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Abstract

This paper discusses the essential equivalence of second order impedance control with

force feedback and proportional gain explicit force control with force feedforward. This

is �rst done analytically by reviewing each control method and showing how they math-

ematically correspond for constrained manipulator control. For sti� environments the

correspondence is exact. However, even for softer environments similar response of the

system is indicated. Next, the results of an implementation of these control schemes on

the CMU DD Arm II are presented, con�rming the predictions of the analysis. These

results experimentally demonstrate that proportional gain force control and impedance

control, with and without dynamics compensation, have equivalent response to com-

manded force trajectories.

1 Introduction

There is a whole class of tasks that implicitly require controlling the force of interaction
between a manipulator and its environment: pushing, scraping, grinding, pounding, pol-
ishing, twisting, etc. Thus, force control of the manipulator becomes necessary in at least
one of the degrees of freedom of the manipulator; the other degrees of freedom remain po-
sition controlled. Mason formalized this idea and called it Hybrid Control [Mason (1981)].
Simply put, the manipulator should be force controlled in directions in which the posi-
tion is constrained by environmental interaction, and position controlled in all orthogonal
directions.

The Hybrid Control formalism does not specify what particular type of position or force
control should be used. It only partitions the space spanned by the total degrees of freedom
into one subspace in which position control is employed, and another in which force con-
trol is employed. In the position control subspace simple strategies have proven adequate
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(e.g. PID), while sophisticated enhancements have improved performance (e.g. computed
torque control, adaptive control) [Dubowsky and DesForges (1979), Koivo and Guo (1981),
Hsia (1986), J. and Li (1987), Khosla (1988)]. However, in the force control subspace, two
main conceptual choices have emerged: explicit force control and impedance control. Fig-
ures 1(a) and (b) are simple block diagrams of these control schemes; the transfer function
G represents the dynamics of the arm/ sensor / environment system, H is the force con-
troller, I is the impedance controller, and u is the control signal. The major di�erence
between these schemes is the commanded value: explicit force control requires commanded
force, while impedance control requires commanded position. In order for these to be feed-
back controllers, explicit force control needs force measurement, while impedance control
needs position measurement. In addition, impedance control requires force measurement
| without it an impedance controller reduces to a position controller.

Ideally, an explicit force controller attempts to make the manipulator act as a pure force
source, independent of position. Like position control, the obvious �rst choice has been some
manifestation of PID control (i.e. P, PD, PI, etc.). We have previously shown that integral
gain control is the best amongst these simple strategies [Volpe and Khosla (1993a)].

Alternatively, impedance control has been presented as a method of stably interacting
with the environment. This is achieved by providing a dynamic relationship between the
robot's position and the force it exerts. A complete introduction to impedance control
is beyond the scope of this discussion and the reader is referred to the previous work of
other researchers [Hogan (1985), Kazerooni, Sheridan and Houpt (1986)]. The basic tenet
of impedance control is that the arm should be controlled so that it behaves as a mechanical
impedance to positional constraints imposed by the environment.

For linear impedance relationships, the controller may be separated into two transfer
functions, I(x) and I(f). With these functions, the impedance control block diagram is
modi�ed as in Figure 2 to show that the impedance controller contains an internal explicit
force controller. Further, the feedback term, xm may be ignored sometimes. For instance, it
may be ignored if its variation is slow compared to the dynamics of the close loop system, or
if the magnitude change is smaller than the resolution of the position measuring capabilities
of the system. In these cases, the system may be considered open loop with respect to
position and velocity, and impedance control reduces directly to explicit force control.

This paper explores the exact correspondence between explicit force control and imped-
ance control. In particular, it is shown that impedance controllers that utilize force feed-
back must be second order; lesser order impedance relations are essentially open-loop to
force [Volpe and Khosla (1991), Goldenberg (1992)]. Analysis of the second order impedance
controller reveals that it has an algebraic structure akin to proportional gain explicit force
control with feedforward reference force. This correspondence becomes exact when the po-
sition feedback is constant. In practice, this criterion is regularly met by sti� environments,
or soft environments in equilibrium with the arm.

We have implemented both impedance control with and without manipulator dynamics
compensation, as well as proportional gain explicit force control. These implementations
were in six DOF on the CMU DD Arm II. The results show the same response for the
impedance and explicit force control strategies, even for the case of soft environment con-
tact. They also experimentally con�rm what is analytically indicated: the equivalence of
second order impedance control with force feedback and proportional gain force control with
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reference force feedforward.
This paper is organized as follows. First, the arm and environment models employed for

this discussion will be reviewed. Second, proportional gain explicit force control is reviewed
and analyzed. It is also shown how the proportional gain values can be as low as negative
one. Third, impedance control, with and without dynamics compensation, is reviewed
and analyzed. It is shown that only second order impedance control utilizes force feedback
information. It is also shown that second order impedance control employs proportional gain
explicit force control, and that for sti� environments the two become the same controller.
In the last part of this paper, the insights and predictions from analysis of the controllers
are experimentally veri�ed with force-trajectory and impact tests.

2 Arm/ Sensor / Environment Model

The physical system employed in this study is comprised of the CMU DD Arm II , a
Lord 15-50 force sensor, and an environment of a cardboard box with an aluminum plate
resting on top. The box rests on a table that is considerably more sti� than the box,
and is therefore considered ground for these tests. The force sensor is mounted on link
six of the CMU DD Arm II . Attached to the force sensor is a steel probe with a brass
weight on its end. The brass weight serves as an end e�ector substitute and provides
a 
at sti� surface for applying forces on the environment. More details can be found
in [Volpe and Khosla (1994a), Volpe and Khosla (1993b)].

This system is more complex than might �rst be thought. Since the arm is not at-
tached to the surface, oscillations can easily lead to separation from the surface. In the
case of separation, the system plant is nonlinear. Further, we have previously discussed
how attachment to the environment (as with a gripper) increases the envelope of stabil-
ity [Volpe and Khosla (1993a)]. For the discussion and experiments presented in this paper,
the system will be modelled without separation, but no physical attachment is made.

Previous research has indicated that a fourth order model of the arm/ sensor / environ-
ment, as shown in Figure 3, is necessary for force control analysis [Eppinger and Seering (1986),
Volpe and Khosla (1994a)]. The transfer function of this system is:

G =
Fm
U

=
(mBs

2 + c3s+ k3)k2
(mBs2 + (c2 + c3)s+ (k2 + k3))(mAs2 + c1s+ k1) + (mBs2 + c3s + k3)(c2s + k2)

(1)
where the measured force, Fm, is equal to k2(xA � xB). We have experimentally extracted
parameter values for the components of this model, for the box/plate environment described.
Mathematical and experimental details can be found elsewhere [Volpe and Khosla (1994a)].

The pole/zero locations indicated by the extracted parameters di�er greatly from those
assumed by other researchers [Eppinger and Seering (1986), Eppinger and Seering (1987)].
Figure 4 shows all but the leftmost pole, which is at �28000 on the real axis. The complex
pole pair (with real value � �12) is due mainly to the environment. The other pole pair
(on the real axis) is due mainly to the sensor dynamics. It can be seen that the sensor poles
are fairly far removed from the environmental ones, and are located farther into the left
half plane. The leftmost sensor pole (at �28000) will be ignored.

Utilizing the plant model developed, it is now possible to analyze its response with both
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proportional gain explicit force control and impedance control. This will be done in the
following sections.

3 Proportional Gain Explicit Force Control

The �rst controller to be discussed is proportional gain explicit force control. The chosen
form of this controller is:

� = JTu+ g (2)

where � is a vector of the actuation torques, J is the manipulator Jacobian, g is the
gravity compensation torque vector, and u is the control signal vector comprised of com-
ponents [Volpe and Khosla (1993a)]:

u = fc + Kfp(fc � fm) � Kv _xm (3)

where subscripts c and m denote the commanded and measured quantities, respectively.
The feedforward term, fc, is necessary to provide a bias force when the force error is zero.
Since the velocity gain, Kv, adds damping directly to the system plant, G, the closed loop
transfer function with the feedforward term is:

Fm
Fc

=
(1 +Kfp)G

1 +KfpG
: (4)

This is a Type 0 System and will have a nonzero steady-state error for a step input. The
root locus of this system is shown in Figures 4 and 5. The corresponding Bode plots are
shown in Figure 6. As can be seen from the root locus, proportional control makes the
system more oscillatory and can make it unstable. The Bode plots further illustrate this
problem. There is a resonance peak from the environment dynamics at approximately 100
rad/s. After this peak there is a 40 dB/decade drop-o� which gives a minimum phase
margin of � 15� at Kfp � 1.

The addition of a lowpass �lter in the feedback loop can improve the response by intro-
ducing a dominant pole on the real axis [An and Hollerbach (1987)]. However, this pole
placement and the resultant behavior of the system closely match that provided by integral
control [Volpe and Khosla (1993a)], and therefore it will not be considered further.

It will prove useful later (in the discussion of impedance control) to review the con-
sequences of using the feedforward term in Equation (3) [Volpe and Khosla (1993b)]. It
is usually desirable that the feedforward gain be unity so that the environmental reaction
force will be canceled during steady state. Further, if the sensor dynamics of the plant are
ignored and the natural feedback loop of the reaction force is considered, the plant may be
reformulated as G = G0=(1+G0) where G0 represents the dynamics of the arm/environment
only. Substitution of this reduced model into the transfer function of Equation (4) yields:

Fm
Fc

=
(1 +Kfp)G0

1 + (1 +Kfp)G0
(5)

=
K 0
fpG

0

1 +K 0
fpG

0
(6)
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where K 0
fp = 1 +Kfp. Thus, the proportional gain of the original controller, Kfp may be

as small as negative one. Figure 7 shows the proportional gain force control root locus for
gains as low as negative one. We have previously shown the utility of negative gains for
impact control [Volpe and Khosla (1993b)]. Other researchers have also discussed the use
of negative gains, but usually within the context of impedance control [Hamilton (1988),
Hogan (1987)]. It will be seen in the following sections that the impedance controllers for
which this result was obtained actually contain proportional gain explicit force control.

4 Second Order Impedance Control

Impedance control is a strategy that controls the dynamic relation between the manipulator
and the environment. The force exerted on the environment by the manipulator is dependent
on its position and its impedance. Usually this relation is expressed in Cartesian space as:

f = Z(x) (7)

where f , x, and Z , are force, position, and impedance. The impedance consist of two
components: that which is physically intrinsic to the manipulator, and that which is given
to the manipulator by active control. It is the goal of impedance control to mask the
intrinsic properties of the arm and replace them with the target impedance.

The impedance relation can have any functional form. It has been shown that general
impedances are useful for obstacle avoidance [Hogan (1985), Khatib (1986), Volpe and Khosla (1990)].
However, it will be made clear in this section that sensor based, feedback controlled interac-
tion with the environment is best achieved if the impedance is linear and of second order at
most. This is for two reasons. First, the dynamics of a second order system are well under-
stood and familiar. Second, for higher order systems it is di�cult to obtain measurements
for closed loop control corresponding to the higher order state variables.

To implement impedance control, model based control can be used. This type of scheme
relies on the inverse of the Jacobian. A second type of controller which uses the transpose
of the Jacobian is sometimes employed. Both forms of impedance control will be shown
to contain proportional gain explicit force control (with feedforward force). Also, if the
position feedback is essentially constant, such as when in contact with an environment
of any appreciable sti�ness, impedance control reduces directly to proportional gain force
control.

The next sections are organized as follows. First, the order of the desired impedance will
be discussed and the implications for implementation will be shown. Second, model based
impedance control will be reviewed and the reduced form of impedance control without
dynamics compensation will presented. Third, it will be shown how each of these schemes
contains an internal proportional gain force control loop which will determine the system
response when in contact with a sti� environment.

4.1 Zeroth, First, and Second Order Impedance

A linear impedance relation may be represented in the Laplace domain as:

F = Z(s)X: (8)
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The order of the polynomial Z(s) is considered the order of the impedance.
The simplest form of an impedance controller has a zeroth order impedance. In this

case Z is a constant and
F = KX: (9)

The impedance parameter K is the desired sti�ness of the manipulator, and is typically
determined by the sum of the actuator and controller sti�nesses. If the actuators have no
intrinsic sti�ness (as in the case of the CMU DD Arm II), the active position feedback gain
dictates the apparent sti�ness of the arm.

A more typical form of an impedance controller is a �rst order impedance. In this case,

F = (Cs+K)X: (10)

The added parameter C is the desired damping of the manipulator and is equal to the
sum of the active and natural damping. Since active damping can be modi�ed, C can take
on any value which maintains stability. In fact, negative active damping can be used to
eliminate the appearance of any damping in the arm (due to gear friction and other causes).
This is rarely desirable, since damping has a stablizing e�ect.

Finally, a more complete form of impedance control is provided by the second order
type,

F =
�
Ms2 + Cs+K

�
X: (11)

The parameter M is the desired inertia of the manipulator. While the intrinsic inertia
of the arm is due to its mass, it can be modi�ed by active feedback. From the previous
two cases it follows that acceleration feedback can be used for this purpose. In this case,
the value of active inertia is the acceleration feedback gain and its value can be used to
adjustM . Few researchers have proposed such acceleration feedback schemes for impedance
control [Goldenberg (1988), Tourassis (1988)]. This is because an acceleration measurement
typically requires a second derivative, which will be extremely noisy. Alternatively, the force
may be measured and the acceleration commanded. This is typically the method employed,
as will be shown.

4.2 Manipulator Model Based Control

Manipulator model based control involves the use of a dynamic model of the manipulator to
determine the actuation torques, � [Bejczy (1974)]. Model based impedance control may
be summarized by the following equations [Hogan (1985), Volpe (1990)]:

� = D(�m)u+ h(�m; _�m) + g(�m) + J
T (�m)fm (12)

u = J�1(�m)
h
�xu � _J(�m) _�m

i
(13)

�xu = M�1 [C� _x+K�x � fm] (14)

�x = xc �F(�m) (15)

� _x = _xc � J(�m) _�m: (16)

Equation (12) compensates for the dynamics of the manipulator with inertia matrix D,
Coriolis and centripetal force vector h, and gravitational force vector g. Equation (13)
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describes the control signal in terms of the desired Cartesian acceleration. Equation (14)
speci�es the desired second order impedance control relationship. Matrices M , C , and K
describe the desired impedance and are typically speci�ed with scalar values M , C, and K
along the diagonal. Equations (15) and (16) determine the Cartesian position and velocity
errors through the forward kinematics, F(�m), and the manipulator Jacobian, J(�m). The
subscripts c and m indicate commanded and measured quantities of the joint and Cartesian
position vectors, � and x.

Without force feedback this control scheme is equivalent to position control schemes such
as Resolved Acceleration Control [Luh, Walker and Paul (1980)] and Operational Space
Control [Khatib (1980)]. These are �rst order impedance control schemes since they only
modify the sti�ness and damping of the arm. Including force feedback information in the
controller yields second order impedance control [Hogan (1985)]. Combining the above
equations gives:

� = DJ�1M�1 (C� _x+K�x� fm) � J�1 _J _� + h + g + JTfm (17)

or
� = JT�M�1 (C� _x+K�x� fm) � JT� _J _� + h + g + JTfm (18)

where
D(�) = JT�(x)J (19)

and the matrix, �, is the Cartesian space representation of the inertia matrix. The �rst
form is necessary if the inverse dynamics calculations expressed in Equation (12) are used.
In this case, the inverse of the Jacobian and the arm inertia must be calculated. The second
form is useful when employing the steady state approximation in which the manipulator
inertia is assumed not to change or is not known [Kazerooni, Sheridan and Houpt (1986)].
In this case, _J as well as h will equal zero also:

� = JT�M�1 (C� _x+K�x � fm) + g + JTfm: (20)

For the case of steady state, the inverse of the Jacobian need not be calculated; only its
transpose is necessary. The arm inertia need not be calculated either, since only its product
with the inverse of the impedance mass parameter is needed, as will be explained shortly.

Note that in manipulator model based control the force feedback is used in two places.
First, it is used to compensate for the physical arm dynamics through Equation (12). This is
equivalent to introducing end e�ector forces into the inverse dynamics calculations. Second,
the force feedback is used in the impedance relation, Equation (14). While Equation (12)
e�ectively linearizes the dynamics of the arm, Equation (14) modi�es the impedance control
signal to compensate for the experienced force.

It can now be seen that it is the force feedback in the control signal which modi�es the
apparent inertia of the arm [Hogan (1987)]. Equation (20) best shows this e�ect. The
premultiplication of K and C by �M�1 changes nothing; � _x and �x are still multiplied
by a gain. However, things are made di�erent by the force feedback signal fm. It is
multiplied by the term �M�1, which is a mass ratio that reduces or increases the amount
of actuator torque applied.

The description may be simpli�ed by assuming that the impedance matrices are diagonal
in the Cartesian space de�ned by the eigenvectors of �. In this case, �M�1 can be thought
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of as a matrix of mass ratios, �=M , along the diagonal. Since � is due to the physical inertia
of the arm, it is the impedance parameter M which determines each ratio. For M ! 0
the ratio becomes very large; for a small measured force, a large accelerating torque is
applied to the arm. Thus, the apparent inertia of the arm is reduced. (It is important
to remember that the external force does not contribute to the acceleration because it has
been e�ectively negated by the JTfm term.) Similarly, forM !1 the ratio becomes very
small; for a large measured force, a small accelerating torque is applied to the arm. Thus,
the apparent inertia of the arm is increased. In this way, second order impedance control
not only changes the sti�ness and damping properties of the arm, but its inertia as well.

4.3 Explicit Force Control within Impedance Control

The two second order impedance controllers reviewed above can be shown to contain explicit
force control. Previous to our research, some correspondence between impedance control
and explicit force control has been discussed, but the relation was not speci�cally or clearly
stated [Hogan (1987), Anderson and Spong (1988)]. A general argument supporting our
new interpretation was presented in the introduction and elsewhere [Volpe and Khosla (1993b)].
Now, it will be shown explicitly for the impedance controllers described previously in this
paper.

Consider the second order impedance controller represented by Equation (20). This can
be rewritten in the form:

� = JT [f c +Kfp(f c � fm)�Kv _xm] + g (21)

f c = K(xc � xm) +C _xc (22)

Kfp = �M�1 � 1 (23)

Kv = �M�1C (24)

Again, the impedance parameters, K and C , may be speci�ed in the frame in which � is
diagonal. This makes the gains diagonal and composed of the elements, K, C and

Kfp = (�=M)� 1 (25)

Kv = (�=M)C (26)

This formulation is very similar to the proportional gain explicit force controller in Equa-
tions (2) and (3). The only di�erence is the presence of Equation (22). However, when in
contact with an environment of appreciable sti�ness this equation reduces directly to com-
manding force. First, the measured position, xm, will be constant, and can be set to zero.
Typically this is because the surface motion is smaller than the measurement resolution of
the manipulator [Volpe and Khosla (1994b)]. Second, most contact occurs with surfaces
which are stationary during equilibrium, indicating that the commanded velocity should be
zero ( _xc = 0). This leaves only xc as non-zero. It provides the commanded force by direct
multiplication with the sti�ness, K . This means that the commanded position is scaled to
provide commanded force, which could more simply be provided directly. Therefore, Equa-
tion (22) may be eliminated, and the impedance controller reduces directly to proportional
gain force control. Since all of the gains are diagonal and independently adjustable, this
controller has an identical structure to the explicit force controller in Equation (3).

8



In the case of softer environments, the compression of the surface by �xm will only cause
a small change, �f c, in the commanded force. The relative change is proportional to the
ratio of the arm sti�ness to the environment sti�ness:

j�f cj

jf cj
=

j�xmj

jxc � �xmj
=

K

Kenv

: (27)

Therefore, environmental sti�ness at least an order of magnitude greater than the arm
sti�ness will essentially result in continued equivalence of the control schemes. With en-
vironments that are known to be even softer, if the commanded position is modi�ed to
compensate for the surface compression, the schemes continue to be equivalent. In the
extreme case of an environment with no appreciable sti�ness the equivalence breaks down
completely | however, force control is probably not meaningful in this unconstrained sit-
uation.

Finally, the developed formulation not only shows the equivalence of the two schemes, it
also shows how the target impedance mass relates to the proportional force gain. Previously,
the force gain was shown to be Kfp = (�=M)� 1, with a lower stability bound of Kfp � �1
or

�=M � 0: (28)

This implies that the open loop pole location of the root locus corresponds to the impedance
parameter M ! 1 and the zeros indicate a value of M ! 0. This also means that large
impedance target mass is the same as small proportional force gain, and small mass is the
same as large gain.

5 Experimental Results

This section presents the experimental results of implementations of proportional gain force
control with feedforward, and second order impedance control with and without dynamics
compensation. It will be seen that in each case, the response and stability of the system is
essentially the same.

The experiments presented here were conducted with the manipulator pressing down
on an environment composed of a cardboard box with an aluminum plate resting on
top, as described in Section 2. The parameters of a second order model of this en-
vironmental system were: sti�ness k � 104 N/m, damping c � 17 N � s=m, and mass
m � 0:1 kg [Volpe and Khosla (1994a)].

All experiments were conducted using the CMU DD Arm II. This manipulator has very
straightforward dynamics, making the analysis and interpretation of experimental results
easier. Further, the direct drive arm has essentially frictionless joints, eliminating the
possibility of intrinsic damping which can add stability to the system and hide problems
inherent in the controller. Controllers that perform stably with the DD Arm will most likely
remain stable on heavily geared and damped systems, whereas the converse is not true.

The controllers were programmed in the C language, under the Chimera real time op-
erating system [Stewart, Volpe and Khosla (1992)]. The control rate was 300 Hz, except
in the case of dynamics compensation, where it was 250 Hz. All graphs of data show the
reference values as a dashed line and the measured values as a solid line.
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5.1 Proportional Gain with Feedforward Control

The �rst controller to be discussed is proportional gain force control with the reference
force fedforward, Equations (2) and (3). Figures 8 (a) through (h) show the response of
this controller to the commanded force trajectory. In all experiments the velocity gain was
Kv = 10. There are several things to note about the response pro�les to variations in the
proportional gain. First, as predicted by the model, the system exhibits the characteristics
of a Type 0 system: �nite steady state error for a step input and unbounded error for a
ramp input. Second, for an increase in position gain, the steady state error reduces, but
at the cost of increasingly larger overshoot. As correctly predicted by the root locus of the
system model in Figure 5, this control scheme causes instability at Kfp � 1. Also, the fact
that the environmental poles are always o� the real axis can be seen in the steady state
oscillations that occur at the system's natural frequency (� 15 Hz), particularly after the
step input. Finally, it can be seen that negative proportional gains are increasingly more
stable, but the response of the system approaches zero as Kfp ! �1.

5.2 Impedance Control

This section presents the results of implementing second order impedance control, with and
without dynamics compensation. The position reference trajectories are chosen such that
given the sti�ness of the controller, the trajectory should provide the same force pro�le as
commanded for the proportional gain explicit force controller, allowing a direct comparison
with that controller.

5.2.1 Impedance Control Without Dynamics Compensation

When in contact with a sti� environment, the manipulator will not move very much or
very quickly in the direction normal to the environment. It was shown previously that
this enables a steady state approximation, eliminating the need to calculate the inverse
dynamics and the inverse Jacobian. The control law has the form of Equation (20). For
these experiments K = 150 N=m and C = 10 N=m � s. As discussed in Section 4.3 the mass
ratio, �=M , is equivalent to one plus the proportional force gain:

�=M = 1+Kfp: (29)

Using the values of Kfp from the explicit force control experiments, corresponding values
of �=M were chosen to allow direct comparison of the measured response of the impedance
and force control schemes.

Figures 9 (a) through (h) show the response of this impedance controller, as well as the
commanded position trajectory multiplied by the active sti�ness in the same direction. As
is readily apparent, the response of this controller is essentially equivalent to that of the
proportional gain controller shown in Figures 8 (a) through (h). This con�rms the previous
theoretical assertion.

5.2.2 Impedance Control With Dynamics Compensation

Second order impedance control can also be implemented with dynamics compensation as
shown in Equation (17). In this case, Equation (18) shows that the mass ratio �M�1
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can be thought of as a proportional force gain. However, it is seen from Equations (12){
(14) that only M is selectable in this scheme, since � is dependent on the arm mass and
con�guration.

Usually M is chosen to be diagonal in the task frame along with K and C. When
operating in free space (fm = 0) a diagonal M acts as a simple scaling factor for K and
C, thereby preventing coupled motion. If M were nondiagonal, its product with diagonal
K and C would be nondiagonal, and coupled motion would result. Further, K and C are
usually chosen to be diagonal in some task frame which is aligned with the environment to
be contacted. In this way, the manipulator may be made sti� tangential to a surface, but
soft normal to it. The velocity gains are usually chosen for critical damping.

However, when in contact with the environment (fm 6= 0), the ratio of the inertias,
�M�1, acts as a proportional force gain which is not diagonal in general, because � is not
generally diagonal in the task frame. Therefore, it is necessary to determine the e�ective
value of the mass ratio (force gain). This requires �nding the dominant element of � for
the direction in which the environment is contacted.

Finding the dominant component of the inertia matrix is equivalent to �nding the ef-
fective mass in the direction of concern. Since it is the force which is being controlled, this
can only be done by determining the resultant acceleration from an applied force:

�x = ��1f (30)

The force may be set to be the unit vector in the direction of the surface, which was the z
direction in the experiments performed. The actual values of Equation (30) were:

�x =

2
666666666666664

0:070 0 �0:053 0 0 0

0 1:671 0 �9:723 �0:049 0

�0:053 0 0:199 0 0 0

0 �9:723 0 59:9 �1:272 0

0 �0:049 0 �1:272 2:758 0

0 0 0 0 0 3226

3
777777777777775

2
666666666666664

0

0

1

0

0

0

3
777777777777775

(31)

It is apparent that for z direction forces applied to the arm in this con�guration, the
dominant acceleration is �xz � 0:2 m=s2. Thus, the apparent inverse scalar mass is ��1

33
�

0:2 kg�1. This implies that the best scalar approximation of the mass in the z direction is
�z = �33 � 5 kg. This value may then be thought of as a scaling factor applied to the
variable gain value Mz =M33 in Equation (17).

Figures 10 show the response of impedance control with dynamics compensation for
0:1 � 1=Mz � 0:45, or equivalently 0:5 � �=M � 2:25 and �0:5 � Kfp � 1:25. (As with
the previous tests, K = 150 N=m and C = 10 N=m � s.) Thus, a direct comparison can be
made between the system response shown in Figures 10 (a){(g) and that shown in Figures 8
and 9 (b){(h). The responses are very similar, supporting the previous analytical assertions.
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5.3 Impact Control

In the experimental data presented thus far, it has been the lowest gain values that have
exhibited the greatest stability. For proportional gain explicit force control this means
negative gain values. For impedance control this means mass ratios less than one. A
comparison of the root loci in Figures 4 and 7 shows that the low gain values place the
complex poles further left and closer to the real axis, re
ecting this greater stability. It
has also been shown in the force tracking experiments that the stability gained is o�set
by a decrease in accuracy. There is one mode of operation of a manipulator that requires
maximal stability without a great need for accuracy. This mode is impact control.

We have previously proposed this form of impact control and shown its e�cacy at
maintaining stability during the transition from motion through the environment to contact
with it [Volpe and Khosla (1993b), Volpe and Khosla (1991)]. Some of those results are
reviewed here as further evidence of the equivalence of proportional gain force control and
impedance control. Figures 11 show the response of impacts of the manipulator with the
same environment. The solid line is the measured force and the dotted line is the measured
velocity. The dashed line is the reference force in the explicit force control experiment,
and reference position multiplied by sti�ness for the impedance control experiment. As
can be seen, the same correspondence exists for the impact results as existed for the force
trajectory following experiments. This further con�rms the equivalence of proportional gain
force control and impedance control. It also indicates that excellent impact stability can be
attained with these controllers, but not with the same gains that work best force tracking.
We have shown that the impact period is best treated as a separate case, independent of
motion through free space or constrained application of forces [Volpe and Khosla (1993b)].

6 Conclusions

The results presented in this paper demonstrate that second order impedance control and
proportional gain explicit force control with feedforward are essentially equivalent. This
leads us to question the value of impedance control as a uni�ed controller for motion through,
and constrained interaction with, the environment. Our conclusion that impedance control
is not the best solution for these modes of operation is illustrated by the following discussion.

First, it has been shown that proportional gain force control is not the best force con-
troller; integral gain control provides much better tracking [Volpe and Khosla (1993a)].
Therefore, the behavior of the impedance controller while in contact with the environment
is not optimal, and not always stable.

Second, impedance control is more cumbersome to use since it requires position reference
instead of force reference. Some researchers see this as a strength since there is no need to
switch inputs between the modes of free space motion and constrained force application.
However, this implies there is knowledge of the position commands necessary for a contact
operation that intrinsically requires force commands.

Third, while not in contact with the environment, impedance control continues to in-
corporate force feedback information into the control law. Phenomena such as sensor noise
or inertial loading by the end e�ector can cause nonzero force readings and inhibit the
performance of the position control [Volpe and Khosla (1994b)].
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Fourth, impedance control gains that are stable during unconstrained and constrained
actuation cause oscillation or instability during the transition phase of impact [Volpe and Khosla (1993b),
Volpe and Khosla (1993a)]. Adaptively modifying the gains may provide a �x, but detracts
from the notion that impedance control can work in all manipulation situations. Further,
if switching is to be employed it seems attractive to switch controllers as well as gains, and
get the best performance possible from the system.

Therefore, the results of this work indicate two major points. First, second order
impedance control must be recognized as essentially equivalent to proportional gain ex-
plicit force control with force feedforward. And second, if impedance control is to be used it
has inherent limitations that make it something less than the best controller for any given
manipulation mode.
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(a) Explicit force control. (b) Impedance control.
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Figure 1: Block diagrams of the two main types of force regulation.
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Figure 2: Impedance control block diagram redrawn to show the inner explicit force con-
troller.
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Figure 3: General fourth order model of the arm, sensor, and environment system.
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Figure 4: Root locus for the fourth order model under proportional gain explicit force
control (Kfp � 0).
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Figure 5: Enlargement of the root locus in Figure 4 with Kfp values of 0 to 1.5 in steps of
0.1 .
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Figure 6: Bode plots for the fourth order system under proportional gain explicit force
control. The resonance peak occurs near the natural frequency of the environment. The
gain margin is 1.2 at ! = 118 rad=s, which corresponds to the root locus crossing to the
right half plane in Figure 5.
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Figure 7: Root locus for the fourth order model for �1 � Kfp <1 or 0 � K0
fp <1.
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(a) Kfp = �0:75 (b) Kfp = �0:5

(c) Kfp = �0:25 (d) Kfp = 0

(e) Kfp = 0:25 (f) Kfp = 0:5
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Figure 8: Experimental data of proportional gain explicit force control with feedforward.
The proportional gain varies from -0.75 to 1.
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(g) Kfp = 0:75 (h) Kfp = 1
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Figure 8: (continued) Experimental data of proportional gain explicit force control with
feedforward. The proportional gain varies from -0.75 to 1.
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(a) �=M = 0:25 (b) �=M = 0:5

(c) �=M = 0:75 (d) �=M = 1

(e) �=M = 1:25 (f) �=M = 1:5
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Figure 9: Experimental data of impedance control without dynamics compensation. The
mass ratio `gain' varies from 0.25 to 2.0.
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(g) �=M = 1:75 (h) �=M = 2
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Figure 9: (continued) Experimental data of impedance control without dynamics compen-
sation. The mass ratio `gain' varies from 0.25 to 2.0.
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(a) 1=M = 0:1 (b) 1=M = 0:15

(c) 1=M = 0:2 (d) 1=M = 0:25

(e) 1=M = 0:3 (f) 1=M = 0:35
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Figure 10: Experimental data of impedance control with dynamics compensation. The
commanded inverse mass varies from 0.1 to 0.45. This is approximately the same as 0:5 �
�=M � 2:25 and �0:5 � Kfp � 1:25.
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(g) 1=M = 0:4 (h) 1=M = 0:45
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Figure 10: (continued) Experimental data of impedance control with dynamics compen-
sation. The commanded inverse mass varies from 0.1 to 0.45. This is approximately the
same as 0:5 � �=M � 2:25 and �0:5 � Kfp � 1:25.
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(a) Kfp = �0:75 (b) �=M = 0:25
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Figure 11: Experimental data comparing the best response for impacts controlled by
proportional gain explicit force control with feedforward force, and impedance control. The
controllers have essentially equivalent response, and are well suited for ensuring impact
stability with the proper selection of control parameters.
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