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Abstract

Human detection and body parts identi�cation are

important and challenging problems in computer vi-

sion. High performance human detection depends on

reliable contour extraction, but contour extraction is

an under constrained problem without the knowledge

about the objects to be detected. This paper proposes

a recursive context reasoning (RCR) approach to solv-

ing the above dilemma. A TRS1-invariant probabilistic

model is designed to encode the shapes of the body parts

and the context information | the size and spatial

relationships between body parts. A Bayesian frame-

work is developed to perform human detection and part

identi�cation under partial occlusion. A contour re-

construction procedure is introduced to integrate the

human model and the identi�ed body parts to predict

the shapes and locations of the parts missed by the con-

tour detector; the re�ned contours are used to reevalu-

ate the likelihood ratio. Therefore, contour extraction,

part identi�cation, and human detection are improved

iteratively. The experimental results of the RCR ap-

proach to human detection and body parts identi�ca-

tion in cluttered scenes are very encouraging.

1 Introduction

Human detection and body parts identi�cation are

important and challenging problems in computer vi-

sion. They have a wealth of applications ranging

from automated navigation [24] to human-computer

interaction [23]. The main challenge facing a vision-

based human detector is the high degree of variability

with the human appearance due to articulated mo-

tion, partial occlusion, and inconsistent cloth texture.

Contours (the silhouettes of objects) are the common

features used to overcome inconsistent texture; parts-

based approaches [1, 3, 4, 5, 6, 9] can handle occlusion

and articulated motion e�ectively. Therefore, we em-
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Figure 1: Flow chart of the RCR algorithm

ploy the contours or the outlines of human body parts

as features to detect people.

Many part-based methods [1, 3, 4, 5, 6, 7, 18, 9]

have been proposed but only with limited success.

Some approaches [1, 2] assumed that the object parts

are statistically independent in order to simplify the

problem. This assumption works when the object

parts have very salient shapes (such as face features).

However, it loses the capability to check the consis-

tency between the object parts by ignoring the spatial

and size relationships between the parts. Another as-

sumption made by the previous work [4, 6] is that the

object contours have been correctly detected and par-



titioned before performing part identi�cation and hu-

man detection. However, contour detection and par-

tition are very unstable procedures and are unable to

provide perfect and complete contours due to occlu-

sion, the cluttered background, or the low contrast.

In this paper, we propose a recursive context rea-

soning approach (as illustrated in Fig. 1) to per-

form and re�ne contour extraction, human detection,

and parts identi�cation iteratively. A TRS2-invariant

probabilistic model is designed to encode the shapes

of the body parts and the context information | the

size and spatial relationships between body parts. A

Bayesian framework is developed to perform human

detection and part identi�cation under partial occlu-

sion. A contour reconstruction procedure is intro-

duced to integrate the human model and the iden-

ti�ed body parts through a Kalman �lter [11] to pre-

dict the shapes and locations of the parts missed by

the contour detector; the re�ned contours are used to

reevaluate the likelihood ratio. Therefore, contour ex-

traction, part identi�cation, and human detection are

improved iteratively.

Burl et al. [8] have proposed a related method which

combines the intensity pattern and the spatial rela-

tionship between the face features to detect faces from

the cluttered environment. However, they do not use

the spatial relationship to help detect face features,

and no size relationship and recursive procedure is

involved in face detection. The main reason is that

face features have very distinctive patterns and can

be detected reliably based on local features. In hu-

man detection, we rely heavily on the spatial and size

relationships to identify body parts, because human

features like arms and legs do not present very dis-

tinctive texture patterns or shape cues.

The remainder of this paper is organized as fol-

lows. Section 2 presents the problem formulation in

the Bayesian framework. Section 3 gives the outline of

the RCR algorithm. The TRS-invariant probabilistic

human model is introduced in Section 4. The details

and the experiments of part identi�cation, human de-

tection, and human contour reconstruction are given

in Section 5 to 7, respectively. Section 8 discusses the

contributions and the limitations of the proposed al-

gorithm, and proposes the future work.

2 Problem Formulation

2.1 Human Detection

We employ the contours (the silhouettes) of ob-

jects) as the features for human detection and for-

mulate the human detection and part identi�cation
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problems in a Bayesian framework. The human de-

tection problem is: given a detected contour C, deter-

mine whether this contour represents the silhouette of

a person (the hypothesis w) or not (the hypothesis �w).

The optimal method to detect a person is based on

the maximum a posteriori (MAP) rule: If P (wjC) �

P ( �wjC), select w, i.e. a person is detected. Otherwise,

select �w, i.e., no person is detected.

By applying Bayes' rule, we can rewrite the optimal

decision rule as follows:

P (Cjw)

P (Cj �w)

w

>
<
�w

P ( �w)

P (w)
(1)

In Eq. (1), the left hand side is the likelihood ratio;

the right hand side is the ratio of prior probabilities

which can be considered as a threshold controlling the

receiver operating characteristics (ROC) of the detec-

tor.

Because the detected contours are not always com-

plete and perfect, there are situations when the in-

formation provided by the detected contours is not

enough to make the �nal decision. Therefore, We set

two thresholds to de�ne an uncertainty region [�1; �2].

Then the decision rule becomes:

8><
>:

select w; if P (Cjw)=P (Cj�w) > �2

no decision; if P (Cjw)=P (Cj�w) 2 [�1; �2]

select �w; if P (Cjw)=P (Cj�w) < �1

(2)

2.2 Parts Identi�cation

The parts identi�cation problem is to match a set

of partitioned contour segments to a set of human

body parts. We formulate this problem as an op-

timal hypothesis selection problem. Assuming that

the contour C is partitioned into n segments C =

fc1; c2; :::; cng, and that the human model consists of

m body parts or human features: F = ff1; f2; :::; fmg.

Let H = (h1; h2; :::; hm; view) represent a hypothesis

about the matching between the contour segments in

C and the human features in F , and about the view-

point from which the person is observed, where

hi =
n
j; if fi is matched with cj
0; if fi is occluded or not detected

and view 2 ffront=back; sideg. This is not a one to

one mapping. It allows certain body parts being oc-

cluded and also allows certain contour segments being

outliers (not labeled by any body parts). Unlike previ-

ous parts identi�cation approaches that either assume

no outliers [16] or developed two procedures [6, 5] to

locate body parts and attached objects independently.



Our approach provides a single procedure to achieve

both goals.

We select the MAP hypothesis H� from the hy-

pothesis space H, s.t.

H� = argmax
H

P (HjC;w) (3)

= argmax
H

P (CjH;w)P (Hjw): (4)

We de�ne

G(H)
�
= P (CjH;w)P (Hjw) (5)

as the goodness function that rates hypotheses.

3 Outline of the RCR Algorithm
The formal description of the RCR algorithm (as

shown in Fig. 1) is as follows. Let Ĉt be a set of

contour segments detected or reconstructed at step t.

Step 1: part identi�cation: generating a hypothe-

sis Ht from Ĉt, s.t. Ht = argmaxH G(H):

Step 2: human detection: calculating the likeli-

hood ratio �t = P (ĉtjw)=P (ĉtj �w) to determine if a

person is present in the image based on the decision

rule given in Eq. (2). If �t 2 [�1; �2], then goto Step

3 to continue searching for a more complete and ac-

curate set of contours. Otherwise, declaring that a

person is detected if �t > �2, or declaring that no

person is detected if �t < �1.

Step 3: Reconstructing the outlines of the body

parts Ĉ�t+1 from the outlines of the identi�ed body

parts Ĉt and the human model.

Step 4: Aligning Ĉ�t+1 to the edge features in the

image and generating the aligned contour set Ĉ+

t+1.

The stop conditions are (a) we can make a reliable

decision on whether the image contains a person or

not; or (b) no more human body parts can be identi-

�ed from Ĉt; or (c) there is no further improvement

or changes to Ĉt.

4 Human Body Model
The human body model plays an important role in

the RCR algorithm. It provides the constraints for

human detection and part identi�cation, and for in-

ferring the shapes and locations of the missed body

parts from the detected body parts. For the purpose

of human detection and model learning, we developed

a TRS-invariant human body model. For the pur-

pose of modeling the shape variations between di�er-

ent people, we encode the model parameters as joint

probability distributions. We call the resulting model

| the TRS-invariant probabilistic model. In the fol-

lowing subsections, we will describe the human body

model in detail.

(a)  front view (b)  side view

Figure 2: Human body model
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Figure 3: Body part model

4.1 TRS-Invariant Body Model

There are two 2D-human body models | the front-

view model and the side-view model as shown in Fig.

2. Each human body model consists of six main body

parts (the head, the torso, two arms and two legs)

and eight subparts of the four limbs. The body parts

are constrained to connect to each other at the joints.

The body parts are modeled with ribbons [12, 13] as

shown in Fig. 3. We de�ne the axis or the spine of

a ribbon as the major axis of a body part, the line

segment that perpendicularly bisects the major axis

as the minor axis. Then we de�ne the ratio of the

length of the major axis (b) to the length of the minor

axis(a) as the aspect ratio of a body part. The aspect

ratio captures the global shape of a body part and is

TRS-invariant. Each limbhas a unique reference point

which is located at the joint point (as shown with stars

in Fig. 2). The reference point of the torso is located

at its center. A body part model is parameterized with

a vector (s; b; x; y; �), where s = a=b is the aspect ratio,

(x; y) are the coordinates of the body part's reference

point, and � is the orientation of the major axis. The

body part model constrains the global shape of a body

part while allowing local shape deformation.

Accordingly, the human body model is parame-

terized with four model matrixes: the shape vector

S = fs1; :::; smg, the size ratio matrixR = frijg; i; j =

1:::m, where rij = bi=bj, the spatial relationships or

the con�guration vector X = (x1; y1; :::; xm; ym), and



the orientation or the posture vector � = f�1; :::; �mg.

Obviously, S and R are TRS-invariant.

The position of a subpart fi is constrained by the

length and the orientation of its main body part fj :

(xi; yi) = (xj ; yj) + bj � (cos�j ; sin�j): (6)

Thus, we will just model the con�guration of the

six main body parts. Let the vector X =

(x1; y1; :::; x6; y6). To make this vector TRS-invariant,

we map the coordinates of the joints to the normalized

torso coordinate system with the length of the torso

normalized to be 1. Then we obtain the TRS-invariant

con�guration model: U = (0; 0; u2; v2; :::; u6; v6),

where (ui; vi) = ((xi; yi)�(x1; y1))=b1, (x1; y1) are the

coordinates of the torso's center, and b1 is the length

of the torso.

Currently, the human model is parameterized with

three TRS-invariant matrixes: S;R; U , which con-

strain the shapes, the relative sizes and the positions

of the body parts, respectively. In the future, we are

going to learn the posture model in order to make

stronger constraints on the appearance of a person.

4.2 TRS-Invariant Probabilistic Model

We make the human body model deformable by

representing the model parameters with joint Gaus-

sian distributions. The aspect ratio, the length, and

the location of a body part are statistically indepen-

dent of each other, thus, the three model matrixes

S;R; U are also statistically independent of each other.

We model their probability distributions separately:

S � N ( �S;�S) (7)

R � N ( �R;�R) (8)

U � N ( �U;�U): (9)

The above probability distributions provide metrics

to evaluate the shape, size relationship, and con�gu-

ration similarities between the detected contour and

the human body model. They are estimated from the

measurements given by [15]. [15] provides both the

body measurements of people at di�erent ages and

the clothing corrections.

5 Part Identi�cation
In Section 2, we formulate the part identi�cation

problem as an optimal hypothesis selection problem.

The selection of the best hypothesis is based on the

goodness function G(H) as de�ned in Eq.(5). In the

following sections, we will describe the estimation of

the goodness function, and the e�cient hypothesis se-

lection strategy in detail. The experimental results

are given in Subsection 5.3.

5.1 Goodness Function Estimation

In order to calculate the goodness function G(H),

we need to estimate the likelihood P (CjH;w) and the

prior probability P (Hjw).

Let Ŝ; Û ; R̂ be the model matrixes estimated from

the identi�ed body parts. Then we have P (CjH;w) =

P (Ŝ; Û ; R̂jH;w). Because S; U;R are mutually sta-

tistically independent, we can rewrite the likelihood

P (CjH;w) as

P (CjH;w) = P (ŜjH;w)P (ÛjH;w)P (R̂jH;w) (10)

The likelihoods P (ŜjH;w), P (Û jH;w), and

P (R̂jH;w) are estimated from Eq.(7-9), respec-

tively. The likelihood P (CjH;w) derived above

constrains the best match between the detected

contour segments and the human body parts to be of

similar size relationships, and con�gurations as well

as similar shapes.

The prior probabilityP (Hjw) is estimated based on

the visibility and the detect-ability of human features.

Assuming that each candidate has the same probabil-

ity to be the real human feature, then P (Hjw) can be

written as

P (Hjw) =
P (d; viewjw)Q

mi

(11)

=
P (djview;w)P (viewjw)Q

mi

(12)

where mi is the number of candidates for a human

feature fi, d = (d1; d2; :::; dm) is a vector with di = 0,

if hi = 0, and di = 1, if hi 6= 0. Both P (djview;w) and

P (viewjw) can be estimated from the training data.

5.2 Optimal Hypothesis Selection

The exhaustive search of the best hypothesis H� is

to check every possible hypothesis and �nd the best

one based on the goodness function G(H). However,

the hypothesis space is generally very large due to

combination explosion. In this paper, we developed a

two-step search procedure to identify the body parts.

First, we identify the main body parts based on the

goodness function. Then, we derive the locations of

the subparts from the main body parts using Eq.(6).

The second step is done in the contour reconstruc-

tion procedure. Because there are only six main body

parts to be identi�ed in the �rst step, the hypothesis

space is signi�cantly reduced. We can further improve

the e�ciency of the search procedure by selecting the

candidates of each body parts through gating on the

aspect ratios of the contour segments.
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Figure 4: Body Part Identi�cation and Localization:

(a) contour partition (b) main body part identi�cation

indicated by ooo (head) | (torso) +++ (arm) ***

(leg) (c) the updated locations of the identi�ed body

parts.

5.3 Experimental Results

Fig.4 and Fig.7 show some results of main body

part identi�cation. Here the part segmentation algo-

rithm is based on the extraction of the convex dom-

inant points (CDP) of the contour [14]. From the

results, we can see that the proposed algorithm can

identify the human body parts correctly. Even if some

parts are occluded, it does not a�ect the identi�ca-

tion of other parts. The algorithm can also detect

the outliers simultaneously (as shown in Fig.4(b2)).

The outliers may be due to the objects carried by a

person, or due to the distraction from other objects.

Thus, through the above body part identi�cation pro-

cedure, we can correct certain contour extraction er-

rors. There are also some errors with the labeling such

as one shown in Fig. 4(c2). The left calf and the right

calf are switched. In the future, we will incorporate

the posture constraints to correct the above errors. In

Fig. 4(b3), the arm is incorrectly labeled as an outlier,

but as we will see in the second iteration, through the

RCR algorithm we can �nd the missed arm correctly

(as shown in Fig. 5(c3)).

(1)

(2)

(3)

(b)(a) (c)

Figure 5: The second iteration: (a) the reconstructed

outlines of the body parts (b) the edge images (c) the

aligned body parts

6 Human Contour Reconstruction
The goal here is to demonstrate that using the

identi�ed human features and the human model, we

can re�ne the shapes and locations of the identi-

�ed body parts and predict the shapes and locations

of the missed body parts. It includes two steps.

First, integrating the identi�ed features and the hu-

man model to re�ne the identi�ed body parts. This is

achieved through aKalmanfiltering approach. Sim-

ilar frameworks have been employed in [20, 21] to lo-

cate the articulated parts sequentially. We extend the

framework to include the shape and size updating be-

sides the pose updating.

Let CI � N (ĈI ;�CI ) be the model matrixes es-

timated from the identi�ed body parts. Let FI �

N ( �FI ;�FI ) be the learned model matrixes. Using

a Kalman Filter to integrate two estimates, we get

an optimal estimation of the identi�ed features C�I �

N (Ĉ�I ;�C�

I
). Let K be the Kalman gain factor, we

have

K = �CI (�CI + �FI )
�1 (13)

Ĉ�I = ĈI +K( �FI � ĈI) (14)

�C�

I
= �CI �K�CI (15)

As demonstrated in Fig.4(c) and Fig.5(a), the inte-



grated estimation improves the accuracy of the loca-

tions and shapes of the body parts.

The second step is to predict the shapes and loca-

tions of the unidenti�ed body parts from the human

model and the identi�ed features. We need to estimate

a feature's parameter vector fj = (sj ; bj; xj; yj; �j).

We assume that the aspect ratio of a body part is

independent of other features' aspect ratio, then the

MAP estimation of sj is simply its mean value ŝj = �sj .

The location of a main body part fj is estimated

from the con�guration vector U . If more than two

features have been identi�ed, then using LSM, we can

estimate the transformation T that projects the con-

�guration U in the model con�guration space to the

image coordinate system. Then we have (xj ; yj) =

T � (uj ; vj). Given the updated parameters of main

body parts, we can infer the locations of the sub-

parts through Eq.(6). Fig.4(c) shows the results of

subparts localization. We know that contour parti-

tion is a very unstable procedure | a contour may

be over-segmented or under-segmented. But, through

this hierarchical localization procedure, we can correct

the contour segmentation errors.

The length bj of a body part can be estimated from

any of the identi�ed features: b̂jjb̂i = �rjib̂i. If more

than one features have been identi�ed, then the MAP

estimation of bj is the weighted summation derived

from the Kalman Filter.

We can not predict the orientations of the missed

features, because the posture constrains are not mod-

eled yet. This is solved in the second iteration of

the RCR algorithm by aligning the predicted feature

contour with the detected edge features (as shown in

Fig.5(c)). Because of the cluttered background, the

predicted outlines of a body part may be distracted by

other objects (as shown in Fig.(8)). To avoid such sit-

uations, we need to use other cues such as stereo, mo-

tion, and the intensity pattern to constrain the search

of the body parts to be within the region of similar

attributes.

7 Human Detection

In Section 2, we developed a decision rule(as de-

scribed in Eq.(2)) to perform human detection. To

apply this decision rule, we need to calculate the like-

lihood ratio � = P (Cjw)=P (Cj�w). In the following

sections, we will describe how to estimate the likeli-

hood ratio and give the experimental results on human

detection base on the derived decision rule.

7.1 Likelihood Ratio Estimation

To evaluate the likelihood ratio, we need to calcu-

late two likelihoods: P (Cjw) and P (Cj �w). First, we

can rewrite P (Cjw) by conditioning on the hypotheses

of the part identi�cation:

P (Cjw) =
X
H2H

P (CjH;w)P (Hjw); (16)

where H is the hypotheses space.

Because it is not e�cient to explore all hypotheses

in H, we employ a winner-take-all strategy to approx-

imate P (Cjw):

P (Cjw) � P (CjH�; w)P (H�jw) (17)

where H� is the optimal hypothesis selected in the

part identi�cation procedure. This approximation

works well in the case of low noise and unambiguous

data. Because the RCR algorithm will improve the

accuracy of contour extraction iteratively. The above

approximation will get more accurate accordingly.

From Eq.(10) we have

� �
P (ŜjH�; w)

P (Ŝj �w)

P (Û jH�; w)

P (Û j �w)

P (R̂jH�; w)

P (R̂j �w)
P (H�jw) (18)

Because H� is the best hypothesis, we have Ŝ � �S,

and P (Ŝj �w) � P ( �Sj �w). Similarly we have P (Û j �w) �

P ( �U j �w) and P (R̂j �w) � P ( �Rj �w). The ratios ks =

1=P ( �Sj �w), ku = 1=P ( �U j �w), and kr = 1=P ( �Rj �w) can

be considered as weights to adjust the contributions of

the shape, the con�guration and the size information

to the �nal decision.

7.2 Experimental Results

In Fig.4 and Fig.5, we give three individual exam-

ples demonstrating that the human body parts can

be identi�ed and located correctly. In Fig.6 to 8, we

describe a complete run of the RCR algorithm.

(b)(a)

Figure 6: Stereo-based segmentation

In the �rst iteration, the initial outlines of objects

(see Fig.6(b)) were extracted from stereo-based seg-

mentation [24]. You can see that the contours are not



(a) (b) (c)

(1)

(2)

(3)

Figure 7: The �rst iteration of the RCR algorithm

(a) (b) (c) (d)

(1)

(2)

Figure 8: The second iteration of the RCR algorithm

complete and some body parts are missed due to par-

tial occlusion or due to be out of the �eld of view.

From the incomplete contours, the human body parts

are identi�ed as shown in Fig. 7(c). According to the

decision rule given in Eq.(2), the car is correctly iden-

ti�ed as not a person. The two people are considered

as maybe humans. To solve the uncertainties, we go

to the second iteration by using the reconstructed out-

lines of the body parts (as shown in Fig. 8(b)) as the

initial contours. The orientations of the missed parts

are set to be the same as that of the torso. Their

actual orientations are obtained by aligning the re-

constructed contours with the edge contours as shown

in Fig. 8(d). With more body parts being identi�ed,

we can declare that two people are detected. In the

second iteration, we can locate the missed body parts

and determine if an object is a person more accurately

by verifying the shapes and the locations of the body

parts generated in the �rst iteration and solve the

uncertainties with the decision in the �rst iteration.

Usually, only two iterations are enough to achieve the

correct decision.

8 Discussions and Future Work

In this paper, we proposed a RCR algorithm to

perform and improve contour extraction, human de-

tection, and parts identi�cation cooperatively and it-

eratively. The iterative procedure helps to identify

the body parts misses in the previous iteration, and

to correct errors made on contour extraction and seg-

mentation. We developed a human body model that

encodes the shapes, the relative sizes, and positions

of the body parts. The model is invariant to transla-

tion, rotation, and scaling, and it is deformable. We

developed a Bayesian framework to perform human

detection and parts identi�cation under partial occlu-

sion. The experimental results demonstrate the ef-

fectiveness of the proposed algorithm, but also reveal

some limitations with the algorithm. First, the identi-

�cation of a limb being at the left or the right side of

the body may be wrong due to the absence of posture

constrains. Second, the predicted outlines of a body

part may be aligned to the wrong edges instead of the

real contour due to the inherent ambiguity with con-

tour features. Third, the foreshortened limbs may not

be detected correctly due to the 2D-human model.

To address the above limitations, we plan (1) to

include posture constrains into the human model; (2)

to keep multiple hypotheses instead of just the best

one to overcome the ambiguous and noisy data; (3) to

extend human model to 3D and to incorporate 21
2
D

or 3D data to deal with the foreshortening problem.
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