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Abstract

In an effort to make object recognition efficient
and accurate enough for applications, we have devel-
oped three techniques—sensor modeling, probabilistic
hypothesis generation, and robust localization—which
form the basis of a probabilistic object recognition algo-
rithm. To minimize recognition time, our techniques
exploit prior knowledge to reduce the number of ver-
ifications (the most ezpensive and critical part of the
algorithm) required during recognition. Our approach
utilizes statistical constraints generated by modeling
the entire sensing process—resulting in more accurate
constraints on matches. Hypotheses are pruned by a
probabilistic algorithm which selects matches based on
image evidence and prior staiistical constraints. The
reliability of the verification decision is increased by
robust localization. We have implemented these tech-
niques in a system for recognizing polyhedral objects in
range images. Qur results demonstrate accurate recog-
nition while greatly limiting the number of verifications
performed.

1 Introduction

We present novel techniques for model-based ob-
ject recognition that makes use of prior knowledge to
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make recognition more efficient and accurate. To make
object recognition more efficient, we present a proba-
bilistic approach that significantly prunes the number
of hypotheses that must be tested by the recognition
algorithm. To improve the accuracy of the recogni-
tion result, we use accurate statistical constraints and
a robust localization method.

Our approach to object recognition strives to ex-
ploit our prior knowledge of the sensing process to
improve recognition performance and accuracy. Hy-
pothesis generation must compensate for inaccurate
prior models by loosening the constraints, thereby in-
creasing the number of incorrect hypotheses that are
generated. Most systems model only the geometry
of the object, ignoring other factors in the sensing
process; the result is inaccurate constraints. Sensor
modeling is used to generate constraints that are more
accurate than previous approaches. The performance
of most recognition algorithms degrades when dealing
with images that contain unknown objects. By prun-
ing unlikely hypotheses, our probabilistic hypothesis-
generation algorithm reduces the effect of unknown
objects on the recognition efficiency. Correct verifica-
tion of a hypothesis relies on accurate localization of
the hypothesized object. Typical approaches to pose
refinement are sensitive to missing object features in
the image (i.e., partial occlusion of the object). Ro-
bust localization provides us with reliable pose esti-
mates that are relatively insensitive to missing image
features. These three techniques form the basis of a
system that demonstrates the potential to make ob-
ject recognition efficient and accurate enough for a
wide range of applications. These methods were im-
plemented and tested in a model-based vision system
that recognizes polyhedral models in range images.

The next three sections detail the main contribu-
tions of this paper: sensor modeling, probabilistic hy-
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Figure 1: Generation of feature attribute distributions. An object model and viewing direction are
selected. The simulator produces a range image of the object which is segmented into regions for

computing the distributions.

pothesis generation, and robust localization. Experi-
mental results are reported in Section 5. In Section 6,
our approach is compared with other approaches.

2 Sensor Modeling

Without an accurate model of the sensing process,
the hypothesis-generation procedure must compensate
for the inaccuracies by loosening constraints and, thus,
increasing the number of incorrect hypotheses that are
generated. Our solution is to use sensor modeling to
build accurate prior models of constraints due to sen-
sor and feature-extraction characteristics in addition
to model geometry.

Our current system’s sensing modality is range data
and our image features are planar regions extracted
from the range image. A hypothesis, (R;, Mj), repre-
sents a match between a planar region R; of the image
and model face M;. Each region R; is described by
a vector of attribute values fg, (Fhor fh o TR
The attributes are specified over 3-D surfaces corre-
sponding to planar regions extracted from range im-
ages. For this application, our first-order attributes
include region area, maximum second moment, min-
imum second moment, and maximum axis length.
Second-order attributes include simultaneous visibil-
ity, relative orientation, and maximum distance be-
tween surfaces.

The constraints used by our hypothesis generation
algorithm are in the form of statistical distributions of
the appearance of model faces represented by condi-
tional distributions P(f}fh |M;) and prior probabilities
P(M;). The prior distributions are approximated by
generating many (here, 320) sample images of our ob-
Jject models.
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Our sensor model is composed of an appearance
simulator and a feature-extraction algorithm. We use
the Vantage solid modeler [1] to model our objects us-
ing constructive solid geometry. Sample range images
are generated using an appearance simulator devel-
oped by Fujiwara et al. [2]. Regions are extracted
from the simulated images, and the attributes of each
region are calculated. Prior distributions P(fE,|M;)
are computed for each attribute and each model face.
Figure 1 shows an example iteration of this process.

Since this is a simulation, we know the correspon-
dence between the model surfaces and the image re-
gions. Thus, we can build a list of the sampled at-
tribute values for each model surface. The attribute
values for each model face are tabulated and used to
form the prior distribution. Figure 2 shows a sample
distribution of a model face’s area value as computed
using our sensor model. By comparing the various
distributions (see Figure 2), one gets a feel for how
inaccurate the constraints are when normal distribu-
tions or simple thresholds are used. With simplified
models, a large fraction of incorrect hypotheses will
not be filtered by the constraints. An additional ben-
efit of our approach is that model features that are
not detectable by the feature-extraction program will
not affect the hypothesis generation.

3 Probabilistic Hypothesis Generation

Given a set of primitive features (i.e., pla-
nar regions) extracted from the input image by a
feature-extraction algorithm (i.e., segmentation), the
hypothesis-generation procedure produces a set of pos-
sible model feature to image feature matches (hence
referred to simply as hypotheses). Optimally, the gen-
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Figure 2: An example distribution of a given
attribute value (area) over a model face gen-
erated by sampling resulting area values from
synthetic images of an object. Other candidate
constraint distributions are shown for compar-
ison.

erated hypotheses include all of the correct correspon-
dences and exclude as many incorrect ones as pos-
sible. To exclude incorrect matches, we must apply
constraints derived from our prior knowledge.

We are considering many hypotheses simultane-
ously and wish to choose the most likely subset of
these. We can think of the hypotheses as a set of vari-
ables each of which can be assigned a discrete value of
on or off. A hypothesis labeled on indicates that the
hypothesis is assumed to be correct. The hypothe-
ses display Markovian characteristics. For example,
if two hypotheses provide mutual support for each
other, and one of them is correct, it is more likely
that the other is correct. A similar dependency ex-
ists between contradicting hypotheses. These depen-
dencies can be thought of in terms of conditionally
dependent probability distributions represented by a
Markov random field (MRF). The minimum energy
state of the MRF represents the state that best satis-
fies our constraints—balancing the weight of support-
ing evidence and contradictory evidence. For a review
of MRFs, we refer the reader the description found in

(3}.

3.1 Formulation of Hypothesis Genera-

tion using Markov Random Fields

MRFs are used to represent the probability distri-
bution of values, w;, of a set of random variables, X;.
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Each variable may be conditionally dependent on a
set of neighbor variables. Given a set of independent
observations, O;, the most likely state of the MRF
variables can be found by minimizing its posterior en-
ergy function

U@l0) = Vi(w) = ) _ log P(Oiwi)

ceC 7

(1)

where C'is the set of cliques of related (neighbor) vari-
ables in the MRF, and V,(w) measures the potential
(energy) of clique ¢ under assignment w. The poste-
rior distribution is in terms of things we may be able
to calculate or specify: clique potentials V;(w) (rep-
resent higher-order, prior constraints among related
variables) and prior distributions for our observations
P(O, lwi).

By defining our constraints in terms of clique po-
tentials and likelihoods in the MRF framework, we
can formulate the search for the most likely hypothe-
ses as a mazimum a posteriori (MAP) estimate of the
MRF. With this formulation, we can apply a MAP
estimation procedure to our MRF. The result of the
estimation is the set of hypotheses with the highest
probability of occurring based on our prior constraints.

For our application, each variable in the MRF rep-
resents the hypothesis, (R;, M;), that region R; arose
from model face M;. The variables can be labeled ei-
ther on or off indicating our belief or disbelief in the
hypothesis. Our observations O; are the regions, R;,
extracted from the image.

The ith region is described by a vector of attribute
values f;?. = (f}zl,fﬁ',...,fﬁ_). For computational
reasons, we assume that these attributes are indepen-
dent for a given model face, giving us:

P(fr.|M;) = [] P(7K,1M;). (2)
k

We need to determine the likelihood that an image
region, R;, arose from the presence of a model face,
M;, in the scene. This is the probability of observing
R; assuming that the match hypothesis (R;, M;) is
correct. In terms of our label set, we equate

P(R;|(Ri, M;) = ON) = P(Ri|M;) = P(fr,|M;). |

(3

To calculate the probability that R; was observed

given that hypothesis (R;, M;) is incorrect (R; result-
ing from some other face or background), we use:

P(R; |(Ri, M;) = OFF) = P(R;|-M;)

_ 2o, P(RAM)P(My )+ P(Ri| B)P(B)~ P(R:|M,)P(M,)

T=P(M,) @




where P(Mj;) is the prior probability of detecting M;
(Zj P(M;)+ P(B) = 1), and B represents the possi-
bility of background or no label. P(B) and P(R;|B)
are set to constant values (here, 0.3 and 0.3107%).

Equations 3 and 4 provide us with the prior prob-
abilities of the observations (P(O;lw;)) required for
the posterior energy function of Equation 1. Next,
we need to specify the clique potentials which first
requires a definition of the neighborhoods of the hy-
potheses (variables).

We define two neighborhood relations between pairs
of hypotheses: N* for supporting hypotheses and N~
for contradictory hypotheses. Two hypotheses are N~
neighbors if they correspond to the same region. Hy-
potheses are NT neighbors if they are spatially and
geometrically consistent with the hypothesized model.
The consistency is measured by comparing the rela-
tional attributes between the regions to the relational
attribute statistics of the model faces.

For efficiency concerns, we limit our energy func-
tion to 1-cliques and 2-cliques. The first order clique
energies correspond to the prior probabilities, P(Mj),
of the hypothesized model face. When the hypoth-
esis (R;, M;) is on, the first order clique energy is
Vir, ;) ((Ri, M;) = ON) = log P(M;) and when the
hypothesis (R;, M;) is off, the first order clique energy
is V(R,,MJ-)((Ri,Mj) = OFF) = log(l — P(M]')).

The second order clique potentials used in
our experiments are: Vy+(ON,ON) = -60.0,
Vn+(OFF,OFF) = 40.0, Vy-(ON,ON) = 60.0,
VN-(ON,OFF) = —10.0 (other combinations are
given zero energy). For example, if a hypothesis is
on and a consistent (N 1) neighbor hypothesis is on,
-60.0 is the potential of that 2-clique.

We can now construct an MRF to perform the
search for the most likely hypotheses. To help the
reader visualize a typical resulting MRF, a simple ex-
ample is shown in figure 3. In this example, the model-
base contains two similar geometric models. An MRF
constructed for the given model-base and an image of
the first model. In this case, a hypothesis is generated
for all pairs of regions R; and model faces M; that
have nonzero conditional probabilities P(R;|M;). The
neighborhood relation of these hypotheses is simply
that hypotheses for the same region are inconsistent,
and hypotheses for the same model are consistent.

3.2 Hypothesis Generation: Run Time

At run time, the recognition program extracts re-
gions from the image and computes the first-order
attributes over all regions and relational attributes
over all pairs of regions. Using equations 3 and 4,
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Figure 3: An example MRF produced from a
scene containing three regions with a model
base containing two similar geometric objects.

we first compute the log-likelihoods of the obser-
vation of R;, given that hypothesis (R;, My,) is
correct, log P(R;|(Ri, My) = ON), and incorrect,
log P(R;|(R;, M) = OFF) (throwing out hypothe-
ses that have zero probability). With the remaining
hypotheses, we then determine the neighborhood re-
lations N~ and N*. This information is then used to
build the MRF.

Once the MRF is created, we wish to find the most
likely set of hypotheses based on the constraints of
the image. We use an estimation procedure called
Highest Confidence First (HCF) [3]—chosen because
of its efficiency and performance.

After HCF estimation is completed, the hypotheses
labeled on are considered for verification. From the
active hypotheses and the neighbor relation Nt we
can create a list of consistent (N+) cliques (for this
domain 3-cliques and 2-cliques are used) of matches.
We order the hypothesis cliques by the the energy con-
tribution of the constituent hypotheses to the poste-
rior energy function (see Equation 1)—approximating
the relative likelihood of the hypothesis. Thus, we are
checking the most likely hypotheses first, given the
image regions and our constraints.

4 Robust Localization and Verification

Given a hypothesized set of matches, we must
determine where the object is (localization) and
whether it is really present in our image or not (ver-



ification). Unfortunately, even slight inaccuracies of
location can cause rejection of a hypothesis. In many
cases, a small refinement of the location estimate may
be the difference between throwing away a valid hy-
pothesis and recognizing the object.

Several factors exacerbate the localization problem.
We may not have enough constraints from our matches
to determine the location of the object accurately. In-
accuracies in our region data due to noise and partial
occlusion will lead to errors in location estimates. Our
objects may vary slightly from the CAD models caus-
ing errors in alignment along edges and surfaces. Qur
initial location estimate based on our matches is as-
sumed to be inaccurate but can serve as a good start-
ing point for a local search for the best pose estimate.

4.1 3-D Template Matching (3DTM)

We define a parameterized template to model our
object. An energy function is specified over the
model parameters which relates how closely the model
matches the image data. Then, we find the best model
parameters by minimizing the energy function. Since
we are dealing with range images, we define the 3-
D template of a model to be a set of points sampled
from the surface of the model. Our constraint on the
templates is that visible points on the model surface
match range data points in the image. The template
of a rigid model is parameterized by rigid-body trans-
formation parameters (rotation and translation).

Assuming an error distribution of P(z) o« e=#(%)
(z is the error) over the points in our model with re-
spect to the image, we can find the MAP estimate by
minimizing the energy function

E= Zp(z,-).
i=1

where z; is defined to be the error of the ith point in
the model—the distance between the model point and
the data point nearest the model point:

(5)

zi(g) = min|| Zi(q) — @l (6)
where D is the set of three-dimensional image points,
and Z;(q) is the world coordinate of the ith model
point transformed using the model parameters gq.

By taking the derivative of E with respect to our
model (template) parameters ¢, we get

()
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where (z) = %—2). To minimize E, we can use the
gradient-descent update rule Agq —%E.

For our purposes, we assume that parts of the ob-
Jject surfaces are often occluded. Occlusion can be due
to self-occlusion, nearby objects in the scene, or sen-
sor shadows. Occluded points are considered to be
outliers as are noisy points due to illumination irreg-

ularities and sensor error.

(a) P(z) (b) -Log P(z)

{c} d(-Log P(z))/ dz {d) 1/z d (-Log(P(z))}/dz

Figure 4: Comparison of Gaussian and
Lorentzian distributions and their effect on
outliers. The Lorentzian is in bold. (a) the
probability distributions, (b) p(2), (¢) ¥(z), (d)
the relative weight of the data as a function of
the error magnitude.

In this work, we use a Lorentzian error distribution
z 1
P(-)x ————
(0_) 1 + %(5)2
to perform the MAP estimate of our model parame-
ters. Using

p(>) = (®)

we can find the MAP estimate by minimizing the en-
ergy function of Equation 5. The Lorentzian is similar
in shape to the Gaussian distribution, but the tail of
the distribution is much larger, indicating that out-
liers are assumed to occur with a relatively higher
probability than in the Gaussian error model. Fig-
ure 4 compares the (unnormalized) Gaussian distri-
bution with the Lorentzian distribution. The impor-
tant graph is Figure 4(d) which shows the weighting
(relative to magnitude) of the error vectors under the
Gaussian and Lorentzian distributions. The effect of
the Lorentzian is to significantly decrease the influence
of the true outliers. This has the desirable result of
more robust and accurate parameter estimation.

~log P(Z) = log(1 + 3(27),




Figure 5: Comparison of the localization results of the Gaussian and Lorentzian formulation: initial
model location (left), Gaussian solution (middle), and Lorentzian solution (right).

4.2 Verification

The hypothesis-generation phase produces a sorted
list of cliques of hypothesized matches. The verifi-
cation procedure must determine which of these hy-
potheses describe objects present in the scene. Each
hypothesis is first localized (using 3DTM) then veri-
fied.

Currently, our verification metric is based on a met-
ric proposed by Breuel [4]. Each model point is con-
sidered matched if it is within a distance o (see Equa-
tion 8) of an image point. We define a first-order
statistic,a, to be the percentage of visible model points
that match an image point. A second-order statis-
tic, B, is defined as the percentage of neighbor model
points that match an image point. J measures the
local consistency of the match over the model] and pe-
nalizes random scattered matches compared to locally
coherent matches. For the results described here, the
hypothesis was accepted if @ > 0.5 and 3 > 0.425.

5 Experiments and Results

We first present example localization results using
3DTM to determine how accurate and robust our lo-
calization method is. This is followed by an exam-
ple recognition result which demonstrates the perfor-
mance of the complete recognition system.

5.1 Localization Results

To illustrate the utility of the Lorentzian distribu-
tion for accurate localization, we present an example
(see Figure 5) comparing the location estimates of our
method using both Gaussian and Lorentzian distribu-
tions. The example is of a partially occluded stapler.
The result of the Gaussian estimate is close but has
a noticeable translation error resulting from the oc-
clusion of the back part of the stapler. This error is
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enough to cause a false negative verification decision
for the stapler hypothesis. The Lorentzian estimate
is very accurate and is not noticeably biased by the
occlusion.

In this and many other tests, the least-squares so-
lutions are noticeably occlusion sensitive while the re-
sults using the Lorentzian distribution are relatively
insensitive to occlusion. The Lorentzian-based ap-
proach is able to converge to the correct location from
a wider range of initial locations and is much less sen-
sitive to occlusion than the Gaussian approach. Even
when the initial pose is correct, Gaussian estimates
will diverge if there is a significant number of outliers.

5.2 Recognition Results

To evaluate the performance of our object-
recognition system, we are interested in how well the
constraints prune the hypotheses and how well the
ordering of hypotheses limits the number of verifica-
tions required. Experiments were conducted using the
model-base of 8 polyhedral objects of moderate com-
plexity.

An example of our results from a real image is
shown in Figure 6. For this example, 34 planar regions
were extracted from the image. The total number of
possible hypotheses (correspondences to model faces)
is over 5600. The constraints of our models reduce the
number of hypotheses to 460. Using these hypotheses,
the MRF was built and HCF was applied to select the
hypotheses for verification. 242 cliques (sets of 3 or
92 consistent hypotheses) were selected—215 of which
were actually tested. One reason for the high number
of required verifications was that only two correspon-
dences of the rolodex regions satisfied the first-order
constraints (most likely due to modeling inaccuracies).
This placed the correct hypothesis for the rolodex near
the bottom of the list of hypotheses (since 3-cliques
are considered more likely) and resulted in a signifi-




|

Figure 6: Example recognition result (stapler
and rolodex): region image (left), wire-frame
overlay of recognized models (right).

cant number of unnecessary verifications. Typically,
if 3 or more correspondences are available, they are
verified early in the process and reduce the number of
required verifications.

After analyzing the unnecessary verifications made
by our recognition system, we made a couple of obser-
vations. The first is that complex objects are easiest
to recognize; the constraints of complex objects are
more redundant than those of simple objects. Thus,
the correct hypotheses will have more mutual support
for each other and the likelihood of these hypotheses
will be higher. Secondly, object symmetry increases
the effective size of the model-base. If symmetry ex-
ists, hypotheses are generated for all of the symmetric
combinations of features—greatly increasing the num-
ber of hypothesis cliques produced by the hypothesis-
generation system.

Robust localization had a significant impact on the
reliability of the verification decision. Without robust
localization, it was clear that the thresholds on o and
B (see Section 4.2) for accepting hypotheses would
need to be so low that false positives would become
very common. In our prototype recognition program,
the bottleneck was the localization algorithm: it takes
from 1 to 4 minutes on a SPARC IPC workstation. We
have not yet spent effort on making the implementa-
tion more efficient.

6 Relation to Other Work

In this section, we compare our approach with other
approaches for object recognition.

The majority of recognition techniques are fragile
because they only account for model geometry when
modeling the mapping between object and image fea-
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tures. Some techniques that avoid this involve auto-
matic model acquisition [5, 6]. Wells [6] builds models
of detectable object edges by choosing edges that ap-
pear over a variety of lighting conditions. Fan [5] uses
a multi-view approach which matches a graph struc-
ture of the segmented image to stored graph structures
of the representative views. Camps et al. [7] utilize
an analytical model of the feature formation process.
They fit a normal distribution to the data, while we
prefer to use a smoothed version of the observed dis-
tribution for increased accuracy. We have found that
the normal distribution is not adequate for represent-
ing the observed distributions.

Two important techniques in object recognition are
invariance [8] and perceptual grouping [9]. Our sta-
tistical representation of the mapping between object
and image features provides a general framework for
discovering and (implicitly) representing invariants as
well as bounds on the value of the invariant. The
distribution of the invariant feature is represented ex-
plicitly and thus avoids the need to specify some ap-
proximating distribution (like a normal distribution)
or thresholds over allowable values of the invariant.
When used for matching, the statistics implicitly favor
features that are truly invariant and easily detected
over a wide range of views. Statistics over relations
between features (here pairs of features) similarly pro-
vide a way of discovering perceptually salient of in-
variant groups of features. Our approach makes these
“viewpoint-dependent” (view-variant) features useful
for selecting matches by the hypothesis-generation
procedure. The inclusion of imaging and processing ef-
fects is the essential difference between our prior mod-
els and the distributions used by [10, 11, 12].

Several researchers have investigated the idea of
using statistical priors to optimize the recognition
search, including [9, 7, 6, 12, 11, 10]. We have found
that probabilistic selection and ordering greatly re-
duces the number of hypotheses that are verified dur-
ing recognition. Since localization and verification is
usually the most expensive step in a recognition al-
gorithm, this has a significant impact on efficiency.
By pruning the unlikely hypotheses and ordering the
hypotheses in most likely first order, the number of
wasted verifications is reduced significantly—resulting
in more efficient performance.

The behavior of HCF search is very similar to the
idea of the “focus feature” method of Bolles et al.
[13]. When there are obvious matches available, HCF
search dives in by turning on the most obvious match
first. This creates a ripple effect for matches consis-
tent with obvious matches. Our approach should not



be confused with the idea of relaxation labeling used
by Bhanu [14] or the MAP model matching technique
of Wells [15]. We are not searching for the most likely
matching; we are searching for sets of matches that
are likely enough to consider verifying.

Because of errors in location of the image features,
minimal sets of correspondences often give only rough
estimates of the object’s pose. A favored method [9, 6]
is to use all of the available image features and model
features to overconstrain the pose estimate of the ob-
Ject. Typically, systems use a local search for the pose
that minimizes the least-squared error between visible
object features and image features. The techniques
fail when a significant portion of object features are
occluded or undetected. One common approach is
outlier removal. The problem with outlier removal is
that when the pose is incorrect, there may be a few in-
correct matches that have small error—nullifying the
effect of a majority of correct correspondences with
higher error. We find it more reliable to consider all
model features simultaneously while reducing the ef-
fect of the matches with high error.

7 Conclusions

We have presented new techniques for object recog-
nition that exploit prior knowledge to make the search
process efficient and the results accurate. We have
described the sensor-modeling approach for generat-
ing statistical constraints for object recognition. We
developed a probabilistic hypothesis-generation algo-
rithm that uses statistical constraints to accurately
select hypotheses and order them for efficient search.
To ensure that our pose estimates are as accurate as
possible, we designed a pose refinement algorithm that
is robust to partial occlusion and other outliers. When
combined into a complete system, these techniques
make progress towards improving efficiency and accu-
racy by minimizing unnecessary verifications and im-
proving the accuracy of the verification decision with
robust location estimates.
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