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Abstract

In this paper, we discuss adaptive control of a space
robot system with an attitude controlled base on which the
robot is attached. We found that in joint space the dy-
namics can be linearized by a set of combined dynamic pa-
rameters, but in inertia space linear parameterization is
impossible in general. Then we propose an adaptive con-
trol scheme in joint space which has been shown effective
and feasible for the cases where unknown or unmodeled
dynamics must be considered. Since most tasks are spec-
ified in inertia space, instead of joint space, we discuss
the issues associated to adaptive control in inertia space
and identify two potential problems, unavailability of joint
trajectory since mapping from inertia space trajectory ]
dynamic dependent and subject to uncertainty, and non-
linear parameterization in inertia space. We approach the
problem by making use of the proposed joint space adaptive
controller and updating joint trajectory by the estimated
dynamic parameters and given trajectory in inertia space.
In the case study of a planar system, the linear parameter-
ization problem is investigated, the design procedure of the
controller is illustrated, and the validity and effectiveness
of the proposed control scheme are demonstrated.

1 Introduction

Considerable research efforts have been directed to
some primary functions of robots in space applications,
such as material transport, simple manipulation, basic lo-
comotion, inspection and maintenance of the space sta-
tion and satellites [1, 2]. The adaptive control is critical
for the robot system subject to dynamic uncertainty in
these tasks. Our paper [6] discussed extensively the need
of adaptive control due to various unmodeled dynamic ef-
fects in space applications.

This paper focuses on the robot system where the base
attitude is controlled by thrust jets. When the attitude of
the base is controlled, the orientation and position of both
robot and base are no longer free, and the dynamic inter-
action between the base and robot results in the dynamic
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dependent kinematics, i.e., the kinematics is in relation to
the mass property of the base and robot.

In this paper, based on linear momentum conservation
law and Lagrangian dynamics, we at first formulate kine-
matics and dynamics equations of the space robot sys-
tem with an attitude controlled base, in a systematic way.
Based on the dynamic model developed, we study the lin-
ear parameterization problem, i.e., dynamics can be lin-
early expressed in terms of dynamic parameters. We have
found that for the space robot system with an attitude
control base, the linear parameterization is valid in joint
space, while is not valid in inertia Cartesian space, or in
short, inertia space.

Using the dynamic model, we propose an adaptive con-
trol scheme in joint space. The scheme does not need an
acceleration measurement in joint space and a high feed-
back gain controller. Since in most applications, the tasks
are specified in inertia space, instead of joint space, we dis-
cuss the issues in relation to implementation of adaptive
control in inertia space and identify two main problems.
The first problem occurs when the joint adaptive control
is executed. The required joint trajectory cannot be gen-
erated by the given trajectory in inertia space due to the
parameter uncertainty in the kinematic mapping which is
dynamics dependent. The second problem is nonlinear pa-
rameterization in inertia space which make impossible to
implement the same structured adaptive control as that
in joint space. We approach this problem by making use
of joint space adaptive controller and updating joint tra-
jectory from identified kinematic mapping and the given
trajectory in inertia space. This method has shown its
effectiveness in simulation, and some issues associated to
parameter estimation and updating time are discussed.

Finally, we study a planar robot system to investigate
linear parameterization problem of robot system dynamics,
and illustrate the validity and effectiveness of the proposed
adaptive control schemes.

2 Dynamics of Space Robot System

In this section we discuss the dynamics of the space
robot system when the orientation of the base is controlled



and the translation of the base is free. As shown in Figure
1, a space robot system with an attitude controlled base
can be modeled as a multibody chain composed of n + 1
rigid bodies connected by n joints, which are numbered
from 1 to n. Each body is numbered from 0 to n, and the
base is denoted by B in particular. The mass and inertia
of ith body are denoted by m; and I, respectively. A joint
variable vector q = (g1,¢2,"* -,qn)T is used to represent
those joint displacements. The orientation of the base is
represented by a vector qs = (¢B1,¢8B2, qBa)T.

Figure 1 Space robot system with an attitude controlled base

Two coordinate frames are defined, the inertia coordi-
nate ), on the orbit, and the base coordinate Y p at-
tached on the base body with its origin at the centroid
of the base. As shown in Figure 1, let R; and r; be the
position vectors pointing the centroid of ith body with ref-
erence to Z ; and Z g Tespectively, then

R:=r.+Rp 1)

where Rp is the position vector pointing the centroid of
the base with reference to Z,. Let V; and £2; be linear
and angular velocities of ith body with respect to ), vi
and w; with respect to 3 g+ Then we have

Vi
Q;

vi+Va+Qpxri
wi+Qp

= 2
where Vg and Q5 are linear and angular velocities of the
centroid of the base with respect to E » and operator ’x’
represents outer product of R® vector. The velocities v;
and w; in base coordinates can be represented by

3

wi =Jai(a)q 4
where J1i(q) and J4i(q) are the submatrices of Jacobian
of the ith body representing linear part and angular part
respectively. The motion rate relationship between joint
space and inertia space has been derived [6] as follows.
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where N is the generalized Jacobian, Vg is the velocity of
the robot end-effector in inertia space, O3 is a 3 x 3 zero
matrix, and Us is a 3 X 3 unity matrix. J,r = [(rc—rEg)X],
and Jre=Jg-Jc

The total system kinetic energy can be represented by

(6] . .
T =1/20TM(8)4 (6)

where 6 = [gs,q]7, M is the inertia matrix of the system.

M

M(6) = Ma

e | G

Ma22

My =L+ ZD(ra)m; - ZZ Rijmim;/m.  (8)

=1

Mz, =Hg + z": z": Qijmim;/m.

i=1 jy=1

Z[r.']JL;m.‘ + Z": 2": Sijmim;fm.

=1 i=1 j=1
(10)

where the matrices [r;]Jzi, Jai, Ri, Qi, Si are only func-
tions of geometric parameters, i.e., independent of dy-
namic parameters. The above formulations imply that
the inertia matrix can be linearly represented by a set of
combination of dynamic parameters, mg, Iz, mim;/m,
5,5,k=0,1,--+,n,

The property of linear parameterization to dynamic pa-
rameters is one of prerequisite conditions under which most
adaptive and nonlinear dynamic control schemes are devel-
oped. It has been shown [5] that the problem of parameter-
ization linearity in dynamics can be reduced to the problem
of parameterization linearity in inertia matrix. Therefore,
in order to study whether linear parameterization is valid
for the space robot system with an attitude controlled base,
we need to show whether the inertia matrix M can be lin-
early represented by a set of properly chosen combinations
of dynamic parameters.

From the kinetic energy formulation, we can derive dy-
namics equation by Lagrangian dynamics.

i=1 y=1

()

n
M=) Ldai+
i=1

M +B(8,6)6 = 7 (11)

where a
B(8,6)f = Mé — 5;(%1;@1\/1()) (12)
The corresponding dynamic equation in inertia space is
H% + C(x,x)x=F (13)
where
H=N"TMN™ (14)

C=N"TBN~!' -HNN™ (15)

N is a generalized Jacobian matrix and is dynamics de-
penedent for the space robot system. The inertia space
dynamic equation can be linearly expressed in terms of



dynamic parameters if and only if the inertia matrix H
can be linearly parameterized [5] since
IR I3 Y. )
C(x,x)x = Hx — ax(z Hx) (16)
We suppose N~ exists, and
o N
N™ = (an

where N* and det(N) are the adjoint and determinant of
the matrix N, then

N-TMN-

H=TamoF

(18)
In the above equation, [det(N)]? appears as the denomina-
tor. From derivation procedure of N in the last section, it
is clear that the N is time-varying and highly coupled by
dynamic parameters, i.e., mass/inertia. For such a com-
plicated nonlinear, time-varying function combining with
dynamic parameters and time-varying joint angles, it is im-
possible that every element of N*TMN®* has the common
factor [det(N)]? at every instant.

Even if the above statement is true, there is still pos-
sibility to linearly parameterize H, provided that the nu-
merator can be linearly parameterized and the denomina-
tor can be expressed as a product of two scalar functions
with only one containing dynamic parameters, i.e.,

det(N) = f1(mi, L) f2(65) (19)

where f is a function of dynamic parameters which are
unknown but constant, f2 is a function independent of any
dynamic parameters. This, unfortunately, is impossible in
general due to high coupling between dynamic parameters
and joint variables. For example, two DOF generalized
Jacobian may contain the following simple terms

det(N) = mysin(61) + macos(62) (20)
Even for such a simple form, de?(N) cannot be decomposed
as a product of two functions with one containing m1 and
ms only, and nor can [det(N)}*. Therefore, in general for a
space robot with an attitude controlled base, dynamics can
be linearly parameterized in terms of dynamic parameters
in joint space, but it cannot in inertia space. More regerous
proof can be found in our paper [3].

3 Adaptive Control Scheme

From previous discussion, we have learned that the dy-
namics of the space robot system in joint space is linear
in terms of a set of combinations of dynamic parameters.
Therefore, this set of new combined parameters can be
used in the design of our adaptive controller. This leads
us to propose an adaptive control algorithm in joint space.
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Since a unique solution may be found from inverse kine-
matics of the robot system with the attitude controlled base,
adaptive control algorithm in joint space is feasible.

We define a composite error 8 in joint space

8=26&,+(ep (21)
ep=03—0 (22)

and we also define modified joint velocity
0 =b+s (23)

and modified joint acceleration

d ' o . > .
2;0 +8=04+(C+1)ép +Cep =0a+8+(ép (24)

If we apply the following control law in joint space,

0” =

. 1 a1
r=Ms +186 (25)
then from Equation (11) we have
M3 = —B(6,6)6 + M0 + B8’ (26)

Defining 1\71=M—M,ﬁ=l§-—B, we have

Mé? = _Y(oi é! 64, édy b.d)é - (M + B)S - MCép
where o
Ya=Mé6 + B¢ 27)
a=a-—a (28)

and & is an estimation of the unknown dynamic parameters
of the space robot system including the robot, the base,
and the payload.

9% a-é_p+(ep 0,0 1-&94-69 * . space robot 9.‘9
8a—»t =045 - YA system
9y 9'-;(9')-!-8

a=Ir"Y's

Figure2 Block diagram of adaptive controller in joint space

We now design our adaptive control algorithm using
Lyapunov function candidate

V =1/2sTMs +1/25"Ta (29)

where the matrix I' is diagonal and positive definite. This
yields

V =—sTMs +1/28T(M - 2B)s + a7 (Td - Y7s) < 0
if

a=

r'yYTs (30)
due to the fact that the matrix M —2B is skew-symmetric,
and M is positive definite. Therefore, the system is stable



in the sense of Lyapunov [6]. A PID type adaptive control
scheme has also been studied in [6]. A block diagram of
the proposed control algorithm with PD type 8 is shown in
Figure 2. The proposed adaptive controller is conceptually
simple and easy to implement. This approach does not re-
quire the use of joint accelerations and inversion of inertia
matrix. Its computational cost is low because it can be
implemented through the use of Newton-Euler recursive
formulation, which can be seen from Equation (25).

4 Adaptive Control in Inertia Space

Conceptually, for most applications, the desired robot
hand trajectory (i.e., position, velocity and acceleration)
must be specified in inertia space. For example, let’s con-
sider catching a moving object by a space robot. The
desired trajectory after catching depends upon the tasks
and the motion trajectory of the object before catching,
and thus must be specified in inertia space. Fortunately,
the mapping from robot hand position in inertia space to
displacements in joint space can be uniquely determined
for a space robot system when the base is attitude con-
trolled. For a complete free-flying space robot system, this
mapping is not uniquely determined [5).

However, the unique kinematics relationship can only
be determined when dynamic parameters are given, for this
relationship is indeed dynamic dependent. When some dy-
namic parameters are unknown, which is indeed the reason
why we come to adaptive control, the mapping is not de-
termined! Therefore, the primary difficulty of extending
our approach from joint space to inertia space is that the
desired trajectory in inertia space cannot be transformed
to the desired trajectory in joint space because some dy-
namic parameters are unknown. In previous discussion, we
have utilized a desired trajectory in joint space, as other
researchers have done [4], without giving any explanation
about how the trajectory is generated. The problem is not
significant if the objective is to identify dynamic param-
eters, but is important if the objective is to control the
system.

The problem can be resolved if the same structured
adaptive control scheme can be implemented in inertia
space. This, however, is not feasible because the proposed
adaptive control scheme in joint space requires the linear
parameterization of the dynamic model which is not valid
for the inertia space representation.

We approach the problem in the following way. First,
given trajectory in inertia space, we use an initial estima-
tion of dynamic parameters to compute initial joint trajec-
tory. Then the initial joint trajectory and dynamic param-
eters are used in the proposed joint space adaptive control
algorithms. After a certain period of time we update the
system dynamic parameters by using new estimated ones
in the outer loop of our controller. We can then spec-
ify more precise joint space trajectory based on these new
parameters and the inertia space trajectory. Since the in-
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ertia space trajectory is uniquely determined by the joint
space trajectory and dynamic parameters, it can be shown
from the Jacobian relationship that position errors in iner-
tia space converges to a given boundary if position errors
in joint space and parameter errors are bounded, provided
that the robot is not in its singularity configuration. The
control scheme is illustrated in Figure 3.
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Figure 3  Block diagram of adaptive control strategy in inertia space

It is worthwhile to discuss two issues in the implemen-
tation of the proposed control scheme. First, to accu-
rately estimate unknown parameters, a persistent excita-
tion (PE) trajectory is required to drive the robot joints.
PE trajectories in joint space and that in inertia space are
not equivalent due to nonlinear kinematic transformation.
Therefore, it is of importance to carefully choose initial
trajectory in inertia space such that the resultant trajec-
tory in joint space is of PE. If the PE condition is not
satisfied, parameter identification error occurs, although
the joint space position errors may still converge.

Second, the updating time for inverse kinematics using
the estimated parameters in the outer loop must be slow
enough to maintain the system stable. The outer loop, as
shown in Figure 3, is used to update the inverse kinemat-
ics and thereby the desired joint trajectory that is used
in joint space adaptive controller. A fast updation may
not guarantee the convergence of parameter errors. In the
simulation, the updating time for inverse kinematics is set
to 10 seconds. Simulation results have shown that position
errors in inertia space converge to zero as errors in joint
space converge to zero and estimated parameters converge
to their true values.

5 Simulation Study

In this section, we conduct a case study to show the
computation of the proposed algorithms and their feasi-
bility. A two-DOF revolute manipulator with link length
given by Ii and Iz (li=l;=l) is considered as a lumped-
parameter model with point mass m; and mg at the end
of each link. For simplicity, we assume that the base at-
titude can be successfully controlled so that we need only
consider the control of the robot itself. The system model
for simulation study is shown in Figure 4.



At initialization, m. and R. are computed, and they
remain unchanged unless a load is added.

me = mo + my +m3 (31)
mcR. = moRo + miR1 + mzR; (32)
Ri=Ro+nms (33)
Ro=Ro+r2 (34)

The generalized Jacobian is

N= A | =(m14m2)s1 —m2s12 —mas12 (35)
me | (m1+m2)er +mec12 maca2
The system dynamics has the following form,
M3 +B(qq)a=r (36)
where
M =p:R; +p2R2+p3Rs (37)
_ momy _ mimz = mom2
n= me 1 - me ’ me (38)
_pll 0 _2l1 1
wee[) 2] mer[3] o
_pl20+ea)l (1+ea)t
Ro =1 [ Ate)t 1 (49)

Figure 4 Planar space robot system model

It is noted that M is linear in terms of the combined
dynamic parameters p,p2 and ps. This is an example to
show that dynamics of the space robot system can be lin-
early parameterized in joint space when the base attitude
is controlled. We also note that mo,m; and m; can be
uniquely determined by pi1,p2 and ps,

1 1 1
my = —_— =4 - 41
1 1’1}’2(,’l 72 pa) ( )
1 1 1
ma = —t == 42
2 ?21’3(,,, m+pa) (4?)
1 1 1
mo = — -4 - 43
0 PlPa(m p Ps) (43)

The matrix B is determined by

_ mom2 —-21232@2 —12-929.2 .
B= mec [ P2y 0 =pRe ()

Our adaptive control law is

r= Mqu + f&q' =Ya (45)
Y - [ qu" R2q” .Req" + R‘ql ] (46)
a=[p1,p,p)" (47

with the following adaptation law
i=[ns"Riq", 128"Raq", 158" (Req” +Ruq)]” (48)

To study the proposed adaptive algorithms, we use the
following common set of conditions:

Q14 = 75 (54 +6(sin(t) + cos(41))) (49)

20 = %(_126 + 6(sin(2t) + cos(6t)))  (50)
¢=10 (51)

In the first case we used the mass parameters below,
mo = 41kg, my = 5kg, mz = 4kg, and the initial guess of
all three parameters is set to 50% of their true values. It
can be found from Figure 5 that joint errors converge to
zero and all parameters converge to their true values 4.1,
0.4, and 3.28 (with small errors 1.2%, 2.1%, 2.5%, respec-
tively) after a transient period (approximately 10 seconds).
Figure 6 shows identification of combined parameters p;,
P2, and p3, and the resultant mass mi, mz, and mo. From
Figure 6 we found that estimation of all parameters m;,
m2, and mo are very close to their true values. For inertia
space adaptive controller, an initial guess of the updating
parameters is set to 80% of the true value. The inertia
space trajectory and joint space trajectory employed in
the simulation are shown in Figure 7. We used 10 seconds
as updating time for inverse kinematics. The effectiveness
of this adaptive scheme has been verified by the tracking
errors shown in Figure 8. It is found that position errors in
inertia space converge to zero as errors in joint space con-
verge to zero and estimated parameters converge to their
true values. More results can be found in our paper [6].

6 Conclusions

In this paper, we have discussed adaptive control of a
space robot system with an attitude controlled base on
which the robot is attached. We showed that the system
dynamics in joint space can be linearly parameterized, i.e.,
the dynamics can be linearized in joint space by a set of
combined dynamic parameters, while the same conclusion
is not true in inertia space.

An adaptive control scheme in joint space is proposed
to cope with dynamic uncertainties based on the dynamic



model developed. The scheme is effective and feasible for
space robot applications by eliminating the use of joint ac-
celeration measurement, inversion of inertial matrix, high
gain feedback, and considerable computation cost.

Concerning that the tasks in space are specified in in-
ertia space in most applications, we discussed the issues
of adaptive control of the robot for the tasks that must
be filfull in inertia space. Two main problems have been
identified. If the joint adaptive control is implemented,
the desired joint trajectory cannot be generated from the
given inertia space trajectory since kinematic mapping is
dynamics dependent, and thus is subjected to uncertainty
in parameters. Moreover, the same structured adaptive
control as in joint space is not feasible for inertia space
due to nonlinear parameterization in inertia space. We
approached this problem by making use of the proposed
joint space adaptive controller while updating joint trajec-
tory by using the estimated dynamic parameters and the
given trajectory in inertia space. This method has shown
its effectiveness in simulation.
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Figure 5 Tracking errors and parameter estimations
using joint space adaptive control
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Figure 7 Trajectories in joint space and in inertia

space using inertia space adaptive controller
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