that produce the minimum of the maximum variation
of I1 andI2 divided by the corresponding standard deviation. The five feature points
thus selected are used to calculate the object pose.

6   Direct Computation of Image Overlay
The image invariant values help us to compute the position of points without registra-
tion. Since they are invariant to any view change, they enable us to calculate the posi-
tion of one of the points from the other 2D feature positions in the current image with

I1

S423S125

S124S523
--------------------= I2

S143S125

S124S153
--------------------=

Λp

σI
2

σI
2

JΛpJ
T

=

I x∂⁄∂[ ] I I x( )=

(6)

(7)



the system robust against the variation of illumination. The computation cost is greatly
reduced since the original normalized correlation requires  operations forP
reference images while (5) requires  operations whereK can be much
smaller thanP.

4   Tracking of Features
Feature points that are easy to track are selected before execution, and their positions
in object coordinates are given as part of the object models. When the object is recog-
nized and the pose is calculated at the initial recognition phase, feature points are pro-
jected onto the image plane with the computed pose. A small region around each
feature point is extracted as the reference image for the subsequent visual tracking. For
visual tracking, normalized correlation to reference images is computed at every point
in the small search areas. The positions with the best normalized correlation scores are
determined as the positions of feature points in the image.

The appearance of a feature point varies during tracking due to view change.
Skewing reference images using the object pose information in every cycle during
tracking can compensate this effect. Reference images are small square windows ofN
by N pixels around feature points. Under projective transformation, straight lines are
projected to straight lines and intersections are preserved in any view change. Genera-
tion of the skewed reference image is illustrated in Fig.3: first compute the skewed
rectangle in the initial image which corresponds to the small square window in the cur-
rent image, and then map the pixels of the initial image into the square window. The
skewed rectangle in the initial image is computed from feature positions in the current
image, object pose in the current and initial images, and surface orientation around
feature points. Surface patches around the feature points are approximated as planar,
and those equations are given as part of object models.

5   Feature Correspondence
Some features may be missed or mismatched during tracking. We need to select only
those feature points which are successfully tracked. The value of normalized correla-
tion itself can be used as the criterion, for the degree of matching at the image level.
However, to cope with illumination changes and other difficulties, geometric con-
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Fig.3 (a) Change of appearance of feature points. (b) Example of skewed image.
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where  is the average image vector. We obtain optimal approximation of
reference images by selecting eigenvectors in decreasing order of magnitude of eigen-
values and representing each reference image by a linear combination of firstK largest
eigenvectors as

where .
The majorK eigenvectors and the average image vectorc span a (K+1)-dimen-

sional subspace (“template space”) of all possible images, and a set of images in the
subspace is considered as a template to be recognized. The dimension along the aver-
age image vector is added to make the recognition insensitive to the magnitude of
image patterns. A set of reference images in the template space  are therefore
expressed in terms of a linear combination of a finite set of orthonormal basis:

where

and

3.2 Normalized Correlation in the Template Space
The input image is evaluated at each location how it fits the template by extracting the
region and finding the most similar pattern in the template space and computing the
normalized correlation between them. The most similar pattern in the template space is
the projection of the extracted region vectory into the template space (Fig. 2). Its nor-
malized correlation to the vectory is the largest. The normalized correlation between
the vectory and a reference vectorx is given by . Replacing the
reference image vectorx with the projection  yields

The normalized correlation score above is the measure of similarity considering
not only prestored discreteP reference images but also their interpolation. This makes
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3   Initial Recognition of the Object
For human interface systems, it is reasonable to assume that users can roughly locate
objects at the start of the execution of the system. The system, for example, can super-
impose the desired position and orientation of the object onto the raw camera image.
Users can set the pose of the object as indicated by moving either the object or the
camera (Fig.1).

When the rough pose of an object is set by the user, the initial recognition is carried
out to precisely calculate the object location. For this purpose, reference images of fea-
ture points are precaptured in various conditions of illumination while objects are set
to be the predefined pose. “Template space”, which is the vector subspace involving
not only the discrete reference images but also their interpolation, is computed. A set
of images in the template space are considered as a template. The intensity pattern
most similar to the input image in the template space is found and its normalized corre-
lation to the input image is computed at each point in the search area. The point with
the highest score is chosen, and it is recognized as a feature point when the highest
score is over a threshold. When all the feature points are successfully found, the object
pose is calculated and the system goes to the tracking phase.

3.1 Generation of Template Space
Precaptured reference images differ slightly from each other and are highly correlated.
Therefore, the image vector subspace required for their effective representation can be
defined by a small number of eigenvectors or eigenimages. The eigenimages which
best account for the distribution of reference images can be derived by Karhunen-
Loeve expansion [10][11][12][13].

Let the set of reference images be ,i=1,2,...,P which are represented as vectors
of dimension , describingN by N image templates. The vectors  and scalars
are the eigenvectors and eigenvalues, respectively, of the covariance matrix:

Fig.1 Wire-frame overlay at initial recognition.
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Interactive video is another application. In telemedicine, rural surgeons would send
patient records, X-rays and CT scans to an expert surgeon at a center who would use
them to plan the operation on a surgical simulator. The expert would send the surgical
plan to the remote doctor or medic and guide him through the surgery. The interactive
video, which transmits images of a patient to the expert and sends them back with
some image overlay, enables the expert to guide surgeons as if the expert were across
the operating table from him. It could keep showing the surgeon the place on the
patient’s body to which the expert points, while the patient and the camera are moving
in three dimensions.

This paper presents object registration and tracking techniques appropriate for the
realization of real-time image overlay. Two image overlay systems are shown. The first
one registers objects in the image and projects pre-operative model data onto a raw
camera image. The other computes the position of image overlay directly from 2D fea-
ture positions without any prior models.

2   Object Registration for Image Overlay
Object registration is required to superimpose pre-operative model data onto a raw
camera image accurately at the right place. Registration is the process of computing
the object pose parameters in camera-centered coordinates. Camera-centered coordi-
nates have the origin at the optical center of the camera with which raw camera image
is taken. When the pose of the object has been computed, the remaining step is to gen-
erate an image of prestored data, such as a pre-operative bone model derived from CT,
appropriately projected onto the image plane, and add it to a raw camera image.

Most previous work on object registration in medicine utilizes 3D image data (as
from a scanning laser rangefinder) and searches their best match with 3D model data
sets by using a least squares minimization of distances between data sets [4][5].

In the computer vision area, a few methods have been developed for visual track-
ing of known three-dimensional objects using only 2D images. They locate and track
predefined features, such as edges and corners, on the object in the images, and use
these measurements to calculate the estimate of position and orientation of the object
[6][7][8][9]. In the case where we have object-centered coordinates of features in the
models, the problem is formulated as an inverse problem to solve the nonlinear rela-
tionship between object pose and feature positions in the image. This problem can be
solved by recursive methods.

The system described in this paper utilizes 2D intensity images and detects feature
points by template matching. The change of intensity patterns due to view change is
compensated by skewing reference images with computed object pose parameters. The
system has been implemented on multiple DSPs and performs tracking at the frame
rate.
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Abstract- This paper presents computer vision based techniques for object reg-
istration, real-time tracking, and image overlay. The capability can be used to
superimpose registered images such as those from CT or MRI onto a video
image of a patient’s body. Real-time object registration enables an image to be
overlaid consistently onto objects even while the object or the viewer is moving.
The video image of a patient’s body is used as input for object registration. Reli-
able real-time object registration at frame rate (30 Hz) is realized by a combina-
tion of techniques, including template matching based feature detection, feature
correspondence by geometric constraints, and pose calculation of objects from
feature positions in the image. Two types of image overlay systems are pre-
sented. The first one registers objects in the image and projects pre-operative
model data onto a raw camera image. The other computes the position of image
overlay directly from 2D feature positions without any prior models. With the
techniques developed in this paper, interactive video, which transmits images of
a patient to the expert and sends them back with some image overlay, can be
realized.

Category - on line tracking of patient or organ motion

1   Introduction
Due to the significant improvements in computer vision techniques in recent
years[1][2][3], real-time and interactive imaging of complex biomedical systems have
become a great priority within medicine.

One major application is to integrate the precise pre-operative information cur-
rently found within CT and MRI into intra-operative surgical procedures. The display
of correctly registered medical images on a patient provides a new method of surgical
guidance which can enhance human perception and skills [4]. Most previous methods
of registration, however, are either off-line or assume that the patient does not move
during the surgery. Real-time computer vision techniques for object registration can
realize a new type of non-intrusive image overlay without using special positioning
devices. The overlaid image can be kept at the same position of the patient in the
image as if the overlay were physically attached to the patient. The overlay remains
fixed to the patient even with movement of the patient and the camera.


