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Abstract 
Many methods exist for fitting ellipses and other sccond-order curvcs to sets of points on the plane. 

Diffcrcnt methods use diffcrcnt measurcs for the goodness of fit of a given curve to a sct of points. The 

method most frequcntly uscd, minimization based on the general quadratic form, has serious dcficiencics. 

Two altcrnativc mcthods arc proposed: the first, bascd on an error measure divided by its average gradicnt, 

USCS an cigenvalue solution; the second is based on an error measure dividcd by individual gradients, and 

rcquircs hill climbing for its solution. 

As a corollary, a new method for fitting straight lincs to data points on the plane is presented. 
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Int I oduction 
'I'his piper discusses the following problcm: Gicen some set of data points on thi. plmc, how slioultl we fit 

an cllipse to these points? I n  morc prccisc tcrms, let curvcs be rcprcscntcd by some equation G(x,j*)=O. Wc 

restrict C;(x,y) to he a polynomial in x and y of dcgrcc not grcatcr than 2. 'I'hc curves gcncratctl by such a 

runction arc thc conic scctiotis: cllipscs, hypcrlxhs. and parabolas. I n  the spccial cast whcl-e G( VJ) is of 

dcgrcc 1, thc curvc rcprcscntcd is a straight linc. Now, given a set of data pairs {(x,,yp i= 1, ..., n),  what is the 

hnction G(x.y) such that the curvc described by the equation best dcscribcs or fits thc data? 'f'he answcr to 

this question dcpcnds upon how wc define "best." 

Thc primary motivation for studying this problem is to dcal with systems that usc light stripcs to mcasure 

depth information [Agin 761 [Shirai] [Popplcstonc]. When a plane of light cuts a cylindrical surface it 

gcncratcs a half cllipsc in thc planc of thc illumination. Whcn this cllipsc is vicwcd in pcrspcctivc it givcs rise 

to anothcr partial cllipsc in the imagc plane. The incomplcte naturc of this curvc scgmcnt makes it difficult to 

measurc its intrinsic shape. 

A similar problcm oftcn ariscs in sccne analysis [Kender] [Tsiiji]. A circle viewed i n  pcrspcctivc gcncrates 

an cllipsc on thc irnagc plane. If some sccne-undcrstanding procedure can identify thc points that lie on the 

pcritnctcr of thc cllipsc, these points may be used as the data points in a curve-fitting process to idcntifying 

the dimcnsions of thc cllipse. The rclativc lengths of the major and minor axcs and the orientation of these 

axcs will then bc sufficicnt to determine the plane of the ellipse relative to the camera. 

Fitting cllipscs and other sccond-order curves to data points can be useful in interprcting physical or 

statistical expcrimcnts. For example, particles in bubble-chamber photographs may follow elliptical paths, 

thc diincnsions of which must be inferred. 

It is casy to scc how a fitter of ellipses would be useful in an interactive graphics or a coniputcr-aided 

drawing package: Le., the user could indicate a rough approximation to the ellipsc or circlc he wants, and the 

systcm could infcr the best-fitting approximation. This kind of capability is currcntly handled by fitting with 

splincs [Smith] [13audclaire]. 

It is important to distinguish among the exlracfion of points that may represent the boundary of an cllipsc; 

thc segnientalion of collections of points into distinct curves; and the fitling of thcsc points oncc thcy have 

bccn cxtractcd. This papcr docs not purport to dcscribc how to dctcrmine which points do or do not bclong 

to any cllipsc or cllipsc scgmcnt. Curve fitting can be of use in scgmcntation and cxtraction to cwluatc the 

rcasonablcncss of a givcn hypothcsis; however this discussion is limited to methods for dctcrniining the 

cquation of thc ciirvc that bcst fits a givcn sct of data points. 
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Rep rese t i  t ing Second-0 rde r Cu rves 
A n  cllipsc in  "stmdnrd position", such as thc onc i n  Figure 1, may bc rcprcscntcd b y  the cquntion 

(1) x2 3 - + -  = 1 .  
2 b2 

Figure 1: An Ellipse in Standard Position 

Such an cllipsc has its center at the origin of coordinates and its principal axcs parallcl to the coordinate axes. 

Jf parameter a is greater than parameter b, then a rcprescnts the length of thc semi-major axis and b rcprcscnts 

thc length of the scmi-minor axis. The eccerzfricify (e) of the ellipse is defined by the formula 
e = d 1 - 7 ,  b2 

where e must be positive, and between zero and 1. If a= b, then equation 1 reprcsents a circle, and e is zero. 

If d b  then b rcprcscnts the semi-major axis and a the semi-minor, and e is defined as 
e = d l - - .  2 

b2 

A shift of coordinates allows us to represent an ellipse centcrcd on a point othcr than thc origin, say (h,k), 

as in Figurc 2. If we let 

x ' =  x -  h (2) ' 

and y ' = y -  k 
thcn thc equation of the cllipse of Figure 2 is 

1, -++=  x Y 2  Y ' 2  
a2 b2 

or, 

(3) 

= 1  ( x  - h)2 ( y  - kI2 + 
2 b2 

(4) 
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Figure 2: An Ellipse off the Origin of Coordinates 

Figure 3: An Ellipse Rotated and Moved 

A rotation of thc cllipsc, as in Figure 3, can be accounted for by tlic transformation 

x" = x 'cos 8 + y 'sin 8 
y" = - x  'sin 8 + y 'COS 8.  and 

These transformations can be substituted directly into the equation for an ellipse, but we prefer thc implicit 

form: 

- + - -  x"2 y"2 - 1 
2 b2 

X" = ( x - h ) c o s  8 + ( y - k )  sin 8 
y" = - ( x -  h) sin 8 + 01- k)  cos 8 . 

whcre 
and 



I<qtiation 5 u i i  reprcsciit any cllipsc i n  a n y  orientation. A totril of five par,unctcr~ <ire ill\ o l ~ c d :  ( I  ,ind b 

rcprcsciit rhc dimcnsion~ of  the cllipsc, I! and k rcprcscnt its ccntcr, and 0 rcprcscnts i ts rotation. 

'I'hc equation of a hypcrbola in standard position is similar to that of an cllipsc, but with a sign change: 
7 

Figure 4: A Hyperbola in Standard Position 

A hypcrbola is shown in Figure 4. Its ccccntricity is given by 
e = d l + - .  b2 

2 
The ccntcr of the hypcrbola can be movcd and its axes rotatcd by transforms similar to diosc we uscd for 

cllipscs. Wc can rcprcscnt ellipses and hyperbolas by the same equation or set of equations if we lct 

ccccntricity into the cquation. A n  )central conic (cllipsc or hypcrbola) can bc represented as: 

= 1  (6) 
1 

Y" 
y 1 2 

2 2(1- 2) 
- +  
x" = ( x -  tz) cos 8 + (y- k)  sin B 
y" = - ( x -  h) sin 8 + (y- k)  cos 8 

whcrc 
and 

I t  should bc notcd hcrc that an cllipsc can also bc rcprcscntcd pararnctrically. For an cllipsc in stnndard 
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oricntation, points 011 its pcriiiictcr arc given by 

x = h + (1  cos Q 
y = k + bsin Q ,  

(7) 

whcrc Q varies bctwcen 0 and 277. Thc rotation 8 of the ellipsc can be Likcn carc of by rewriting cquatiun 7 

as follows: 

x = 11 -1 N cos 4 cos 0 - b sin Q sin 8 
y = k + ncos Q sin 8 + bsin +cos 8 

A hypcrbola may also be rcprcsaitcd parametrically, using hyperbolic fiinctions. Points on a hypcrbola in 

standard oricnt;ition with its center at (h ,k)  arc given by 

x =  h + n c o s h c  
y =  k k b s i n h r .  

'I'hc valuc of 5 m a y  vary from zero to an arbitrary upper limit. 'Ihe various pcrrnutations of thc k signs givc 

rise to thc four bt'anchcs of thc hypcrbola. 

A parabola is actually a conic section with ccccntricity 1, but if we try to reprcscnt it in thc form of 

Equation 6 a division by zcro rcsults. It is bcttcr to represent the parabola by the equation 

y = a 2  

A shift of origin and a rotation givc thc form: 
y" = a x" 2 

whcre 
and 

X" = (x- h) cos 8 + 0.1- k)  sin 8 
y" = -(x-h)sinB + b - k ) c o s 8  

Given any paramctcrs of size, position, and orientation, Equation 6 or Equation 8 can be rcwrittcn in the 

form 

G(x,y) = A 2 + B xy + Cy2 + D x + E y  + F = 0 (9) 
It may bc shown that all conics may bc rcprcsciitcd in the form of Equation 9. 

hrccl l  [Purccll, p. 1301 shows that Equation 9 represents a hyperbola if the iizdicator, B2 - 4 A C is 

positive, a parabola if it is zero, or an cllipse if it is negative. 

Furtliermorc, thc parameters of Equations 6 or 8 may be recovcred by the following proccdure: Apply a 

rotation 8 in which 8 = 45 degrees if A = C and 
n 

A - C  
t a n 2 8 = -  

if A z C. 'I'his transforms Equation 9 into an cqiiivalcnt form in which B (the coefficient of thc xy term) is 

zero. It  is thcn a straightforward matter to extract the other four paramcters. 
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hi i n i ii'i iz 3 f i o n a t i  d A p p rox i m a t ion T h eo r y 

Approxiiniition tlicory is 'I mathcmaric;il discipliae that addr-csscs curve fitting [l<i\liii]. IJsmlly, a set of tz 

data points arc specified as pairs of thc form { (xi,yi), i =  I ,  ..., I I  }, whcrc x is rcgardcd as a n  indcpctidcnt 

variablc and yi rcprcsciits valucs mcasurcd at I I  particular valucs of x. I.ct thc symbol v dcnotc thc set of given 

data pairs. I.ct V be the set of all functions dcfincd on {xi, i =  1, ... , I [ ] .  1,' is thus an ti-dinicncional lincar 

space, and V E  V. 

Admisiblc solutions to curve fitting problcms are usually representcd in the form y= f ( x ) .  ' h e  sct of all 

admissiblc soliitions constitutes a subspace W of V, whose dimensionality corresponds to the number 

paramctcrs used to characterize$ For example, the set of all quadratic functions of one variable constitiitcs a 

space of dimensionality three. Given some w E W we need a measure of the difference bctween w and v, 

which wc dcnotc as Iw- V I ,  the norm of w-v. The norm may be defined in the Euclidcaii manner as the 

squarc root of the sum of the squares of w- v, where summation is ovcr all values of x for which both )<x) 

and v(x) arc defined. Another norm in frequent use is the maximum of all elements of IV- v, again over all 

points whcrc both functions arc defined. 

A ccntral thcorcm of approximation theory states that there exists some ,v* such that 

Iw*-v[ 5 Iw-VI 
for all w E  W'. When we use the Euclidean norm, we say the minimizing wf is the bcst approximation in the 

least-squares scnsc. If the norm is the maximum of all elements of w- v, thc minimizing I@ is referred to as 

the best urzifonrt approximation. 

The paradigm outlined above can be generalized to sevcral dimensions. For examplc, given triples of the 

form { xi, y,, zi, i =  1, ..., n } and a space of functions w(x,y) we may find tv* that minimizes (in the appropriate 

sense) thc difference between w ( x i g )  and zi. But howcver many dimensions thcre are, the basic assumption 

remains: that w is a single valued function of one or more independent variables. 

It is difficult to represent an ellipse as a single-valued function. Therefore, the "diffcrcnce" bctween a data 

point and an ellipse is not uniquely and unambiguously defined. Intuitively, the difference should rcprcsent 

the pcrpcndicular distance from the point to the curve. If an ellipse were represented in the form y=f(x), 

then f would be multivalued over some rangc of x, and have no value elsewhere. Usually cllipscs are 

represented iriiplicifly by equations of the form s(x,y)=O. We might choose a norm that estimates the 

magnitudc of g itself, (i.e., it measures the difference bctwecn g and zero,) and search for a g* that miiiiinizes 

that norm. Ihi t  thc "classical" tcchniqiics of approximation theory arc no longer applicable, so we must 

dcvclop othcr techniques. 
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Choosing all Error Function 
'l'lic basic paradigm for cllipsc fitting is as follows: First, choosc a mcthod of cstiin:iting rlic "ei'ror" of a 

point with rcspcct to any givcn sccond-ordcr curvc; sccond, choose a method of calculating an aggrcgatc crror 

from all  thc individual errors; third. systematically scarch for thc cllipsc that miniinizcs thc aggrcgatc error. 

I hc clioicc of an crror mcastirc and an aggregating rulc affects not only the solution, but also tlic 

computational cffort necdcd to obtain the solution. 

_ .  

I t  should bc noted that any fivc arbitrary points on thc planc arc sufficient to spccify a second-ordcr curve. 

As long as no thrcc of the fivc points are coplanar, there exists a unique second-order curve that passcs exactly 

through each of thc fivc points. An algebraic proccdurc exists for finding this curve [Rolles]. . More 

sopliisticatcd methods bccomc necessary only whcn thcre are morc than five data points to be fit. 

If all thc data points lie on, or vcry close to, a mathematically perfect curve, thcn almost any  nicthod for 

fitting ellipses will give acceptable results. In practice, problcms usually arisc whcn the data bccomc noisy 

and dispersed. Very eccentric ellipses are harder to fit than nearly circular ones. Cases where only a portion 

of the complcte curve is represented by d a h  points generally create problcms: the lcss coinplctc the 

pcrimctcr the greater the difficulty of estimating the curve to represent it. 

For the rest of this discussion, we will consider only a Euclidean norm. In othcr words, wc arc rcstricting 

our attention to least-squares methods. This reflects a dcsire to let the solution represent an "avcragc" of all 

the data, rathcr than being influenccd primarily by the outlying points, as would be thc case if we used a 

uniform nom.  

Using the General Quadratic Form 
Onc possiblc choicc of an crror function is the general quadratic form of a second-order curve as givcn in 

Equation 9. Wc must avoid the trivial solution A = B = C = D = E = Z: = 0, so we arbitrarily assign 

F = 1. 'This givcs 

G(x,y)= A 2 +  B x y + C ? +  D x + E y + l = O .  (10) 

( i = G ( x i , y i ) = A ~ : +  B x i y i + C y i  2 + D x i + E y i + l .  
Given a data point (xi,yi), wc let the pointwise crror ti bc given by 

'I'hc aggregate crror is given by 
E = L $  2 

= z ( A x; + n xi y i  + c y ;  + D xi + "yi  + 1 )2 

Obtaining the partial derivatives of Equation 1 1  with respect to A, h', C, D, and Z;, and setting thcsc to zero, 
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A 2x4 + ri zX3y + c‘ za~2y2 + n zX3 + E 2 x 4  + zx2 = o 

A Zx2j? -t / I  CxjJ + C Zy4 + I1 Zxj2 i- F 2y3 + 212 = 0 

+ r) xyjl -t I :  zy2 + 2 Jp = o 

A Zx3y f 13 Z.?? + C Zxy3 + D Cx’y + I:’ Zxy2 $- Zxy = 0 

A X:’ + /I Zx2y + C‘ Cxy2 + I) Zx2 -t I!’ Cxy + C x  = 0 
(12) 

n ~2). + /I xxy2  + c 
Thc solution to thcsc cquations rcprcscnts thc thc cllipsc that rninimizcs thc crror function given i n  liquation 

11. 

Figure 5: Fit Obtained by Minimizing Equation 11 

\ 

Figure 6: Fit Obtaincd by Minimizing Equation 11 

Figurc 5 shows a set of computcr-gcncratcd data points and the curve gcncratcd by this rncthod to fit it. 
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- 

- 

‘l’hc incthoJ appears to work iidcquately in this c 13ut Figurc 6 sliows nnothcr casc, whcr2 ~ l i c  niininiiyiiig 

cllipsc clearly misses thc data points ncnr thc origin of coordinates. What wc arc swing is the rcsult of ;I poor 

choicc of crror function. When we went from the ellipse rcprcscntntion of Equation 3 to that of  I’quation 10 

by fixing I: to be 1, wc allowcd thc rcprcscntation to bccomc dcgcncratc: we lost the ability to rcprcscnt a n  

cllipsc that passcs thrciiigh the origin. An cllipsc as rcprcscntcd by Equation 10 that passcs closc to the origin 

must have hrgc cocffcicnts A, h’, C, D, and E; hence the crror mcasure Z of Equation 11 will be largc. 

‘I‘hercforc, minimizing Z implics kccping the curve away from the origin. 

and V = 

A rcquircmcnt of a useful CUTVC fitting mcthod is that it should bc indcpcndcnt of scaling, translation, or 

rotation of the data points. That is, the choicc of a coordinate systcm should not affcct thc solution curvc; 

exccpt, of coursc, that the solution curvc should bc scaled, moved, or rotated along with thc data points. 

The Average Gradient Constraint 
Ideally, thc crror hnction we choose to minimize should be rclated to thc distancc from a point to thc 

curvc. Suppose wc wcre to choose somc primitivc crror measurc such as the G(x,y) givcn i n  Fquation 9. G is 

zcro along thc curve, and its inagnitudc incrcases when we measure G at points farther and farthcr from thc 

curve. For a point in a small ncighborhood the curve, G is proportional to tlie pcrpcndicular distance from 

tlic point to the curve. Thc constant of proportionality is the reciprocal of the magnitudc of thc gradicnt of G. v 

We will choose a constraint on the coefficicnts of Equation 9 such that the avcrage gradicnt is unity. Then 

thc resulting crror fitnction will be directly related to the distanccs from points to curves. 

A shift in notation will make the following mathematics easier. Define thc vectors X and V to bc 

x =  
- 2  zu 

X 

Y 
- 1  

A 
B 
C 
D 
E 

- F  

Thcn wc may rcwritc Equation 9 as 
T <(x,y) = IJ x = x v . 

E =  z+ ZG2= Z ( V ’ X X ‘ V ) = V ’ Z ( X X T ) V = V T P V .  (13) 

Using tlie Euclidcan norm, our aggcgate crror S is givcn by 

Y = C X X‘r is a matrix of sums of powers of x and y, whosc first five rows and columns arc, in  fact, thc 

coefficicnts of A ,  B, C‘, D, and Bin Equation 12 and whose last column provides thc constant terms. 
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'l'hc iiiagnitudc o f  tlic gradient of  G, IV GI may be dctcrmined from die partial derivatives of ( J  wi th  rcspect 

to x and y. 

whcrc 

x =  
2x  
Y 
0 
1 
0 
0 

- 
xY - 

0 

2Y 
0 
1 
0 

X 

ac; ac; 

ax aY 
( V Q 2  = (-) + (-) '= VT(XxXxT + xyxy',v 

z (v Q2 = vpr Z(XxXxT+XyXyT) v 

= V'QV 

Q = Z (XxXxT+X X 'r) is another matrix summed from powers of x and y. Thc mean-squarc gradicnt of G, 

measurcd at all data points { (xi,y.J, i =  1, ..., n } is Z (V Q2 / n. Requiring this "average gradicnt rnagnitudc" 

to be unity is equivalent to specifying 

Y Y  

V'  Q V  = n .  (14) 

We wish to find thc vcctor V that minimizes the matrix product VT P V, under the constraint that V' Q V 

= 17. It is well known [Courant] that at the constraincd minimum thcre exists somc LaGrange multiplier, A, 
such that 

P V  = A Q V  (15) 
This equation would bc easy to solve by normal eigcnvaluc methods wcre it not for thc fact that Q is a 

singular matrix, and P is ncarly singular. (It secms that thc closcr thc data points approxitnatc a conic scction, 

thc closcr I' approachcs singularity.) The appendix givcs a method for solving Fqiiatioti 15 that yiclds fivc 

cigcnvalucs (Ai. i = 1, ..., 5 }  corresponding to fivc eigenvectors {Vi, i = 1, ..., 5}.  

l o  dctcrminc thc aggrcgate crror, Equation 13, we may usc Equations 15 and 14 to producc the rcsult 

E = V ' P V = A V T Q V = X n .  



'l'licn M C  k i i o ~  h t  thc cocllicicnts of thc quaJc;itic function giving the mininiuni  iiggrcgatc error ur~dcr thc 

given constraint arc given b y  thc cigcnvcctor corresponding to thc smallest cigcnvaluc. 

Solutions to  thc curvc fitting problem arc invariant with tri1nslation, rotation, and scaling of Ihc input data. 

A proof of this is prescntcd i n  Appcndix R. 

Figurc 7: Curve Fitting with Average Gradient Constraint 

Figurc 7 show the same data points that wcrc used for Figure 6 fit using the "cigenvaluc" method 

described abovc. Comparing figures 6 and 7, shows that the ncw method gives superior 'rcsults. 

Some Difficulties 
'rhc problcni of curvc fitting gets worse when thc points to be fit represent only part of an cllipsc. Noise 

and digitization error accentuate the problcm. 

Figurcs 8 through 10 show increasingly difficult cases. 'I'hc data points for Figure 8 are a subsct of thosc 

used to gcncratc Figurcs 6 and 7. There is a noticcablc flattening of the solution curve, but not so milch that 

if we had no knowlcdge of how the points were gcncrated we would say thc fit was "wrong." 'The misfit in 

Figurc 9 is more apparent. The samc ideal cllipsc as before was uscd to gcncratc thc points, but a "fattening" 

of thc data points has been simulatcd. Figurc 10 rcprescnts an extreme case. 'I'hc data points wcrc not 

gcncratcd thcorctically, but are from an actual light-stripe cxpcrimcnt [Agin 721. 

What wc arc sceing is a systematic tcndcncy for the solutions to flattcn, becoming elongated cllipscs 

parallcl to thc gcncral lincar trcnd of the d a h  points. 'Thc tcndcncy arises from the fact that, all othcr things 
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'I 
Figure 8: Curvc Fit to a Short Scgment 

Figure 9: Curve Fit to a Short, Fattened Scgment 

being equal, thc crror of a scatter of points about a curve G(XJ,) = 0 dcpcnds on thc sccond dcrivativc of thc 

error function G. That is, a function whosc gradicnt varies rapidly tends to "fit" bcttcr, in a normalixd Icast- 

squarcs scnsc, than a function with a constant gradicnt. Flattened cllipscs and hypcrbolas arc charactcrizcd 

by a high sccond dcrivativc of their dcfining function. The curve fitting solution chooscs thcsc squashcd 

curvcs over the morc intuitive curvcs wc would prefer. 

'I'hc problcm is not limitcd to fitting with thc avcragc gradicnt Constraint. Lylc Smith [Smith] notcd thc 

samc phcnomcnon iising thc gcncral quadratic form, i.e., minimizing Equation 11. 
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Figure 10: Curve Fit to a Gently-Curving Segment 

It is tempting to try somc rncthod that would keep thc gcncral idea of constraining thc avcrage gradient, for 
cxample by computing that avcrage ovcr the entire curve instead of ovcr all the daL? points. This would 

amount to a constraint on thc cocfficients A through Fof  Equation 9 indcpcndcnt of the data points. A littlc 

thought will show that this approach will not work at all. Thc RMS error can be made arbitrarily small by 

choosing a vcry largc and vcry elongated cllipsc with a gradient magnitudc near unity along most of its Icngth, 

but a vanishingly small gradient magnitude in tlic vicinity of the data points. 



Curve Fitting b y  Hill Climbing 
‘I’he bcst measure of tlic goodness of fit of a point o r  set of points to a given niathciniitical tunc ~‘(xJ,) = 0 

is provided by nieasut.ing thc perpendicular distance from each point to tlic curvc. A reasotiablc 

approximation to tlint distancc may bc had by dividing thc crror function G(x,y.J by thc magnittidc of tlic 

gradicnt 01‘ (,’nicnsiircd at (xi,yi). With such a definition, :rggregatc error Z is givcn b y  

whcrc V, X, Xx, and Xy arc the same as in the previous section. 

‘I’hc point-by-point division makes it impossiblc to move the summation sign insidc the matrix product as 

we did in the previous scction. Minimizing Equation 16 will rcquire a hill-climbing approach. Wc must 

postulate a coefficient vcctor V, USC it to evaluate E ,  thcn choose anothcr V to see wlicther or not it iinprovcs 

thc error E ,  ctc. 

Even though there are six elements in the vcctor V, there are rerllly only five independent paramctcrs 

necessary to specify an ellipse. Thc hill climbing algorithm will manipulatc these five. We arc fice to specify 

these paramctcrs in any way we choose. Wc only rcquire that it be possible to derive 1’ uniquely from thcse 

paramcters. For example, we could choose to optimize over a, e, 8 ,  h, and k given in Equation 6. A 

somewhat bctter approach is to rcprcsent the ellipse in thc form 

a (x- h)2 + /I ( x -  h10,- k )  + y b- k12 = 1 (17) 

and optimize ovcr a, /I, y, h and k. This formulation avoids degeneracy in 8 (orientation) when the cllipse is 

ncarly circular. 

Hill-climbing must start with some initial guess as to the approximating ellipse. The casicst way to do this 

is to choosc tlirce data points, prcfcrably at both ends and ncar the middle, and calculatc the circle that passes 

through thcse thrcc points. Hill-climbing tends to preserve thc form of the initial guess. I f  the initial guess 

rcprcscnts an ellipse, thc method will not converge to a hypcrbolic solution. A roughly circular cllipsc will not . 

bc transformcd to a drastically elongatcd one. 

‘I’hc minimization problcm is rather ill-conditioned. Care must be cxcrcised to usc thc corrcct numcrical 

tcchniquc, or thc rcsults will be poor. We have tricd scveral methods. It turns out that tlic mcthod of stccpcst 

dcsccnt with accclcratcd convcrgcncc is totally unacceptablc. It may take many minutes of computer timc for 

the method to convcrgc, if at all. Evaluation of thc gradient of Z docs not appcar to hclp apprcciably. The 

only method that givcs acceptable rcsults rcquircs cvaluating thc matrix of second partial dcrivativcs of Z, 
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then findt:ig llic cigciiicctoib of that matrix. 'I he coinplctc' nicLhod is gi\cn i n  Appcndix C. 

Wc shall not attempt to provc formally that results obtaincd from hill climbing on thc expression givcn by 

Equation 16 arc indcpcndcnt of position, oricntation, and scale. Instcad wc shall appeal to an intuitivc 

undcrstmding of an error fiinction and its gradicnt. 'I'hc crror fiinction should not bc 'tffcctcd by cliaiigcc of 

coordinntcs, nor should its gradient. A chniige of scale \ \ i l l  affcct thc crror function dnd its gr'idicrit, but 

should multiply thcm by the samc constant value evcrywhcrc. Hence, a local minimum will stay a local 

minimum undcr translation, rotation, and scaling. Ilcpcnding on the particular hill-climbing mcthod uscd, 

thcrc n7ny be some dcpcndcncc of convergence properties on scaling and rotation. 

Figure 11: Hill-Climbing Curve Fit 

Figure 12: Hill-Climbing Curve Fit 
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Figure 13: Hill-Climbing Curve Fit 

Figures 11 through 13 show thc data points of Figures 8 through 10 fitted by hill climbing with an initial 

circular estimate. Figure 11 is approximately eqiiivalcnt to Figure 8. Figure 12 shows a morc noticcable 

improvcmcnt with rcspcct to Figure 9. While the result doesn't comc near the cllipsc from which thc data 

points wcrc generated (cf. Figurc 7), the fit at the lower end of the data points is more "intuitivc." In thc case 

of Figurc 13, thc improvcmcnt is dramatic. 
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Applying t h e  Gradient Constraint to Straigtrt Lines 
'I'hc following section is a digrcssion from the main topic of fitiing sccond-ordcr CIITL cs. A new 

formulation of Ftraight-line fitting is obtained whcn we apply the mcthods dwclopcd hcrc io the linear case. 

A straight line is dcfinecl by thc equation 

G(x,y) = 11 x -1- f l y  + c = 0 .  

Wc dcfinc 

so that wc may rcwritc Equation 18 as 
T G(x,y) = v x = X T V  = 0 .  

Wc scck to minimize thc crror function 

where 
x - 2  zxy  z x  

The niagnitudc of thc gradicnt of G is constant for all x and y, and is cqual to thc sqiiarc root of A2 + d 

If thc gradicnt is constrained to unity, thcn the error function C(x,y) will be prcciscly cqual to the 

pcrpcndicular distance from (x,y) to the line G = 0. 

Just as in thc second-ordcr case, the vector V that minimizes Z subject to thc given constraint must be a 

solution to thc cigcnvaluc cquation 

P V  = A Q V .  

Some algcbra yiclds the pair of solutions 

1 [ r - X  
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w 11 e re 
7 2 r = Xx-  - (Cx)  / 12 

s = Z x v  - z x z y / t z  
f = CJJ - (2y)2 / n 

h = L ( r + r  2 - d ( r - / , 2 + . 1 $  ) .  

‘I’hc two forms arc ninthematically equivalent unless s=O, in which casc one form or thc othcr will involve a 

division by zero. For this reason, Equation 19 is to bc preferred whcncver r is greater than f, and I‘quation 20 

when the reverse is true. Once A and H have been computed using either form, C may be easily compiited as 

- ( A z x  + BZy)/n.  The mean-square error of the fit is equal to W n .  

n 
Figure 14: Straight Line Fit Minimizing Vertical Distances 

Figures 14 and 15 show a startling comparison between the traditional method of fitting straight lines and 

the incthod presented above. The data points show a wide scattcr about a nearly-vertical linc. l l i e  line in 

Figure 14 was fit using the traditional linear regression formulas, where a line is represented by thc equation 

y =  M x +  B 

and hl and I? arc calculated as 
N z x y  - z x  zy  

M =  
N2x2 - ( zx)2 
2x2 z y  .- zx z x y  

N Z x 2  - (zx)2 * 
B =  

‘I’hc straight line of Figure 15 was based on the line representation of Equation 18 and thc solution of 

I’quation 19. 
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f: $ +++ 

"++ ++ 

Figure 15: Straight I h c  Fit Minimizing Perpcndicular llistances 

A failure of a "tricd and true" mcthod dcscrves some analysis and discussion. In this casc, thc failure is 

traccablc to thc assumption that x is the indcpcndcnt variable, that y dcpcnds on x.  But whcn the trcnd of thc 

data is ncarly vcrtical, it may be that x is more a hnction of y. A vcrtical linc is degcneratc using the 

rcgrcssion formulas. If it makes sense for a collection of points on thc planc to approximatc a vcrtical line, 

thcn wc should not usc linear regression. 

I havc not sccn this formulation publishcd anywhere else. I would apprcciate anyone who has sccn this 

result publishcd clscwhcrc letting me know. 

Conc i u s ions 
Thrcc mcthods for fitting second-ordcr curves to sets of data points on thc plane havc bccn prcscntcd and 

analyzcd. Thcsc mcthods arc distinguishcd principally by the way they mcasurc the amount of misfit bctwccn 

a givcn curvc and a givcn sct of points. The thrce mcasurcs are: 

1. the quadratic form, with the constant tcrrn sct equal to 1 (Fxluation ll), 

2. thc quadratic fonn (Equation 13) subjcct to thc average gradient value being hcld to 1 (Equation 
141, 

3.  thc quadratic form divided by thc gradicnt magnitudc at cach point (Equation 16). 

As may bc cxpcctcd, thc thrcc mcasurcs lcad to different rcsults whcn minimized. Thc first mcasurc has 

bcen shown to bc scnsitivc to translation in the planc, and to give grossly incorrcct rcsults undcr certain 

conditions. 'l'hc second mcasurc has bccn formally shown to bc inscnsitivc to translation, rotation, and 
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sciiling, and rc;imis havc bccii gilcn why thc third iiicasurc ought to bc thc s m c .  'I'hc third tiic;isurc has 

been slicwn to give sotiic\vliat bcttcr rcatlts than the sccond, particularly in difficult cascs with stn;ill angular 

arcs and widcly scattcrcd data points. 

The three nieawres also lead to wry different comput:itional proccdurcs for their ininimi/ation. 

Miniiniring iiicasui'cs 1 and 2 both require summing products of x and y 1111 to the 4th powcr; i n  this 

sunitnation they are O(w), where tz is the number of data points. Ilut for fewcr than 100 data points, the major 

use of computation time is in solution of the simultaneous liticar equations (for measure I), or the cigcnvaluc 

solution (for mciisure 2). On a Digital Fquipment Corporation 2060 computer, generation of Figures such as 

6 and 7 typically require about 50 milliseconds. 

On the other hand, measure 3 is very expensive computationally. Computation time is a direct function not 

only of the numbcr of data points, but also of the initial solution estimate and the accuracy required. 

Generation of Figures 11 and 12 required 24 and 42 seconds respectively. Hence hill climbing is to be 

recommended only when all other methods prove inadequate. 
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Appendix A: Solution of the Generaiized Eigenvalue Equation 
We M id1 to sohc thc .qncr;ili;lcd cigcn! aluc cquation 

P V  = x y v ,  
givcn that 0 is singul,ir and Y may bc close to singular. The following mcthod was dcrivcd by I<icliard 

Undcrwood. 

Wc know that the last row and thc last column of matrix Q are zcro. Q may be rcprcscntcd by dic 

partitioned matrix 

Wc may iisually cxpcct thc 5x5 matrix Q* to bc positive definite. Wc may use a Cholcsky decomposition 

[Forsythe and Moler] to factor Q* into a lower diagonal matrix I,* and its transpose L*T, so that 

Q* = L* L*T 

If wc let 1, represent thc augmented matrix 

then wc have the result 

wherc 1 denotes the five-by-five unit matrix and L-T is the transpose of L-’. 

Thc original gcneralizcd eigenvalue equation, Equation 15, may be transformed into 

L-l Y L-T LT V = L-l Q L-T LT X V . 
Applying thc substitution 

and letting Y bc the partitioned column vector 

Y = 1,- T v = [-;I 
yiclds thc rcprcscntation 

l’hc bottom row of this rcsult rcprcscnts the scalar equation 
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u =  

C ’ L  + u I f ’=  A %  
into which wc m a y  substitutc our rcsult for M’, Equation 22, to yicld 

1 

a 
( C * -  - u u ‘ r ) %  = xz. 

- 2  U 
uv 
? 
U 
V 

L 1  

a 
Thc top f ive rows of  Ilquation 21 rcprcsent thc vcctor equation 

Equation 23 may be solved by usual eigcnvaluc methods, such as the Q-K algorithm [lsaacson]. Civcn a 

particular solution Zi, the corresponding Vi is given by 

whcre W is givcn by Equation 22. 

Appendix B: Rotational, Translational, and Scaling Invariance 

coordinate system (u,v) rclatcd to ( X J )  by the transformations 

Thc rotational, translational, and scaling invariancc of the mcthod may be shown as follows: Ix t  thcre be a 

u = a x +  b y +  c 
v = d x + e y + f .  

We may dcfinc a vcctor U analogous to X such that 
2 2 2ab b2 2ac 2bc c 

ad ae+be be af+cd bf+ce 
h 2de k 2df 2ef 
0 0 0 a b C 

0 0 0 d e f  
- 0  0 0 0 0 1 

f X 

- 2  

7 
X 

Y 
. 1  

Just as a vcctor 1’ dcfines an crror function G(x,y) = VT X, a vector V ’can dcfine an error function G ’ = V ’’ 

U. Equating the two error functions (for all X) yields the relationship 

V = HTV’.  

Now, supposc that for somc collection of data points {Xi, i= l....n} V minimizes the aggrcgatc error given 

by Equation 13. Wc have shown that V satisfies Fxluation 15, and tliat the corrcsponding eigenvalue X is thc 

smallest of all cigcnvalucs that satisfy the equation. 

Rcwriting Ilquation 15 and pcrforming some algebra gives 
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P Y  = hQ\' 

2 ( X  X') 1' = h c (Xx xx'  + xy XYf) v 

Z ( I I X : X ~ ' I I ' ' \ ~ ' ) = h C ~ I i Y x x ~  r~ M \ " + I I X Y X Y  'f II 1' V ' )  

x ( U u r Y )  = h I:(UXUXl'V'+ UYUy'lV.) 

z ( X  x I- tl r 1' ') = h c (XX xyl' H T V  '+ xy xyl' E P  v ?) 

where lJx and Uy dcnotc the partial dcrivatives of U with respect to x and y. respcctivcly. 

transfoi [nation of Equation 24 is a n  orfl~ononnal transformation, that is, if 

I f  the 

a2 + b2 = 2 + 3 
and 

nd + be = 0 ,  

then it may be shown that 

U x U x T + U y U y T = ( a 2 +  h2)(IJU"T+UV 

Substituting this result in the above, 

Z ( U U T ) V 7 = ( n 2 +  b 2 ) h Z ( U u U U ' + U V U ~ ) V ~  . 
yields the result we seck: any solution to Equation 15 in one coordinate system is also a solution in any 

orthonormally related coordinate system. Since the cigenvalues are proportional, the sttrdlesl cigcnvalucs in 

the two coordinate systems correspond. 

Appendix C: Hill Climbing Method 
Hill clitnbing refers to a class of numcrical methods that minimize a hnction G(U), where U may bc a n- 

dimcnsional vector. For our purposes, we may assumc the existence of a subroutinc h m l  that minimiz.cs G 

along a straight line. It accepts an initial cstimate U, and an increment AU, finds a value of k that locally 

minimizes G(Uo + k AU), and updatcs U, to the new minimizing valuc. Diffcrcnt hill-climbing stratcgics 

consist of diffcrcnt means of selecting a sequence of AU vectors. The sequence terminates when no fiirthcr 

improvemcnt in G can be obtained. 

A mcthod that rcquircs no knowlcdgc about the hnction G is to search scquentially along the IZ dimcnsions 

of U, i.c., to apply the sequence 

'This is one form of the mefhod of sreepesf descenf. For some functions this mcthod will suffice. I h t  if thc 

function C; is ill-conditioncd, that is if thc clcmcn6 of U interact to a grcnt dcgrcc in their infliicncc 011 G(U), 
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or if thc cquipoiciitinls of G tend to form squashed cllipsoids, thcn this siinplc approach will  coii\'ci'gc very 

slowly. t:igurc. 16 shows n hypothetical sequcncc of itcriitions in minimizing a function of  tn o ViiriihlcS. 

Figure 16: Iterations in Method of Steepest Descent 

Convcrgcncc can be cnhanccd by keeping track of the cumulative change in U as the minimization 

proceeds. After n minimizations along the n coordinate directions of U, an additional minimization step can 

be attcmptcd along the dircction indicated by the sum of the individual ki AUi terms measured in the 

preceding n calls to MINI. This is called the method of steepesl descent with accelerated convergence. 

Some improvcment in performance can be obtained if it is possible to evaluate the gradicnt of G, that is, 

the IZ partial derivatives of G with respect to the elements of U. At each minimization step let AU point in the 

direction of the gradient. Use of the gradient can give a computational advantage in reducing the number of 

calls to MI"I  but it is doubtful whether this technique affects overall convergcncc properties. 

The situation illustrated in Figure 16 can be completcly avoided if the second partials of G arc available. I n  

thc neighborhood of U,, G(U) may be approximated by the expression 

q u )  =: Go + DT(U - U d  + (U - UdTI ' (U - Ud (25)  
whcre D = 1) (UJ is thc gradient vector, or vector of first partial derivatives, and P = P (U,) is the matrix of 

second partial derivatives. An cigcnvalue analysis of P will give IZ linearly 

indcpcndent cigcnvcctors {Ui, i= 1, ..., n] and associated eigenvalues {A, i= 1, ..., n }  such that 

P is a symmetric matrix. 

Y ui = xi ui . 
These cigcnvcctors point in  the directions of the principal axes of the equipotential cllipsoids of G. Function 

minimintion may take placc in the cigcnvcctor directions indcpcndently without cross-coupling or co- 
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Lariatice cf’fccLs. Conbcrgcncc will bc cltiitc rapid. 

If Ihc cigcnvcctors arc nornializcd to unit magnitudc, and we let U = U, + k U1, tlicn Equ, ‘I 1 ion 25 

bccomcs 

G(U) = Go + k D T U I  + A, li?. (26) 
Taking the dcrivati\.c with rcspcct to k and setting the rcsult cqual to mu, we find that the minimum ought to 

occur when k = 11’ Ui / ( 2 k hi ). If h is negative, as it frcquently turns out to be, thcn the k abovc actually 

points to a relative mzxirnum. This rcsult can be used to guide the minimization by subroutinc M I N I ,  to 

suggcst initial step size for the search, but experience shows that the use of n i I N l  should not bc bypasscd. 

For the case at hand, ellipses are represented by 

a (x- + p (x- h) 01- k)  + y 01- k)2 = 1 , 
or 

a x2 + /3 xy + y 3 - (2ah+P k )  x - ( p h + 2 y k )  y + ah2 + p h k  + yk2 - 1 = 0 .  

Therefore let 

U =  and V(U) = 

a 

Y 
- 2 a h  - P k 
- / 3 h - 2 y k  

P 

a h 2 + P h k + y k 2 - 1  . 

and Ict X, Xx, and Xy be defined as bcfore. flu) is given by 
N G(U) = E = I: [.2 = X- 
D 

where 

N = V T X X T V = ( X T V  
D = VT( xx XxT + xy xy = ( X x T V ) 2  + (XyTV)2.  

, 

The first and sccond partial derivatives of N and 0 with respect to the elements of U are: 

v N  = 2 
- FFx 
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v 2 N  = 2 

V D  = 2 

v21) = 2 

1 2FXX’ 
Fxy> + Fyx’ 

2F7 
- 2 ~ ~ a  - F P‘ 
-r;,p-2fiyy Y 

4x’2 4x’y’ 0 - 2x’p 
2x’y’ y’ +x’2 2 x y  

0 2x’y’ 4Y’ 
- 4x’a - 2 Fx -2y’a - x’P -2Fy - 2y’p 

-2x’P -y’P-Fx-2x’y - 4y’y - 2Fy 

where 
x’= x - h 
y’= y - k 
I;= a xv2 + p x*y’+ y y*2 - 1 
F = 2  a x’+ p y’ F 
Iqy = p x’+ 2 y y’. 

The first and second partials of t i  can be derived from the partials of N and D by use of the formulas 
a N D N  - N D  

a P  D 0 2  
--=u 

a2 N - 2 N D v  Da - N D D a  - Na D Dv + NDa D2 i- N D D ,  -- - 
D D4 

where p and q stand for any of the set (a, p, y. h, and k} ,  and subscripting denotes taking the partial 

dcrivative. ‘rhc dcrivative of a sum is equal to thc sum of the derivatives of the terms. Hence, tlic partial 

derivatives of Z are the sums of the partial dcrivatives of the individual ti terms. 
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