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In space application, robot systems are subject to unknown or
unmodeled dynamics, for example, in the tasks of transporting
an unknown payload or catching an unmodeled moving
object. We discuss the parameterization problem in dynamic
structure and adaptive control of a space robot system with an
attitude-controlled base to which the robot is attached. We first
derive the system kinematic and dynamic equations based on
Lagrangian dynamics and the linear momentum conservation law.
Based on the dynamic model developed, we discuss the problem
of linear parameterization in terms of dynamic parameters,
and find that, in joint space, the dynamics can be linearized
by a set of combined dynamic parameters; however, in inertial
spacevlinear parameterization is impossible in general. Then
we propose an adaptive control scheme in joint space, and
present a simulation study to demonstrate its effectiveness and
computational procedure. Because most takes are specified
in inertial space instead of joint space, we discuss the issues
associated to adaptive control in inertial space and identify two
potential problems: unavailability of joint trajectory because the

mapping from inertial space trajectory is dynamic-dependent and -

subject to uncertainty; and nonlinear parameterization in inertial
space. We approach the problem by making use of the proposed

joint space adaptive controller and updating the joint trajectory by
the estimated dynamic parameters and given trajectory in inertial

space.
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I. INTRODUCTION

Considerable research efforts have been directed to
some primary functions of robots in space applications
such as material transport [19], simple manipulation
[5], manipulation coordination and navigation [16, 21],
basic locomotion [15], and inspection and maintenance
of the space station and satellites [2, 5]. The adaptive
control is critical for the robot system subject to
dynamic uncertainty in these tasks.

For material transport and manipulation tasks,
space robots have to face uncertainty about the
parameters describing the dynamic properties of the
grasped load such as moments of inertia or exact
position of the mass center. In most cases, these

parameters are unknown and thus they cannot be

specified off-line in inverse dynamics for feedforward
compensation in any model-based control scheme. In
catching a moving object [16], the robot is expected
to be capable of adaptation to the dynamics change at
the moment of catching operation. On the other hand,
most space robots are designed to be light-weight and
thus low-powered, for the zero gravity environment
and energy-efficiency concern. As a result, joint
friction and damping are much more significant in
space robots than in industrial robots. These friction
and damping effects are neither negligible nor easy

to model. Adaptive control may provide a feasible
solution to these system dynamics uncertainties.
Adaptive control will also be able to accommodate
various unmodeled disturbances, such as base
disturbance, microgravity effect, sensor and actuator
noise due to extremes of temperature and glare,

or impact effect during the docking or rendezvous
process.

Most existing adaptive control algorithms have the
following shortcomings which cause their applications
in space robots to be unrealistic: the use of joint
acceleration measurement, the need of inversion of
inertia matrix, high gain feedback and considerable
computational cost. The first two must be avoided
even for fixed-based industrial robots, because of lack
of a joint acceleration sensor and the complexity of
inversion of the inertia matrix. Slotine and Li [12]
have tackled these problems successfully. A high gain
feedback is extremely harmful for a space robot which
is usually light-weight and low-powered. Considerable
computation also needs to be avoided for allowable
packaging of self-contained space robots.

This work focuses on the robot system where the
base attitude is controlled by either thrust jets or
reaction wheels. The reaction wheels are arranged
in orthogonal directions, and the number of reaction
wheels can be three or two depending on different
tasks. A standard reaction wheel configuration
can be found in [8]. When the attitude of the
base is controlled, the orientation and position of
both robot and base are no longer free, and the
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Fig. 1.

dynamic interaction results in the dynamic-dependent
kinematics, i.e., the kinematics is in relation to the
mass/inertia property of the base and robot. Control is
not only applied to robot joint angles, but also to three
orientations of the base.

Based on linear momentum conservation law and
Lagrangian dynamics, we first formulate kinematics
and dynamics equations of the space robot system
with an attitude-controlled base in a systematic way.
Based on the dynamic model developed, we study the
linear parameterization problem, i.e., dynamics can
be linearly expressed in terms of dynamic parameters
such as mass and inertia. We find that for the space
robot system with an attitude-control base, the linear
parameterization is valid in joint space, while it is
not valid in inertial space, which can be viewed as
Cartesian space for Earth-based robots.

Using the dynamic model, we propose an adaptive
control scheme in joint space. The scheme does not
need to measure accelerations in joint space, and
a high feedback gain is not required. Since, in most
applications, the tasks are normally specified in inertial
space instead of in joint space, we discuss the issues
in relation to implementation of adaptive control in
inertial space, and we identify two main problems.
The first problem occurs when the joint adaptive
control is executed. The required joint trajectory
cannot be accurately generated by the given trajectory
in inertial space due to the parameter uncertainty in
the kinematic mapping which is dynamics dependent.
The second problem, nonlinear parameterization in

Space robot system with an attitude-controlled base.

Il.  KINEMATICS RELATIONSHIP

In this section, we discuss the kinematics of the
space robot system when the orientation of the base is
controlled and the translation of the base is free. The
relationship between the robot hand motion in inertial
space and robot joint motion is derived using the linear
momentum conservation law.

As shown in Fig. 1, a space robot system with an
attitude-controlled base can be modeled as a multibody
chain composed of n + 1 rigid bodies connected by n
joints, which are numbered from 1 to n. Each body
is numbered from O to #, and the base is denoted by
B in particular. The mass and inertia of ith body are
denoted by m; and I, respectively. A joint variable
vector q = (41,42,-..,4,)" is used to represent those
joint displacements. The orientation of the base is
represented by a vector qp = (qu,qBZ,qB:;)T.

Two coordinate frames are defined: the inertial
coordinate ) ; on the orbit, and the base coordinate
>_p attached to the base body with its origin at the
centroid of the base. As shown in Fig. 1, let R; and
r; be the position vectors pointing the centroid of
ith body with reference to 3, and 3"z, respectively,
then

R;=r;+Rp (1)

where Rp is the position vector pointing the centroid
of the base with reference to 3 ",. Let V; and ©; be
linear and angular velocities of ith body with respect to
>_1» Vi and w; with respect to 3 ;. Then we have

Vi=v;+Vg+Qpxr;

inertial space, makes it impossible to implement the 2)
same structured adaptive control as that possible in Q;, =w,+0p
joint space. We approach this problem by making use . ..
jount sp ppro: P Y £ where Vg and §2p are linear and angular velocities
of a joint space adaptive controller and by updating the . .
- . . e 11 . . of the centroid of the base with respect to ), and
joint trajectory from identified kinematic mapping and « 3
. . oL operator “x” represents outer product of R’ vector.
the given trajectory in inertial space. . . .
. . . . . The velocities v; and w; in base coordinates can be
In the simulation study we investigate the linear
. . represented by
parameterization problem of robot system dynamics,
and illustrate the validity and effectiveness of the vi =JL:(@)q 3)
proposed adaptive control schemes both in joint space
and inertial space. wi = Jai(q)q O]
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where J7:(q) and J4;(q) are the submatrices of
Jacobian of the ith body representing linear part and
angular part, respectively. The centroid of the total
system can be determined by

me. = Zn:m; (5)
i=0

I = i:li (6)
i=0

r.= imiri/mc Q)
i=0

J.= ZmiJLi/mc- ®)

i=1

The linear momentum can be determined [22] by

Vg .
P = [Hy,Hyq] +Hy,gq
Qp

=HyVg +HyoQp +Hy,q ®
where
Hy =m.Us (10)
Hyqo = —m.[rex] (11)
HVq = chc (12)
and Us is a 3 x 3 unity matrix. The matrix function
[rx] for a vector r = [r,{,ry,rz]T is defined as
0 -r. 1
[rx] = r; 0 —TIx (13)
—ry Tx 0
Because there is no external force applied to
the system, the linear momentum is conserved.
However, the angular momentum is not conserved,
for attitude-control torques are applied. The linear
momentum is zero, assuming stationary initial
condition.
P=0. (14)

Therefore, we may represent the base linear velocities
by base angular velocities and robot joint velocities,
ie.,

0
Vg = —l/mc[Hyn,HVq] [ ] . (15)

B
q

Now we derive the relationship between the
motion rate in inertial space and that in joint space.
For position control tasks, we are interested in
controlling three orientations of the base, and six
generalized displacements of the robot end-effector
simultaneously. Control actions are instead applied at
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n robot joints and three base attitudes. We therefore
define V and 6 as generalized velocities in inertial
space and joint space,

V =[Q5,Ve]" (16)
6 =[25.4]" 7

where Vg is the velocity of the robot end-effector in
inertial space.

VE=vg+Vg+QpXxrg (18)
Since the velocity of the end-effector in the base
coordinates is determined by
ve =JEq (19)

where Jg is the manipulator Jacobian with respect to
the base coordinates,
) Qp
Ve = Jeq — 1/m[Hya,Hyg] i —[rex]9s

1 1 Qp

= [——-an —[re x),JE— —HVq] [ ) ]

me me q

Qp

= [[(re —re)x],JE — J] ql (20)
Therefore, the motion rate relationship between joint
space and inertial space can be obtained by introducing
a special Jacobian matrix N which differs from the
Jacobian in a fixed-base robot or the generalized
Jacobian in a completely free-flying space robot

system.
Qp Q,
=N 21
[l =~[a) @
Us O3
= 22
N [Jrr JrE] ( )
where
Jrr = [(xre —rE)X] (23)
JE= JE— P (M')

and Oj is a 3 x 3 zero matrix.

. DYNAMICS AND PARAMETERIZATION

In this section, we derive a dynamic equation of
the space robot system with an attitude-controlled
base. Based on the structure of dynamics equation, we
discuss the property of linear parameterization of the
system.
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The total system kinetic energy is represented
by [22]

Hgo Hg,| [958
+1/2[R2p,4] - H i
Tq q

Qp
T =1/2V5Hy'Vp + V5 [Hyo,Hy,] [ ]

Hyq

Qp
=1/@2m})Qs,4] [H ] HV[HVn,HVq][ i ]

Vq

Hyq Qp
—1/mc[93,¢i][ ][HVnﬂVql[ ) ]
H q

Vg
[Ha Hag] [Q8
+1/29,41 | _
an Hy q

Hqo -Hl Hya/m. Hog— H;nHVq/mC] [QB]

Hog - H] o Hyo/m. Hy—H] Hyg/mc

=1/2[82p,4] [ q

Qp
=1/2[nB,q]M(o)[ ) ]
q
=1/26"M(6)6 (25)

where M is the inertia matrix of the system, H, is the
robot inertia matrix in base coordinate, i.c., fixed-base
inertia matrix, and

8 =[qp,q)" (26)
Ho =L+ ) D(r)m; 27)
i=1
Hq, = Z(IiJAi + mifri}lLi) (28)
i=1
M;; My
M(@) = [ ] 29

® M; Mz @)
My =Hg — H;T/nHm /m. (30)
My = an - HgnHVq [m. (31)
My =M}, 32)
MZZ = Hq - H]T/‘qHVq/mc' (33)

The property of linear parameterization to dynamic
parameters is one of the prerequisite conditions under
which most adaptive and nonlinear dynamic control
schemes are developed. It has been shown [22] that
the problem of parameterization linearity in dynamics
can be reduced to the problem of parameterization
linearity in an inertia matrix. Therefore, in order to
study whether linear parameterization is valid for the
space robot system with an attitude-controlled base,
we need to show whether the inertia matrix M can
be linearly represented by a set of properly chosen
combinations of dynamic parameters.

Based on the previous derivation, each member
of matrix M can be further expanded in the following
forms.

,, . s11 S12 513
My =1+ ZD(r,')mi T $21 Sn» B (34)
- ¢
i=1 531 S32 S3:

where 5;; = 5;; and is determined
j j

n 2 n
s11 = (Zmiriy) + (Zmiriz
P

i=1

(35
(36)
@7

)
(357
(57
e () () o
(32
(5]

(39)

Z m;ri, (40)
i=1
and
r’2, +12 —rry 1
D(r) = [rx)[rx]= | —r,r, r2472 -1y,
—rts  —ryr, ri4r?
4)
Thus,

Mu=IL+ iD(r,-)m,- - ZERijmimj/mc (42)

i=1 i=1 j=1
1 n T n
Mxn =H, - P (Zm;Ju) (Z miJLi>
¢ \i=1 i=1
n n
=H,; + ZEQ,—,-m;m,-/mc (43)
i=1 j=1
n n n n
M=) Lu+ > rLim; + YN siimimj/m,
i=1 i=1 i=1 j=1

(44)

where the matrices [r;]JLi, J4i, Ri, Qi, S; are only
functions of geometric parameters, i.e., independent
of dynamic parameters. The above formulations imply
that the inertia matrix can be linearly represented by
a set of combination of dynamic parameters, my, I,
mim;/me, i, j, k =0,1,...,n.

The following two issues must be noted. First, from
a control point of view, we only want to verify the linear
parameterization in terms of any set of combination
of dynamic parameters. However, from a parameter
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identification point of view, the set of combination of
dynamic parameters must be carefully selected [1, 10].
Second, the parameterization problem we discussed is
specifically for dynamic parameters, i.c., mass/inertia
parameters instead of geometric parameters. In space
application, uncertainty in dynamic parameters is more
important than geometric parameters, because not
only do tasks involve unknown payload and unmodeled
manipulation, but also dynamic parameters are usually
unmeasurable. The geometric uncertainty may be
significant in precision analysis and geometric design
of robot configuration [20].
From the kinetic energy formulation, we can derive
a dynamics equation by Lagrangian dynamics.
Mé +B(6,6)0 =T (45)
where
B(9,6)6 = Mé— %(%o'TMo‘). (46)

The corresponding dynamic equation in inertial
space is

Hx + C(x,x)x =F (47)

where
H=NTMN! (48)
C=NTBN"'-HNN"L (49)

and N is a gencralized Jacobian matrix and is dynamics
dependent for the space robot system. The inertial
space dynamic equation can be lincarly expressed in
terms of dynamic parameters if, and only if, the inertia
matrix H can be linearly parameterized [22] since

C(x,%)x = Hx — %(%XTHX). (50)
We suppose N~! exists, and
N*
-1 _
det(N) 1)

where N* and det(N) are the adjoint and determinant
of the matrix N, then

_ N*TMN*
T [t

In the above equation, the generalized Jacobian
matrix [det(N)]? appears as the denominator. From
the deviation procedure of the N in the last section, it
is clear that the N is time varying and highly coupled
by dynamic parameters, ie., mass/inertia. For such a
complicated nonlinear, time-varying function combined
with dynamic parameters and time-varying joint angles,
it is impossible that every element of N*MN* has the
common factor [det(N)]? at every instant.

Even if the above statement is true, there is still a
possibility to linearly parameterize H, provided that
the numerator can be linearly parameterized and the
denominator can be expressed as a product of two

H (52)
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scalar functions with only one containing dynamic
parameters, ie.,

det(N) = fi(mi, ;) f2(6:) (33)

where fi is a function of dynamic parameters which
are unknown but constant, and f is a function
independent of any dynamic parameters. This,
unfortunately, is impossible in general due to high
coupling between dynamic parameters and joint
variables. For example, two DOF generalized Jacobian
may contain the following simple terms

det(N) = m; sin(6;) + mpcos(62). 54)

Even for such a simple form, det(N) cannot be
decomposed as a product of two functions with one
containing m; and my only; nor can [det(N)]*.

The above discussion may raise a question why,
for a fixed-base robot, the similar structured adaptive
control can be implemented in Cartesian space. This is
because the Jacobian in the fixed-base robots is only
kinematic dependent, ie., a function of geometric
parameters and joint angles. Because of the dynamic
interaction between the base and the robot, the
generalized Jacobian for a space robot with an attitude
control base is dynamics dependent, i.e., not only a
function of geometric parameters and joint angles,
but also a function of the dynamic parameters. It is
these parameters that we aim to adapt in our problem.
Therefore, the inertia matrix for the fixed-base robot
can be linearly parameterized for dynamic parameters
in Cartesian space, while for a space robot linear
parameterization is impossible in inertial space.

Generally speaking, for a space robot with an
attitude-controlled base, dynamics can be linearly
parameterized in terms of dynamic parameters in joint
space, but cannot be parameterized in inertial space.

IV. ADAPTIVE CONTROL IN JOINT SPACE

At an early state, adaptive control approaches for
conventional fixed-base robot manipulators are based
on unrealistic assumptions or approximations of local
linearization, time-invariant, and decoupled dynamics
[4, 7]. These assumptions or approximations are
relaxed after some results are developed in the context
of parameter estimation [10]. Based on the possibility
of selecting a proper set of equivalent parameters such
that the manipulator dynamics depends linearly on
these parameters, research on adaptive robot control
can now take full consideration of the nonlinear,
time-varying and coupled robot dynamics. As stated
in [9], all three kinds of adaptive controllers in use,
i.e., direct [3, 12}, indirect [11], and composite adaptive
controllers [13], rely on the possibility of linear
parameterization of manipulator dynamics.

From previous discussion, we learned that the
dynamics of the space robot system in joint space is
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linear in terms of a set of combinations of dynamic
parameters. Therefore, this set of new combined
parameters can be used in the design of our adaptive
controller. This leads us to propose an adaptive control
algorithm in joint space. Since a unique solution may
be found from inverse kinematics of the robot system
with the attitude-controlled base, an adaptive control
algorithm in joint space is feasible. However, this is
not true for a complete free-flying space robot system.
Recall the dynamic equation in joint space

M¢é + B(6,6)6 = . (55)
We define a composite error s
s=¢€,+ (e, (56)
e, =6,—6 57)
é,=60,-6 (58)
and we also define modified joint velocity
9 =0+s (59)
and modified joint acceleration,
6" = ‘%0’ +s (60)
ie.,
0" =60+s+s
=(0a- €)+ (8, + (&) + (e, + ¢ep)
=04+ (C+1)e, +Ce, =65 +s+(¢,. (61)

If we apply the following control law in joint space,
T =M#¢" +RBo’ (62)
where M and B are the estimation of the matrices M
and B, then
M§ +B(9,6)d = M6" + B¢’ (63)
i'e" - .. A~ A
M6 = —B(6,6)6 + M6” + B'.
Defining M =M —M, B =B — B, we have
Mé, = Mf,; — M§
=M[0" —s—(eé,] — [-B6 + M6" + B
=M[6" — 5 —(¢,] - [-B(6' —s) + M6" + B6']
= —M6" —B6' — (M + B)s — M(¢,
=-Y(6,6,04,04,62)a— (M + B)s — M(¢,

(&4)

where
Ya = M¢” + B¢’

a=a—a

(65)
(66)
and 4 is the estimation of the unknown dynamic
parameters of the space robot system including the

robot, the base, and probably the payload which is
being manipulated.
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We now design our adaptive control algorithm

using the Lyapunov function candidate
Vv =1/2s"Ms +1/2a'Ta 67)

where the matrix T is diagonal and positive definite.
This yields

V =1/2s"Ms +s"Ms + a’Ti

1/2s"Ms +s"M(e, + é,) +a'Ta

= —s"Ya—s"(M +B)s + 1/2s"Ms + a’T4
= —s"Ms +1/2sT (M~ 2B)s + &7 (T4 — Ys).

If we use adaptation law

a=r"1yTs (68)
then

/= —sTMs <0 (69)

due to the fact that the matrix M — 2B is skew-

symmetric, and M is positive definite. Therefore, the
system is stable in the sense of Lyapunov, because
V' is a positive, nonincreasing function bounded
below by zero. s(¢) and a(r) are then bounded, and
s(f) is a so-called square integrable or L, function
[14]. Provided that the function Y is bounded, this
is sufficient for the purpose of control because s(t)
converges to zero as the L, function must converge to
zero as ¢ — co. The parameter estimation error a(¢)
converges to zero only if persistent excited input is
utilized.

The output error

s=¢,+ (e, (70)

converges to zero, which in turn implies that e, — 0 as
t — oo since ¢ is positive. We can now readily state our
adaptive control algorithm in the following theorem.

THEOREM 1 For the dynamic system (55), the adaptive
control law defined by (62) and (68) is globally stable
and guarantees zero steady-state error in joint space.

The composite error s is of PD-type structure
which is the same as the composite error defined
by Slotine and Li [12]. In general, the PD structure
control adds damping to the system, but the
steady-state response is not affected. The PI structure
adds damping and improves the steady-state error at
the same time, but rising time and settling time are
penalized. To improve the system steady-state error
in the proposed adaptive control algorithm, the PID
type s can also be used. Since the use of the PID type
s causes the order and type of the system to increase
by one, the steady-state error is decreased, and thus
the system is more robust to parameter uncertainties
which usually cause a significant steady-state error.
Moreover, the PID type s allows two parameters,
instead of one, to be adjustable in order to achieve
a desired system performance. In the following, we
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discuss the stability of the control scheme when the
PID type s is employed.
Define

t
s=ép+(1ep+(2/ e, dr

t

(M)

and the gains (; and (» can be selected such that the
eigenvalues of the tracking error equation

&, +(1ep +(2ep =0 (72)

have negative real parts. This ensures the global
stability of the system when s converges 10 z€ro.

Using the PID type s and the same definitions of ¢’
and 8", we can derive that

Mé, = M6, — M§
=M[0" — s — (1&, — (2¢,] — [-B6 + Mq" + BY']
= —Y(6,6,64,0,)a — (M + B)s — M(1é, — M(ze,
where
(73)
(74)
When the same type of Lyapunov function is used

V =1/2s"Ms +1/2a'Ta (75)

then,
V =1/2s"Ms +s"Ms +a’Ta
=1/25"Ms +sTM(&, + (1¢, + (2e,) +@'T'a
= _sTMs + 1/2sT(M — 2B)s + & (Td — Ys).

If adaptation law
a=r"1vYTs (76)
is used, then

V=-s"Ms<0 an

for all s due to the fact that the matrix M — 2B is
skew-symmetric, and (1,2 > 0, and M is positive
definite.

A block diagram of the proposed control
algorithm with PD type s is shown in Fig. 2. Our
adaptive controller is conceptually simple and easy
to implement. This approach does not require the
use of joint accelerations and inversion of the inertia
matrix. Its computational cost is low because it can
be implemented through the use of Newton—-Euler
recursive formulation. It can be seen from (62),
which has the same structure as the computed torque
method, that the control law can be computed
efficiently using a Newton-Euler formulation once &
has been specified. A high gain feedback is not a must
for the system stability. With a slight modification,
this adaptive approach is applicable for the fixed-basc
industrial robot control.
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0 s=e +Lo | ,0%8 | c=bo+B0] T,| space robot 0.0
8y —> O'=0+s = Y3 system
) a'-s(e‘)u

a=r"Y's

Fig. 2. Block diagram of adaptive controller in joint space.

V. ADAPTIVE CONTROL IN INERTIA SPACE

Conceptually, for most applications, the desired
robot hand trajectory, i.c., position, velocity, and
acceleration must be specified in inertial space. For
example, for catching a moving object, the desired
trajectory after catching depends upon the tasks and
the motion trajectory of the object before catching,
and thus must be specified in inertial space. In other
words, as in the case of fixed-base robots for which
tasks are normally specified in Cartesian space, tasks
in space applications are unlikely to be specified in
joint space. Fortunately, the mapping from robot
hand displacement in inertial space to joint angles
can be uniquely determined for a space robot system
when the base attitude is controlled. When the base
is completely free flying, this mapping is not uniquely
determined [22].

However, the unique kinematics relationship
can only be determined when dynamic parameters
are given, because this relationship is indeed
dynamic-dependent. When some dynamic parameters
are unknown, which is indeed the reason why the
adaptive control is needed, the mapping cannot be
determined. Therefore, the primary difficulty of
extending our approach from joint space to inertial
space is that the desired trajectory in inertial space
cannot be transformed to the desired trajectory in
joint space because some dynamic parameters are
unknown. In previous discussion, we have utilized a
desired trajectory in joint space, as other researchers
have done [18], without giving any explanation about
how the trajectory is generated.

The problem can be resolved if the same structured
adaptive control scheme can be implemented in
inertial space. The adaptive control with the same
structure, however, is not feasible because the scheme
requires that the dynamic model must be linearly
parameterized. As has been known, the dynamic
related generalized Jacobian of a space robot makes
it impossible to suitably choose a set of dynamic
parameters such that the inertial space system
dynamics can be linearized. That is why the structure
of the adaptive controller in joint space is not feasible
for adaptive control in inertial space.

We approach the problem in the following way.
First, given a trajectory in inertial space, we use an
initial estimation of dynamic parameters to compute
initial joint trajectory. Then we use the initial joint
trajectory and dynamic parameters in the proposed
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X3 Forward

Kinematics
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Parameter

Fig. 3. Block diagram of adaptive control scheme in inertial space.

joint space adaptive control algorithm. After a
certain period of time, we update the system dynamic
parameters by using new estimated ones in the outer
loop of our controller. We can then specify a more
precise joint space trajectory based on these new
parameters and the inertial space trajectory. Since the
inertial space trajectory is uniquely determined by the
joint space trajectory and dynamic parameters, it can
be shown from the Jacobian relationship that position
error in inertial space converges to a given boundary
if position errors in joint space and parameter errors
are bounded, provided that the robot is not in its
singularity configuration. The control scheme is
illustrated in Fig. 3.

It is worthwhile to discuss two issues in the
implementation of the proposed control scheme.

First, to accurately estimate unknown parameters, a
persistent excitation (PE) trajectory is required to drive
the robot joints. PE trajectories in joint space and in
inertial space are not equivalent, because the spectrum
of trajectory signal in inertial space is different from
the spectrum of the same signal in joint space due to
nonlinear kinematic transformation. Therefore, it is

of importance to carefully choose an initial trajectory
in inertial space such that the same trajectory in

joint space is PE. If the PE condition is not satisfied,
parameter identification error occurs, although the
joint space position errors may still converge.

Second, the updating time for inverse kinematics
using the estimated parameters in the outer loop
of our controller must be slow enough to maintain
system stability. The outer loop, as shown in Fig. 3,
is used to update the inverse kinematics and therefore
the desired joint trajectory which is used in the joint
space adaptive controller. A fast update, especially one
using incorrect parameters p;, may not guarantee the
convergence of parameter errors. In the simulation,
the updating time for inverse kinematics is set to 10 s.
Simulation results have shown that position errors in
inertial space converge to zero as errors in joint space
converge to zero and estimated parameters converge to
their true values.

In fact, if the updating time for inverse kinematics
is long enough, we can also view the control scheme as
a two-phase approach: the parameter identification
phase and the control phase. That is, estimate
dynamic parameter in joint space using the joint space
trajectory transformed by the given inertia space
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trajectory and initial guess of parameters, and then
control the system in inertial space once the dynamic
parameters have been correctly identified. If the
dynamic parameters are estimated ideally, the control
phase may also be executed using the model-based
dynamic control algorithm such as the one given in
[22]).

The above approach is computationally simple and
efficient in implementation. Although it requires a
slow control loop because of parameter estimation,
the approach is feasible for space tasks for which the
required motion is not too high in general. At the time
this study was done, there have been some adaptive
control schemes appeared based on the description in
inertial space directly, such as the one by Walker and
Wee [17] and Gu and Xu [6].

VL. SIMULATION STUDY

In this section, we conduct a case study to show
the computation of the proposed algorithms and
their feasibility in robot motion control. Though the
following discussion is confined to adaptation to mass
variation only, our algorithm is also applicable to
other parameter adaptation, provided that a set of
combinations of those parameters can be chosen such
that the dynamics can be linearly expressed in terms of
the parameters in which we are interested.

A two-DOF revolute manipulator with link length
given by /; and [, (/; =1, =1) is considered as a
lumped-parameter model with point mass m; and m,
at the end of each link. For simplicity, we assume that
the base attitude can be successfully controlled so that
we need only consider the control of the robot itself.
However, it must be pointed out that our adaptive
control algorithm can be applied to control the robot
motion and the base orientation simultaneously, albeit
a more complicated computation. The system model
for simulation study is shown in Fig. 4.

At initialization, m. and R, are computed, and they
remain unchanged unless a load is added.

me.=mo+m; +mo (78)
m.R. = moRy + mR; + myR, (79)
Ri=Ro+n (80)
Rz =Ry +r,. (81)
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Fig. 4. Planar space robot system model.

When the robot is in motion,

m m
Ro=R,— “trj— —*r, 82)
m, m,
Rg =Ry. (83)
The generalized Jacobian is
N=Jg—-J &4
and
Je=T (85)
M, M
J. = chl + CJZ (86)
—(my + may)sy —mas;y  —mas
=_I_[(1 2)51 2512 2512 @7
me (ml + m2)(:1 + mycy2 moC1p

where s and ¢ stand for sine and cosine, €.8., §1 =
sin(q1), ¢12 = cos(q1 + g2). The system dynamics has
the following form,

M{i+B(Qq)4="r (88)
where
M=M,-M, (89)
[P )
M; = mcdT 3. oy
r [ml +2my(my +mp)(1+c2) mi(l+c)+ mlmzcz]
me m3(1 + c) + mymacy m3
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therefore,

M 7 [moml + mymag +2moma(l +c3) mymy + momy(1+ c2)
me mymy + momy(1 +¢3) mymy + mymy
3

= p1R1 + p2Ry + p3Rs %4
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where

_ momq
n==- (95)
_ mim3
p2=— (%96)
m
p3= —;(;lﬂ 7
R_[IZ 0] Ry = 12 12]
=10 o 2= [12 2
20 +c)2 (1 +c)l?
Rs = [ (A+et (1+c2) ] (98)
1+ c)? 2

It is noted that M is linear in terms of combined
dynamic parameters pi, p2, and ps. This example
shows that dynamics of the space robot system with an
attitude-controlled base can be linearly parameterized
in joint space. We also note that mg, my, and m> can
be uniquely determined by p1, p2, and p3,

1 1 1
m=r (54 5+ ) &
1 1 1
my = pap3 (;1‘ 7 + E) (100)
1 1 1
mo = p1p3 (E + 7 + g) . (101)
The matrix B is determined by
26,7 26 -
mm[ e 2], o
where 2P Py
= [ sy 0 ] . (103)
Our adaptive control law is
r=Mq" +Bq =Ya (104)
Y = [Riq” Roq” Rsq” +Ryq] (105)
h
a=|p (106)
p3
with the following adaptation law
715TR1q“
id= 728" Roq” (107)
73T (Rsq” + Ruq’)

To study the proposed adaptive algorithms, we use
the following common set of conditions:

1 = 7g5(54 +6(Ein(0) + cos(4))) (108)
toa = %(_—126 +6(sin(2t) + cos(61)))  (109)

(=10, (110)
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Fig. 5. Tracking errors and parameter estimations using joint space adaptive control.

In the first case we used the following mass
parameters, mo = 41 kg, my = 5 kg, mp = 4 kg, and the
initial guess of all three parameters is set to 50% of
their true values. It can be found from Fig. 5 that joint
errors converge to zero and all parameters converge to
their true values 4.1, 0.4, and 3.28 (with small relative
errors 1.2%, 2.1%, 2.5%, respectively) after a transient
period (approximately 10 s). The results showed
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the validity and efficiency of the adaptive algorithm
proposed.

We then compared the performances of the adaptive
controller and dynamic controller without adaptation
when there is uncertainty in dynamic parameters. In
order to make the dynamic control more favorable,
we use 80% of true values as initial estimates of those
dynamic parameters. The dynamic control algorithm
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Fig. 6. Comparison between adaptive control and dynamic control.

is based on PD-type structure in joint space without the base mass is sufficiently large compared with that
consideration of parameter uncertainty [22]. Fig. 6 of the robot. Fig. 7 gives the simulation results when
gives plots of the variations of two joint position errors  the base mass is 50000 kg. The results have shown that
by using adaptive control and dynamic control. The the performance is not sensitive to the mass ratio, and
adaptive control performance is distinctly superior to also have shown that the proposed control algorithm is
the dynamic control response. applicable to fixed-base robots.

To study the effect of mass ratio of the base with Fig. 8 shows identification of combined parameters
respect to the robot, we performed simulation when D1, P2, and p3, and the resultant mass my, my, and
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Fig. 7. Example of adaptive control for fixed-based robot.

my, in the above case. From Fig. 8 we found that nonlinear dynamic parameters p;, and ps converge to
estimation of all parameters my, my, and mg are m; and m, due to the fact that the base mass is almost
very close to their true values. This demonstrated infinite.

that identification of combined dynamic parameters is In order to compare two different adaptive control
equivalent to the identification of dynamic parameters  algorithms (PD type and PID type), various cases

mj1, ma, and my, as we discussed previously. It is have been tested. For a PE trajectory, both algorithms
interesting to note that in Fig. 8 the estimation of presented almost identical performances. For a non-PE
446 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 30, NO. 2 APRIL 1994
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Fig. 8. Ilustration of combined dynamic parameter identification.

trajectory, such as the steady-state performance is improved significantly
T 2 using PID type adaptive controller, as shown in Fig. 9.
Gia = 75560~ +0.05) (111) For inertial space adaptive controller, an initial

guess of the updating parameters is set to 80% of
o 2 the true value. The inertial space trajectory and joint
924 = @(_ 120 -1 +0.05%) (112) space trajectory employed in the simulation are shown
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Fig. 9. Comparison between PD type and PID type adaptive control schemes.

in Fig. 10. We used 10 s as updating time for inverse VII. CONCLUSIONS

kinematics. The effectiveness of this adaptive scheme

has been verified by the tracking errors shown in Adaptive control is critical for various robotic
Fig. 11. It is found that position errors in inertial space ~ applications in space, such as material transport
converge to zero as errors in joint space converge to and light manipulation, in which robots have to face

zero and estimated parameters converge to their true  uncertainty on the dynamic parameters of the load or
values. the structure. Based on Lagrangian dynamics and
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Fig. 11. Tracking errors in joint space and in inertia space using inertia space adaptive controller.

linear momentum conservation law, we derived system
dynamic equations. Then we showed that the system
dynamics in joint space can be linearly parameterized,
i.e., the structure of dynamics equation in joint space
can be linearly represented by a set of combined
mass/inertia parameters, but the dynamics in inertial
space cannot be linearly parameterized.

We proposed an adaptive control scheme in joint
space to cope with dynamic uncertainties based on
the dynamic model developed. The scheme is effective
and feasible for space robot applications because it

XU ET AL.: PARAMETERIZATION AND ADAPTIVE CONTROL

eliminates the use of joint acceleration measurement,
inversion of the inertial matrix, high gain feedback, and
considerable computation cost.

Considering that most tasks in space are specified
in inertial space, we discussed the issues of adaptive
control of the robot for the tasks that must be fulfilled
in inertial space. Two main problems have been
identified. If the joint adaptive control is implemented,
the desired joint trajectory cannot be generated from
the given inertia space trajectory since kinematic
mapping is dynamics dependent, and thus is subject
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to uncertainty in parameters. Moreover, the same
structured adaptive control as used in joint space

is not feasible for inertial space due to nonlinear
parameterization in inertial space. We approached
this problem by making use of the proposed joint
space adaptive controller while updating the joint
trajectory by using the estimated dynamic parameters
and the given trajectory in inertial space. In the
simulation study, we showed the effectiveness of the
proposed method, illustrated the procedure to design
the controller, and discussed the implementation issues
such as parameter estimation and updating time.
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