Finding natural clusters having minimum description length

Takeo Kanade
School of Computer Science

Carnegie Mellon
Pittsburgh, PA 15213 USA

Richard S. Wallace *
NTT Human Interface Laboratories
Nippon Telegraph and Telephone Corporation
1-2356 Take, Yokosuka 238-03 Japan

April 9, 1990

Abstract

This paper summarizes a two-step procedure that
finds natural clusters in geometric point data. The first
step computes a hierarchical cluster tree minimizing an
entropy objective function. The second step recursively
explores the tree for a level clustering having minimum
description length. Together, these two steps find nat-
ural clusters without requiring a user to specify and
threshold parameters or “magic numbers”. In partic-
ular, the method automatically determines the number
of clusters in the input data. The first step exploits
a new hierarchical clustering procedure called Numeri-
cal Iterative Hierarchical Clustering (NIHC). The out-
put of NIHC is a cluster tree. The second step in our
procedure searches the tree for a level clustering having
minimum description length (MDL). The MDL formula-
tion, equivalent to maximizing the posterior probability,
is suited to the clustering problem because it defines a
natural prior distribution.

1 Approach

Cluster analysis is concerned with estimating the pa-
rameters of multiple probability distributions from data
that contains superimposed samples of all those distri-
butions. Consider a color TV picture of a rose bush in
full bloom against a neutral background. Viewed in the

*The work reported here was compeleted at Carnegie Mellon
University and was supported in part by the U.S. Defense Depart-
ment Advanced Research Projects Agency (DOD) ARPA Order
No. 7976 under contract F33615-87-C-1499 and monitored by:
Avionics Laboratory, Air Force Wright Aeronautical Laboratories,
Aeronauticel Systems Division (AFSC), Wright-Patterson AFB,
OH 45433-6453. Support was also provided through a Hughes
Aircraft Company Fellowship. The views and conclusions con-
tained in this article are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the Defense Department Advanced Research Projects
Agency, Hughes Aircraft Company, the U.S. Government or Nip-
pon Telgraph and Telephone Corporation.

CH2898-5/90/0000/0438$01.00 © 1990 IEEE

438

space of red, green and blue intensities, the image pixel
values form clouds of points, one each for the leaves,
flowers and background. These clouds are random sam-
ples from complicated distributions that depend on fac-
tors such as the illumination conditions, the shape and
reflectivity of the plant’s surface and the noise intro-
duced by the imaging system. Even after making as-
sumptions about the form of the distributions sought,
we are left with the difficult problem of deciding how
many distributions there are, and how to partition the
data to measure their parameters. This paper summa-
rizes a two step procedure that finds natural clusters in
data like the color TV image.

In order to be more specific we now introduce some
notation. Our objective is to cluster a set of n vec-
tors § = {Xo,...,Xn—1} from R%. The output is
a set of clusters C = {ug,...,ur_1} representing the
sets {S(uo),...,S(ur-1)} such that |J; S(uw) = S and
S(w;) N S(uj) = 0 when i # j. In other words C parti-
tions the set S.

The hierarchical clustering step constructs a binary
cluster tree ¢ such that each node u in t represents a
set S(u) of points. In particular if u is a leaf node then
S(u) = {x € 8} and for any internal node u having chil-
dren ! and r, S(u) = S(I)US(r). When u is a leaf node
l = r = 0. The root node ¢, also denoted ¢, represets
S(t) = S. The tree t is oriented (the order of left and
right subtrees is not important) and has m = n—1inter-
nal nodes. The number of unique cluster trees t for an n
point clustering problem is (2m)!/(m!2™). This number
is larger than m! for m > 5. The frontier of any binary
subtree rooted at ¢ has the form of a level clustering C,
so we let C(?) indicate a “pruned” tree representing a
level clustering.

Hierarchical clustering attempts to minimize recursive
objective functions having the form
fu=0

otherwise

0
E(u) = { e(w) + E() + E(r) (1)

The node objective function e(w) is often written as a

distance function d(l,r). Level clustering methods gen-
erally attempt to minimize objective functions defined
either within clusters

E(C)=) e(y)

ueC

(2)

for some within-cluster metric e(u) or between them as

E@) = Z d(u, v) (3)

u,ueC

for some between-cluster metric d(u, v), or as a combi-
nation of the two.

In our two-step procedure, which is a hybrid of hierar-
chical and level methods, there are naturally two objec-
tive functions. In the first step, the NIHC algorithm
tries to minimize a recursive objective function (1).
Although NIHC is defined for any function e(u) com-
putable from S(I) and S(r), we specifically focus on the
the Gaussian entropy function e(u) = log [C(u)],

where C(t) is the scatter matrix of the set S(t) and
|+ | is the matrix determinant. The name Gaussian en-
tropy derives from the function’s similarity to the rela-
tive entropy H(u) of a d-variate normal having covari-
ance C(u).

O

The second step in our procedure minimizes a level
clustering objective function that differs in form from
the standard within-cluster and between-cluster objec-
tive functions (3) and (2). The function measures the
description length [2][3][5][6](7] [8][9] of the input set S.
Section 3 explains the details of our minimum descrip-
tion length (MDL) approach to deriving a level cluster-
ing from a hierarchical tree. But first, the next section
introduces our procedure for hierarchical clustering.

1 d 1
H(u) = Elog]C(u)|+ Elog21r+ 5

2 The NIHC algorithm

The standard terminology for hierarchical clustering al-
gorithms divides them into two categories: agglomera-
tive algorithms build cluster trees through fusion from
the bottom up, and divisive algorithms build them by
splitting from the top down[4]. The term “terative” in
NIHC indicates that it is neither agglomerative nor di-
visive. Instead, NIHC starts with an arbitrary cluster
tree and iteratively transforms it to reduce the value of
the tree objective function. In ([10]) we show that the
NIHC algorithm is superior to the standard agglomera-
tive algorithm in several ways: it is no less efficient but
reaches lower local minima of an entropy objective func-
tion, it consumes memory only linearly in the input size,

439

it spends more time arranging clusters near the root of
the tree, and NIHC finds better clusters than several
versions of agglomeration in random data from Monte
Carlo experiments and in the iris data set.

The basic transformation step of NIHC is a grab (fig-
ure 1). The grab operation was originally defined by
Appel [1] to transform the binary trees he used to rep-
resent collections of point masses in an efficient solution
to the n-body problem. The operation u = grab(c, w, u)
transforms the tree u in the following way. If either of
the nodes ¢ or w is the ancestor of the other, the grab is
undefined. Otherwise, the grab transforms u so that ¢
and w become siblings. Let p be ¢’s parent and g be w’s
parent. Also let s stand for w’s sibling. The grab re-
places cin u with a new node g/, which becomes the new
parent of ¢ and w. The node ¢ is now an “only child”,
so it is “promoted” by deleting ¢ and replacing it with
s. The notation ¢ and ¢/ is intended to emphasize that
the grab preserves the number of nodes in u.

The grab has the effect of rearranging the nested sub-
sets represented by the nodes of a cluster tree. Let u
be the first common ancestor of ¢ and w. If v is a node
along the path from p to u and v represents the set S(v)
before the grab, then v represents the set S(v) U S(w)
after the grab. Similarly, if v is a node along the path
from ¢’s parent to u and v represents the set S{v) before
the grab, then v represents §(v) — S(w) after the grab.
The important point here is that the grab rearranges
only those sets along the paths back to u. Nodes else-
where in the tree remain unaffected. This observation,
called the Grab property, is key to writing NIHC .

Any cluster tree representing the point set S can be
constructed from any other one by a sequence of grab
operations. This property follows from the facts that
u = grab(w, ¢, grab(c, w, u)) and that there always exits
a sequence of grabs to construct a canonical tree from
any tree representing S. One choice of such a canonical
tree is the tree that is a list (one child of each inter-
nal node is a leaf node) of the points sorted by their
subscripts.

The input to NIHC is an arbitrary cluster tree, such
as a k-d tree or a cluster tree generated by another hi-
erarchical algorithm. NIHC searches for grabs that re-
duce the value of the tree objective function. The grab
property implies that value of the Gaussian entropy ob-
jective function e(t) = log |C(t)] changes only at nodes v
along the paths from p to u and s to u. NIHC computes
the effect of a particular grab by calculating the net ob-
jective function change along these paths. The heart
of NIHC is a routine cluster that searches each subtree
for the best energy-reducing grabs. NIHC calls cluster
iteratively until it can find no more entropy reducing
grabs:

S w

before

after

Figure 1: The grab operation makes nodes ¢ and w siblings. The grab changes the tree energies only along the paths

back to the first common ancestor of ¢ and w

cluster (u)
begin
if 4 # 0 then
beégin
cluster(u — left)
cluster(u — right)
find a pair of nodes ¢, w in u such that
grab(c, w, u) reduces the objective function
e(u) more than any other grab
if c,w # 0 then grab(c,w,u)
end
end

That NIHC eventually terminates is evident from the
fact that there are finitely many trees, and these are or-
dered with respect to the objective function. The code
hidden by the italic phrase “find a pair of nodes...”
basically compares every node in the left subtree with
every node in the right, looking for the best grab. Thus,
cluster evaluates the objective function O(n(u)?) times
in a subtree u. In the case of Gaussian entropy, each
evaluation of the objective function takes O(d®) steps.
In actual practice, we use a branch and bound proce-
dure that drastically reduces the number of objective
function evaluations. Because cluster evaluates the ob-
jective function O(n(u)?) times for each node u of a tree
t, summing n(u)? over all nodes u in t tells the total
complexity of cluster. In the worst case, when the tree
t is a list, the total number of evaluations is O(n(t)3).
If, on the other hand, the tree balanced (for any pair
of siblings [and r, n(l) = n(r)), the total number of
evaluations is just O(n(t)?).

If the choice of input tree is “reasonable”, like a k-
d tree or the output of another hierarchical algorithm,
then NIHC generally converges after only a few iter-
ations. However it remains an open problem to find
a bound on the number of iterations. We do know
that just one iteration of NIHC run on the output of
the agglomerative algorithm, when agglomeration seeks

440

to minimize the Gaussian entropy function, generates a
tree in a lower entropy state. We do not yet know any
theoretical bounds on the distance between the global
optimum tree and the tree computed by NIHC with re-
spect to the Gaussian entropy function, but experiments
comparing NIHC with other heuristic methods having
the same time complexity indicates that it reaches lower
local minima.

3 MDL clusters

The NIHC program generates a hierarchical cluster
tree. In order to extract level clusters we search the
tree for a level clustering having minimum description
length. The expression for description length of the set
S is I(8) = I(C) + I(S|C). The first term in the sum
indicates the amount of information needed to represent
the clustering C. The second term indicates the amount
of information needed to represent the input set S given
C. In our case the clustering C is the frontier of a pruned
cluster tree t, and we exploit the hierarchical structure of
t to obtain a recursive formulation of description length.

The second term I(S|C) is easiest to derive. Assuming
independence, the quantity

I(s|c) = —logp(S|C)
= —log [[p(w) I plxlu)
ueC xeS(u)
= =Y. > logp(w)p(xu)
ueC xeS(u)
= n{t)logn(t) + Z —n(u)log n(u)
ueC

+ Z log p(x|u).

XES(u)

The term n(t)log n(t) is constant for all trees repre
senting S(t) and so may be dropped from I(S|C). As

woa , o 4
o o
e .
L
200 points (rand.200) 7.6 s 1Qclusters 10 200
(k) k)
:J':

, s S) X
7 points (line) 335 2clusters 2 97 102 points (mizoguchi.b) 10.9's 12 Austers 12 102

Figure 2: Finding the minimum description length clustering. The input (left) a set of 200 points selected randomly
from each of 10 bivariate normals. The minimum description length (right) occurs where the number of clusters equals
the number of classes in the input data. The detected clusters are shown in the center.

suming p(x|u) is normal with covariance C(u), the quan-
tity
Y logp(xfu) = (n(u) - 1)H(u). (5)
xeS(u)

where H(u) is given by equation (4).

Because we represent a clustering C by a pruned clus-
ter tree t, our formulation of the description length
I(8) = I(8(t)) = I(t) is recursive.

—n(u)log n(v) + (n(u) — 1) H(u)
if u is a leaf node and
h(u) + I(1) + I(r)

otherwise.

I(t)= (6)

The quantity h(u), summed over the nodes u of the
pruned tree t equals I(C). Before giving its exact for-
mulation, we digress to discuss our choice of cluster rep-
resentations. One assumption we slipped in just above
is that the distribution p(x|u) is normal. In fact the
points S(u) need not be drawn from a normal distribu-
tion for the relation (5) to hold. The normal parame-
ters C(u), the covariance matrix, and m(u), the mean
vector, merely serve to specify a coordinate system cen-
tered at m(u) and directed parallel to the eigenvectors
of C(u). In that coordinate system, the information
needed to specify the points S(u) is given by (5). With-
out making any assumptions about the distributions of
the S(u), we choose to represent the clusters by their
means m(u) and covariances C(u).

Suppose we are given the sizes n(v) of the leaf nodes
v of a cluster tree. For each internal node u having
children ! and r, n(u) = n(l) + n(r). Through recur-
sive addition we can obtain the sizes of all the internal
nodes. Thus, the size field is redundant information in
the cluster tree data structure. What is perhaps not
so obvious is that the mean vectors m(u) of all nodes
u, except the root mean m(t), are also redundant in-
formation. All that is required are a bit vector b(u) at

441

each internal node, all the covariance matrices, the leaf
node sizes and the root mean. The application of the bit
vector b(u) is explained below. We show the mean vec-
tor of the child nodes can be derived from the mean of
the parent, given the sizes and covariances of the three
nodes.

For each internal node u having children ! and r the
relation between their means is

m(u) = gm(l) + (1 - g)m(r)

(M
where ¢ = n(l)/n(u). Similarly the covariance matrix

(8)

where v = m(l) —m(r). From (7) and (8) we can derive
the expression

(1"9)/‘10(")_(1—Q)C(l)—(1—q)z/qC(r) =nn?. (9)

where n = m(l) — m(u). This expression enables us to
solve directly for the magnitude of the components of n,
but not their sign. Now we need the assumption above
that the bit vector b(u) of sign information is available
at each parent node u. This bit vector disambiguates
the sign of the terms in n. Having obtained the value of
n(l), we can derive m(l) and m(r).

The description length of the root mean m(t) is con-
stant over all trees representing S(t), so we can ignore
this term when calculating I(C). Also constant over all
trees is the information needed to represet the root clus-
ter. What does vary with the tree are the description
length of the covariance matrices, so we rewrite the re-
cursive expression for cluster description length

~n{u)log n(u) + (n(u) — 1)H (u)
if u is a leaf node and
d " log p(C (1), C(r)IC(w)) + I(1) + I(r)
otherwise.
(10)

C(u) = ¢C(I) + (1 — g)C(r) + g(1 — g)vv7

I(t) =

The term d captures the number of bits needed for
the bit vector u. The quantity —log p(C(l), C(r)|C(u))
measures the information gained at the node u when
expanding the covariance matrix C(u) into its child
components C(I) and C(r). We made an assumption
in order to approximate p(C(l), C(r)|C(u)). We as-
sume that p(C(l), C(r)|C(u)) depends only on the “vol-
ume” of the sets S(I) and S(r), expressed by |C(1)]
and |C(r)], relative to the parent volume |C(u)|. Thus
we write p(C(l),C(r)|C(u)) as the bivariate distri-
bution p(]C(1)|/|C(u)],|C(r)|/|C(u)|) defined over the
unit square. (Strictly speaking it is possible for one of
[C(1)| or |C(r)] to be larger than |C(u)|, but this has
never happened in practice).

We estimated p(|C(1)|/|C(u)], |C(7)|/|IC(w)|) through
a simple learning procedure. For example, we col-
lected a sample of 50 typical two-dimensional cluster-
ing problems ranging in size from 24 to 417 points.
NIHC generated cluster trees for each of them. Then,
for each internal node u in each of the resulting trees,
we calculated |C(!)|/[C(u)] and |C(r)|/|C(u)]. Our
program accumulated these values in a 2-d histogram
serving to approximate the density function. Since the
trees are oriented, the histogram is symmetric. There
is a significant ridge along the diagonal line where
|C(1)] = |C(r)]. This ridge was due to our choice of
representations for the leaf nodes. Rather than calcu-
late the C(u) at nodes where S(u) was nondegenerate,
we assigned a small nonzero value to C(u) at the leaf
nodes. Since all the leaf nodes were assigned the same
small variance, half the internal nodes have the property
c()] = [c(r).

Our method to apply (10) is a simple greedy algo-
rithm. Call the set of leaf nodes of a pruned cluster tree
t the “frontier set”. Initially the frontier set consists of
just the root node t. At each step, the greedy algorithm
computes I(t) by treating the nodes in the frontier set as
the leaf nodes in (10): Then, it splits that node from the
frontier set which yields the biggest decrease (or small-
est increase) in (10). The split node is replaced in the
frontier set by its children. The algorithm stops when
the frontier set contains all n(t) leaf nodes. At each step
k the frontier set contains k clusters, so we can plot a
graph like the one on the right in figure 2. The mini-
mum occurs where k equals the number of classes in the
original data.

4 Conclusion

The MDL formulation of the clustering problem elimi-
nates all free parameters. This paper has illustrated an
example of MDL clustering that takes advantage of a
minimum entropy cluster tree to formulate the descrip-

442

tion length of a level clustering. The cluster trees gen-
erated by our hierarchical procedure, NIHC , are coor-
dinate frame invariant and take into account covariance
relationships between the variables. Also, NIHC can
separate clouds of points that overalp. These prop-
erties make NIHC suitable for clustering applications
where the clusters are not compact and well-separated.
Although our minimization procedure is heuristic, it
reaches lower local minima than other procedures hav-
ing no better time complexity. Our experiments indi-
cate that the trees generated by NIHC contain natural
level clusters, and that these clusters can be extracted
by a simple greedy procedure that minimizes description
length.

References

[1] Andrew Appel. An efficient solution for many-
body simulation (or, cray performance from a vax).
Technical Report CMU-CS-TR-83-118, Carnegie
Mellon, 1983. '

[2] D.M. Boulton and C.S. Wallace. An information
measure for single-link classification. The Com-
puter Journal, Vol. 18, No. 3,, 1975.

[3] Peter Cheeseman. private communication.

[4] Richard O. Duda and Peter E. Hart. Pattern Clas-
sification and Scene Analysis. Wiley-Interscience,
1973.

[5] Yvan Leclerc. Constructing simple stable descrip-
tions for image partitioning. International Journal
of Computer Vision, Vol. 3, No. 1,, 1989.

[6] J. Rissanen. A universal prior for integers and esti-
mation by description length. Annals of Statistical
Sciences, Vol. 11, No. 2, pp. 416-31, 1983.

[7] 1. Rissanen. Minimum description length princi-
ples, volume 5, pp. 523-7. Wiley, 1987.

(8] Arthur C. Sanderson and Nigel J. Foster. At-
tributed image matching using a minimum rep-
resentation size criterion. In Proceedings of 1989
Conference on Robotics and Automation, pp. 360-
5, 1989.

C.S. Wallace and D.M. Boulton. An information
measure for classification. The Computer Journal,
Vol. 11,, 1968.

Richard S. Wallace.
ters through Enitropy Minimization.
Carnegie Mellon, 1989.

[9)

Finding Natural Clus-
PhD thesis,

(10]

