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Abstract
A motion estimation algorithm using wavelet approxi-

mation as an optical 
ow model has been developed to esti-
mate accurate dense optical 
ow from an image sequence.
This wavelet motion model is particularly useful in estimat-
ing optical 
ows with large displacement. Traditional pyra-
mid methods which use the coarse-to-�ne image pyramid by
image burring in estimating optical 
ow often produce in-
correct results when the coarse-level estimates contain large
errors that cannot be corrected at the subsequent �ner lev-
els. This happens when regions of low texture become 
at
or certain patterns result in spatial aliasing due to image
blurring. Our method, in contrast, uses large-to-small full-
resolution regions without blurring images, and simultane-
ously optimizes the coarser and �ner parts of optical 
ow
so that the large and small motion can be estimated cor-
rectly. We compare results obtained by using our method
with those obtained by using one of the leading optical 
ow
methods, the Szeliski pyramid spline-based method. The
experiments include cases of small displacement (less than
4 pixels under 128� 128 image size or equivalent displace-
ment under other image sizes), and those of large displace-
ment (10 pixels). While both methods produce comparable
results when the displacements are small, our method out-
performs pyramid spline-based method when the displace-
ments are large.

1 Introduction
This paper presents a method to estimate optical


ow using coarse-to-�ne wavelet representation, newly
presented by Cai and Wang [5], as a motion model.
The wavelet motion model represents motion vectors
by a linear combination of hierarchical basis functions.
The coarser-scale basis function has larger support
while the �ner-scale basis function has smaller sup-
port. Corresponding to these variably sized supports,
large-to-small full-resolution regions are used in im-
age matching. In addition, the associated coe�cients
to be estimated have global and local in
uences in
constructing the motion vectors.

The major feature of Cai-Wang basis functions is
to directly transform any function into wavelet coef-
�cients from coarse to �ne scale. This di�ers from
the conventional usage of wavelet transform which is
carried out from �ne-to-coarse for decomposition and
then coarse-to-�ne for reconstruction. This feature al-
lows us to estimate the coe�cients starting from coars-
est scale by using the largest full resolution patches.

This is particularly useful in estimating the optical

ow due to large motion. At each iteration, we re-
construct the motion vectors from the �rst to the sec-
ond image based on the estimated coe�cients, and
use them to warp the �rst image. As �ner-scale coe�-
cients are estimated by minimizing the sum of squared
intensity di�erences between the warped image and
the second image, we obtain more accurate results.

To handle large displacement, a number of coarse-
to-�ne hierarchical methods [2, 4, 1] have been devel-
oped. The pyramid methods which use coarse-to-�ne
blurred images sequentially in estimating optical 
ow
often produce incorrect results when large errors oc-
curring in coarser estimates cannot be subsequently
corrected in the �ner estimates. This happens when
regions of low texture become 
at or certain patterns
result in spatial aliasing due to image blurring. The
reason that our method could cope with this di�culty
is that our representation hierarchy is di�erent from
the typical image coarse-to-�ne hierarchy. Our hier-
archy is built along motion resolution level, not image
resolution level. In addition, we use large-to-small full
resolution regions, rather than blurred images, in es-
timating the coe�cients from coarse to �ne scales.

2 Mathematical Background

Let I
def
= [0; L] denote any �nite interval, where

L � 4 is a positive integer, and H2(I) denote Sobolev
space which contains all continuous functions with �-
nite energy norm up to the second derivative, respec-
tively, i.e.,

H2(I)
def
= ff(x);x 2 Ijkf (i)k2=

Z
I

jf (i)(x)j2dx <1; i = 0;1;2:g

It can be veri�ed thatH2(I) is a Hilbert space with the
inner product, <f; g>=

R
I
f (2)(x)g(2)(x)dx. Hence

jjjf jjj=< f; f >
1

2 provides a norm forH2(I). In order
to develop a coarse-to-�ne wavelet representation in
H2(I), Cai and Wang used the fourth-order B-spline
�(x) (Figure 1.(a))

�(x)
def
=

1

6

4X
j=0

�
4
j

�
(�1)j(x� j)3+ 2 H2(I) (1)

as the scaling function, where xn+ = xn if x � 0, and
xn+ = 0 if x < 0. Using the scaling function, they
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 (a):The 1D scaling function
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 (b):The 1D wavelet function

Figure 1: The 1D scaling and wavelet functions.
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Figure 2: The translation and dilation of basis func-
tions at di�erent resolution scales

constructed the wavelet (Figure 1.(b))

 (x) =
�3
7
�(2x) +

12

7
�(2x� 1)� 3

7
�(2x� 2) (2)

The supports of �(x) and  (x) are [0; 4] and [0; 3],
respectively, i.e., the values of �(x) (or  (x)) are zeros
outside [0; 4] (or [0; 3]). The dilation and translation
of �(x) and  (x) are de�ned by

�j;k(x) = �(2jx� k); j � 0; k = �2; : : : ;2jL� 2 (3)

 j;k(x) =  (2jx� k); j � 0; k = �1; : : : ; 2jL� 2

For each resolution level j, let Vj andWj be the closure
(under norm jjjf jjj) of linear span of f�j;k(x); �2 �
k � 2jL� 2g and f j;k(x)j k = �1; : : : ; 2jL� 2 g, re-
spectively. Cai and Wang have shown that[5] any con-
tinuous function d(x) 2 H2(I) can be approximated as
closely as possible by a function in Vj for a su�ciently
large j which has a unique orthogonal approximation

d(x) � d�1(x) + d0(x) + d1(x) + � � �dj(x) (4)

where

d�1(x) =

L�2X
k=�2

c
�1;k�0;k(x) 2 V0 (5)

dj(x) =

2jL�2X
k=�1

cj;k j;k(x) 2Wj for j � 0: (6)

Each component dj is produced by the expansion of
translated basis functions at di�erent resolution lev-
els where the coe�cients cj;k are appropriately deter-
mined. Although the existence of approximation is
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Figure 3: The two dimensional basis functions.
(a) �(x)�(y), (b) �(x) (y), (c)  (x)�(y) and (d)
 (x) (y).

proved for any continuous function in H2(I), it has
been demonstrated in [5, 8] that it holds for any �nite
sampled function in the practical applications.

In
uence of coe�cients cj;k can be global or local
depending on the size of support of the correspond-
ing basis function. To see this, let us assume L = 4
for simplicity such that the scaling functions �(x� k)
in the coarsest scale have support [0; 4] (except on
the boundary), and the wavelet functions  j;k have
(narrower) support [0; 3

2j ] (except near the boundary),
j � 0. Let us also assume a �nite sampled function
de�ned on pixel domain [0; 256]. We map [0; 4] into
[0; 256] so that the e�ects are interpreted on pixel unit.
The perturbs of c

�1;�2, c�1;�1, c�1;0, c�1;1 and c�1;2
will a�ect the values d

�1(x) globally within the do-
main [0; 127], [0; 191], [0; 256], [65; 256] and [129; 256],
respectively (Figure 2). In the �ner scales (levels)
j � 0, wavelets have support 192

2j pixels within the do-

main (and 128
2j pixels on the boundaries), and there are

total 2j+2 shifted wavelets overlapped across [0; 256].
The perturbs of each wavelet coe�cient cj;k will a�ect

dj(x) locally only inside the domain [64k
2j
;
64(k+3)

2j
], and

on the boundraries [0; 1282j ] and [256� 128
2j ; 256].

3 Wavelet-Based Flow Estimation
Suppose image I0(x; y) and I1(x; y) are related by

horizontal and vertical displacement (
ow or motion)
vectors u(x; y) and v(x; y) under the intensity con-

stancy constraint [3]. We wish to recover the max-
imum likelihood estimates fu(x; y); v(x; y)g by mini-
mizing the SSD

E =
X
x;y

[I1(x+ u(x; y); y + v(x; y))� I0(x; y)]
2 (7)

between the reference image I0(x; y), and the pre-
dicted image I1(x+ u(x; y); y + v(x; y)).

3.1 Wavelet Motion Model
We will approximate motion vectors u(x; y) and

v(x; y) by using two-dimensional basis functions.
A natural extension of one-dimensional to two-
dimensional basis functions are using the tensor prod-
uct. Accordingly, the two-dimensional basis functions



are (Figure 3)

�0;k1;k2(x; y) = �(x� k1)�(y � k2) (8)

	H
j;k1;k2

(x; y) = �(2jx� k1) (2
jy � k2) (9)

	V
j;k1;k2

(x; y) =  (2jx� k1)�(2
jy � k2) (10)

	D
j;k1;k2

(x; y) =  (2jx� k1) (2
jy � k2) (11)

where the subscripts j, k1 and k2 represent the reso-
lution scale, horizontal and vertical translations, re-
spectively, and the upper subscript H, V and D
represent the horizontal, vertical and diagonal direc-
tions, respectively. Similar to the one-dimensional
case, any two dimensional motion vector can be ex-
pressed in terms of linear combinations of coarsest-
scale spline function (8) and horizontal, vertical and
diagonal wavelets ((9), (10) and (11)) in �ner levels[8]

u(x; y) = u�1(x; y) +

JX
j=0

(uHj (x; y) + uVj (x; y) + uDj (x; y))

v(x; y) = v�1(x; y) +

JX
j=0

(vHj (x; y) + vVj (x; y) + vDj (x; y))

where

u�1(x; y) =

L1�2X
k1=�2

L2�2X
k2=�2

c
�1;k1 ;k2�0;k1 ;k2 (x; y)

uHj (x; y) =

2jL1�2X
k1=�2

2jL2�2X
k2=�1

cHj;k1 ;k2
	H
j;k1 ;k2

(x; y)

uVj (x; y) =

2jL1�2X
k1=�1

2jL2�2X
k2=�2

cVj;k1 ;k2
	V
j;k1 ;k2

(x; y)

uDj (x; y) =

2jL1�2X
k1=�1

2jL2�2X
k2=�1

cDj;k1 ;k2	
D
j;k1 ;k2

(x; y):

Functions v
�1, vHj , v

V
j and vDj have similar forms ex-

cept that c
�1;k1;k2 , c

H
j;k1;k2

, cVj;k1;k2 and c
D
j;k1;k2

are re-

placed by d
�1;k1;k2 , d

H
j;k1;k2

, dVj;k1;k2 and dDj;k1;k2, re-
spectively.

3.2 The Algorithm
Given I0 and I1, the optical 
ow estimation

is now a problem of estimating coe�cients vector
ĉ =[(ĉ

�1)T � � � (ĉH;i
j )T (ĉV;ij )T (ĉD;i

j )T � � �]T where
ĉ
�1 representing the coarsest-scale coe�cients, and

ĉ
H;i
j , ĉV;ij and ĉ

D;i
j representing any �ner-scale coef-

�cients in horizontal, vertical and diagonal directions,
respectively. This is done by substituting u(x; y) and
v(x; y) into (7) and minimizing SSD with respect to
ĉ iteratively. The motion vectors are reconstructed
using the estimated coe�cients. We then use the mo-
tion vectors to warp image I1 toward I0. In the next
�ner scale, we estimate the coe�cients from coarsest
to current scale where the large-to-small regions are

utilized. To handle large displacement, we �rst esti-
mate the coarsest-scale coe�cients where the largest
regions are used.

Let vector ĉ
i
�1=[ci

�1;�2;�2; � � � ; c
i
�1;L1�2;L2�2,

di
�1;�2;�2; � � � ; d

i
�1;L1�2;L2�2]

T be the current estimated
coarsest-scale coe�cients during the ith iteration. The
incremental estimate �ĉ

�1 can be obtained by min-
imizing a quadratic measure using the di�erential
method. By using the �rst order Taylor series expan-
sion

I(x+ ui + �u; y + vi + �v) � I(x+ ui; y + vi; t) + �uIx + �vIy;

the incremental quadratic error is

E(�ĉ�1)=E(ĉi�1+�ĉ�1)�E(ĉi)��ĉT�1A�ĉ�1�2bT �ĉ�1 (12)

where

(Ix; Iy)
def
= (

@I1(x+ ui; y + vi)

@x
;
@I1(x+ ui; y + vi)

@y
)

A
def
=

X
x;y

a(x; y)a(x; y)T ; Hessian matrix (13)

a(x; y)
def
= [�0;�2;�2Ix � � ��0;L1�2;L2�2Ix

...

�0;�2;�2Iy � � ��0;L1�2;L2�2Iy]
T ; (14)

b
def
= �

X
x;y

(I1(x+ ui; y + vi)� I0(x; y))a(x; y);

ui(x; y) = ui
�1(x; y); v

i(x; y) = vi
�1(x; y) (15)

To obtain Hessian matrix A and gradient vector b
during each iteration in every resolution scale, we �rst
calculate the warped image I1(x + ui; y + vi) using
the updated motion vector ui(x; y) and vi(x; y), and
bilinear interpolation. The gradient (Ix; Iy) and the
residual di�erence, I1(x + ui; y + vi) � I0(x; y), are
then computed. When E(�ĉ

�1) is minimized using
the Levenberg-Marquardt algorithm[6], the resultant
coe�cients ĉi

�1 are used as the initial guess and prop-
agated into the next �ner level.

In the next �ner level, we update the coe�cients
estimated at the previous coarsest level, and estimate
three sets of coe�cients at the current level one by
one. First, we denote the �rst set of coe�cients at

current level (j = 0) by ĉ
H;i
0 =[cH;i

0;�1;�1 � � �c
H;i
0;L1�2;L2�2

...

d
H;i
0;�1;�1 � � �d

H;i

0;L1�2;L2�2
]T ,

and estimate ĉ
i = [(ĉi

�1)
T (ĉH;i

0 )T ]T where ĉi
�1 has

been initialized from the previous step. The coe�-
cients ĉi, which have more local in
uence, are used to
reconstruct the motion vectors u(x; y) = u

�1(x; y) +
u0(x; y) and v(x; y) = v

�1(x; y) + v0(x; y). The in-
cremental estimate �ĉ can be obtained by minimiz-
ing the same form of quadratic cost function (12)
except that new terms 	H

0;�2;�1Ix � � �	
H
0;L1�2;L2�2Ix,

	H
0;�2;�1Iy � � �	

H
0;L1�2;L2�2Iy

are included in a(x; y), and (uH;i
0 (x; y); vH;i

0 (x; y)) are
include in (ui(x; y); vi(x; y)). More precisely, they are

a(x; y)
def
= [�0;�2;�2Ix � � ��0;L1�2;L2�2Ix

...



	H
0;�2;�1Ix � � �	H

0;L1�2;L2�2
Ix
..
.

�0;�2;�2Iy � � ��0;L1�2;L2�2Iy
...

	H
0;�2;�1Iy � � �	H

0;L1�2;L2�2
Iy]

T

ui(x; y) = ui
�1(x; y) + u

H;i
0 (x; y); vi(x; y)=vi

�1(x; y) + v
H;i
0 (x; y)

When E(�ĉ) attains minimum, the resultant coe�-
cients ĉ are propogated into the next step where the
second set coe�cients are estimated.

Then, we estimate the second set of coe�cients

ĉ
V;i
0

def
= [cV;i0;�1;�2 � � �cV;i0;L1�2;L2�2

.

.. dV;i0;�1;�2 � � �dV;i0;L1�2;L2�2
]T ,

and update the previous estimated coe�cients ĉi
�1

and ĉ
H;i
0 simultaneously. The concatenated coe�-

cient vector is ĉi= [(ĉi
�1)

T (ĉH;i
0 )T (ĉV;i0 )T ]T . The

incremental estimate �ĉ can be obtained by minimiz-
ing the same form of quadratic cost function (12),
except that new terms 	V

0;�1;�2Ix � � �	
V
0;L1�2;L2�2

Ix

and 	V
0;�1;�2Iy � � �	

V
0;L1�2;L2�2

Iy are added to pre-

vious a(x; y), and (uV;i0 (x; y); vV;i0 (x; y)) are added to
previous (ui(x; y); vi(x; y)). When E(�ĉ) attains min-
imum, the resultant coe�cients ĉ are propagated into
the next step where the third set coe�cients are esti-
mated.

Lastly, we estimate the third set of coe�cients

ĉ
D;i
0

def
= [cD;i

0;�1;�1 � � �c
D;i

0;L1�2;L2�2

...

d
D;i
0;�1;�1 � � �d

D;i
0;L1�2;L2�2

]T , and update the previous

estimated coe�cients ĉi
�1, ĉ

H;i
0 and ĉ

V;i
0 . The

concatenated coe�cient vector is ĉi =[(ĉi
�1)

T

(ĉH;i
0 )T (ĉV;i0 )T (ĉD;i

0 )T ]T . The incremen-
tal estimate �ĉ can be obtained by minimizing
the same form of quadratic cost function except,
that new terms 	D

0;�1;�1Ix � � �	
D
0;L1�2;L2�2Ix and

	D
0;�1;�1Iy � � �	

D
0;L1�2;L2�2Iy are added to previous

a(x; y), while (uD;i
0 (x; y); vD;i

0 (x; y)) are added to pre-
vious (ui(x; y); vi(x; y)).

In general, at level j, we estimate the coe�cients
from the coarsest to the current level. At each level
(j � 0), three sets of coe�cients are estimated one
by one. The estimation procedure is the same as we
described above. When E(�ĉ) attains minimum, we
check the SSD prediction error and decide to either
stop or continue the process.

3.3 Variably Sized Supports and Hessian
Matrix

The structure of Hessian matrix reveals the usage of
global and local information and how they are interac-
tive with each other. The structure of Hessian matri-
ces using one, two and three levels are shown in Figure
4. The nonzeros and zeros elements are presented as
white and black regions, respectively. We see that each
Hessian matrix can be divided into four patterns, say
A11; A12; A21 and A22 representing left upper, right
upper, left lower and right lower patterns, respectively.
Let us denote the �rst and second half parts of vec-

Figure 4: The left, middle and right �gures are the
forms of hessian matrix when one, two and three levels
are used. White and black regions represent nonzero
and zero entries, respectively.

tor a by a1 and a2 which are associated with coef-
�cients cj 's and dj's, respectively. Patterns A11 and
A22 are formed by

P
x;y a1a1

T and
P

x;y a2a2
T , re-

spectively, pattern A12 is formed by
P

x;y a1a2
T , and

A12 is equal to A21. A11 and A12 are used to calculate
coe�cients cj;k1;k2 's, and A21 and A22 are used to cal-
culate coe�cients dj;k1;k2's. Each entry in the Hessian
matrix is produced by the multiplications of any two
basis functions with each other, and with two image
gradients. As a result, the entry is nonzero when the
associated two basis functions are overlapped and two
image gradients are nonzeros. In Figure 4, we observe
that as the resolution scale moves up, the basis func-
tions have narrower supports and fewer overlaps with
functions in coarser and current scale. Therefore, the
white regions becomes sparser. Since the block diag-
onal nonzero entries of any pattern are produced by
any two overlapped basis functions at the same scale
and the remaining blocks are produced by the overlaps
of di�erent basis functions from coarsest to current
scales. This implies that in the �ner scales not only
smaller but also larger patches are optimally used in
the sense that the coarser- and �ner-scale coe�cients
minimize SSD.

4 Experimental Results
This section compares the results produced by

wavelet-based and spline-based methods.

4.1 Synthetic Image Pairs Containing
Small Displacement

In the �rst experiment, we use the synthetic im-
ages in paper [1], where the ground truth of optical

ow vectors is provided. In the pyramid spline-based
method, the low-pass Gaussian �lter with mask size 3
� 3 pixels is successively applied to create the coarse-
to-�ne blurred images. Two error measurements we
use are the angular measure �e [1] and the magnitude
measure me, de�ned by

�e = arcos(
uut + vvt + 1

p
u2 + v2 + 1

p
u2t + v2t + 1

) (16)

me = j
p
u2 + v2 �

p
u2t + v2t j (17)



Image Pairs Spline-based method Wavelet-based method

��e �mc ��c �mc

Sinusoid 1 0:220 (1)� 0.54 (1) 0:400 (1) 0.03 (1)
71:370 (3) 19.043 (3) 0:0560 (3) 0.0021 (3)

Translating 13:270 (1) 0.79 (1) 0:450 (1) 0.026 (1)
Tree 0:590 (3) 0.0210 (3) 0:850 (3) 0.030 (3)
Diverging 4:230 (1) 0.065 (1) 1:330 (1) 0.0254 (1)
Tree 1:520 (3) 0.0254 (3) 2:490 (3) 0.030 (3)
Yosemite 4:380 (3) 0.136 (3) 4:630 (3) 0.137 (3)

3:540 (4) 0.097 (4)
�The number inside the parentheses denotes the image level(s)
used in the spline-based method, or the motion resolution
level(s) in wavelet-based method.

where (ut(x; y); vt(x; y)) is the correct motion vector.
For each image pair, we compute the averaged an-
gle and magnitude errors (��e and �mc), using the

ow vector at each pixel. We have tested the image
pairs of Sinusoidal 1, Translating Tree, Diverg-
ing Tree and Yosemite. Figures 5-8 show the esti-
mated motion vectors using our method. To compare
our method with pyramid spline-based methods, the
number of unknowns is designed to be the same. We
name the 
ow estimates produced by spline-based and
by our methods as spline and wavelet 
ow, respec-
tively. The quantitative comparisons between pyra-
mid splin-based and wavelet-based methods are shown
in the Table. In the Sinusoid 1 image pair, the one
level spline 
ow is more accurate than the one level
wavelet 
ow but less accurate than the three level
wavelet 
ow. The three level spline 
ow has large
errors, (71:370; 19:043), which are propagated from
the coarsest estimates due to the signi�cant texture
change. In the Translating Tree and Diverging
Tree image pairs, one level spline 
ow is less accurate
than the wavelet 
ow because of incorrect estimates
around the poor texture regions. In the Yosemite
image pair, the three level spline 
ow is better than
the wavelet 
ow. However, we obtained better results
when 4 levels were used. In general, both 
ow esti-
mates are accurate and comparable, and both meth-
ods outperform other methods in [1] and method in
[7]. (see [4] and [8]).

4.2 Synthetic Image Pair Containing
Large Displacement

In the second experiment, the input image (Figure
9) is created by cropping part of the Sinusoidal 1
and the Tree images where the sinusoidal pattern has
a displacement of 1.585 pixels upward and 0.863 pixel
rightward, and the tree pattern has 10 pixels displace-
ments to the right. The results in the left column of
Figure 10 show that large errors occurring at level 1
due to spatial aliasing are propagated to the �nal re-
sult. The results using wavelet method are shown in
the right column of Figures 10. The 
ow vectors of the
sinusoidal 1 and Tree patterns are well recovered.

4.3 Real Image Sequences
The results of three real image sequences, SRI,

NASA, Hamburg Taxi sequences in [1] are presented in
Figures 11, 12, and 13, respectively. Flow of ten image

frames is presented for each image sequence. Overall,
the results look reasonable. Finally, the left and right
columns in Figure 14 show the computed optical 
ow
representing surprised and smile expressions with head
movement using the wavelet method. The optical 
ow
results of 6 basic facial expressions can be seen in
www.cs.cmu.edu/afs/cs.cmu.edu/user/ytw/www/facial.html
and [8].

5 Conclusions
We have used the wavelet model to develop a

multiple-window, coarse-to-�ne matching algorithm.
The wavelet basis functions play triple roles in our al-
gorithm, allowing us to construct motion vectors from
coarse-to-�ne, select multiple large-to-small regions
for image matching and impose smoothness. Since the
motion vector at each pixel is obtained by simultane-
ously matching large-to-small full resolution regions,
our algorithm produces robust and accurate results.
The advantage has been demonstrated by compar-
ing the results obtained by our method with those
obtained by Szeliski pyramid spline method. This
method has been applied successfully to the motion
estimation of facial expressions[8], and we are in the
process of extending our algorithm to other applica-
tions.
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Figure 5: Sinusoidal 1

Figure 6: Translating Tree

Figure 7: Diverging Tree

Figure 8: Yosemite

Correct flow and image Io I1

Figure 9: Snythetic image pair (128� 128) containing
large and small motions. The sinusoidal pattern (left)
has displacement 1.585 pixel upward and 0.863 pixel
rightward, and the tree pattern (right) has 10 pixels
displacements to the right.

Computed flow and blurred image Io at level 1 Computed flow drawn on Io at level 1

Computed flow and blurred image Io at level 2 Computed flow drawn on Io at level 2

Computed flow and full resolution image Io at level 3 Computed flow drawn on Io at level 3

Figure 10: The comparison of pyramid spline-based
(left column) and wavelet-based method (right col-
umn). Observe that in left column the large errors
which occurred in the left Sinusoidal 1 textured re-
gion at level 1 have been wrongly propagated to �ner
estimates. In the right column, the optical 
ow are
recovered correctly..



Figure 11: SRI Trees.

Figure 12: NASA

Figure 13: Hamburg Taxi.

a1 b1

a2 b2

a3 b3

Figure 14: Two image sequences (left and right
columns) containing large displacements. Each se-
quence has 25 frames. Three selected frames are
shown from each sequence.


