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Abstract

Many mecthods exist for fitting ellipses and other sccond-order curves to sets of points on the plane.
Different methods use different measurces for the goodness of fit of a given curve to a sct of points. The
method most frequently used, minimization based on the gencral quadratic form, has scrious deficiencics.
Two alternative methods are proposed: the first, based on an error measure divided by its average gradient,
uscs an cigenvalue solution; the second is based on an error measure divided by individual gradients, and

requires hill climbing for its solution.

As a corollary, a new method for fitting straight lines to data points on the plane is presented.



Intioduction

'This paper discusses the following problem: Given some sct of data points on the planc, how should we fit
an cllipse to these points? In more precise terms, let curves be represented by some cequation G(x,3)=0. We
restrict G(x,y) 1o be a polynomial in x and y of degree not greater than 2. The curves gencrated by such a
function arc the conic scctions: cllipses, hyperbolas, and parabolas. In the special case where ((xy) is of
degree 1, the curve represented is a straight line. Now, given a set of data pairs {(xl,yt, i=1,...,n), what is the
function G{x.,y) such that the curve described by the equation best describes or fits the data? ‘The answer to

this question depends upon how we define "best.”

The primary motivation for studying this problem is to deal with systems that use light stripes to measure
depth information [Agin 76] [Shirai] [Popplestone]. When a plane of light cuts a cylindrical surface it
generates a half ellipse in the plane of the ilumination. When this cllipse is viewed in perspective it gives rise
to another partial cllipse in the image plane. The incomplete naturc of this curve segment makes it difficult to

measure its intrinsic shape,

A similar problem often ariscs in scene analysis [Kender] [Tsuji]. A circle viewed in perspective gencrates
an cllipsc on the image plane. If some scene-understanding procedure can identify the points that lie on the
perimeter of the cllipse, these points may be used as the data points in a curve-fitting process to identifying
the dimensions of the cllipse. The relative lengths of the major and minor axes and the orientation of these

axcs will then be sufficient to determine the plane of the ellipse relative to the camera.

Fitting ellipses and other second-order curves to data points can be useful in interpreting physical or
statistical experiments. For example, particles in bubble-chamber photographs may follow elliptical paths,

the dimensions of which must be inferred.

It is casy to scc how a fitter of cllipses would be useful in an interactive graphics or a computer-aided
drawing package: i.c., the user could indicate a rough approximation to the ellipsc or circle he wants, and the
system could infer the best-fitting approximation. This kind of capability is currently handled by fitting with

splincs [Smith] [Baudclaire].

It is important to distinguish among the extraction of points that may represent the boundary of an cllipse;
the segmentation of collections of points into distinct curves; and the fitting of thesc points once they have
been extracted. This paper does not purport to describe how to determine which points do or do not belong
to any cllipse or cllipse scgment. Curve fitting can be of use in segmentation and cxtraction to cvaluate the
rcasonableness of a given hypothesis; however this discussion is limited to methods for determining the

cquation of the curve that best fits a given sct of data points.



Representing Second-Order Curves
An cllipse in "standard position”, such as the one in Figure 1, may be represented by the equation
2
4+ = = 1. (1)
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Figure 1: An Ellipse in Standard Position

Such an cllipsc has its center at the origin of coordinates and its principal axes parallel to the coordinate axes.

If parameter a is greater than parameter b, then a represents the length of the semi-major axis and b represents

the length of the semi-minor axis. The eccentricity (e) of the ellipse is defined by the formula

2
=Vi-g
where e must be positive, and between zero and 1. If a=b, then equation 1 represents a circle, and e is zero

1f a<b then b represents the semi-major axis and a the semi-minor, and e is defined as
e= \/1 — 12— .
b2
A shift of coordinates allows us to represent an ellipse centered on a point other than the origin, say (,k),
as in Figure 2. If we let
x’=x—h )
and y=y—k
then the equation of the cllipse of Figure 2 is
3

22
X y 1

—_—t —— =

&

or,

) 2
R @

& b




Figure 2: An Ellipsc off the Origin of Coordinates
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Figure 3: An Ellipse Rotated and Moved

A rotation of the cllipse, as in Figure 3, can be accounted for by the transformation

1l

x" = x’cos@ + y’sin @
and y'= —~x’sind + y’cos 4.
These transformations can be substituted directly into the equation for an ellipse, but we prefer the implicit

(%)

form:
x"z

&
x" = (x—h)cos@ + (y—k)sin §
' = —(x—H)sind + (y—-_ k)cos @ .
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and



Lquation 5 can represent any cllipsce in any orientation. A total of five paramcters are involved: ¢ and b

represent the dimensions of the ellipse, /1 and & represent its center, and @ represents its rotation,

The equation of a hyperbola in standard position is similar to that of an cllipse, but with a sign change:
X2 y2 _

Figure 4: A Hyperbola in Standard Position

A hyperbola is shown in Figure 4. Its eccentricity is given by
2
e= \/ 1+ 5.
&
The center of the hyperbola can be moved and its axes rotated by transforms similar to those we used for

cllipses. We can represent cllipses and hyperbolas by the same equation or set of equations if we let

eccentricity into the equation. Any central conic (cllipse or hyperbola) can be represented as:

x y
D S | ()
& 41—

where X" =(x—h)cos @ + (y—Kk)sin 4

and y'=—(x—Hhsind + (y—k)cos @

It should be noted here that an ellipse can also be represented parametrically. For an cllipse in standard



oricntation, points on its perimeter are given by

x = h+ acos ¢ )]
y=k+ bsin ¢,

where ¢ varics between 0 and 297, The rotation 4 of the ellipse can be taken care of by rewriting equation 7
as follows:

x =/t -+ acos gcos § — bsin psin g
y=k+ acos ¢sin @ + bsin ¢cos 8

A hyperbota may also be represented parametrically, using hyperbolic functions. Points on a hyperbola in
standard oricntation with its center at (4,k) are given by

x = h*acosh §
y=k=bsinh {.

The value of ¢ may vary from zero to an arbitrary upper limit. The various permutations of the * signs give

rise to the four branches of the hyperbola.

A parabola is actually a conic section with eccentricity 1, but if we try to represent it in the form of

Equation 6 a division by zcro results. It is better to represent the parabola by the cquation

y=ax
A shift of origin and a rotation give the form:
y" —_ axnz : (8)

where  x" = (x—h)cos 8 + (y—k)sin 8
and y'= —(x—Hh)sin @ + (y—k)cos 8

Given any parameters of size, position, and orientation, Equation 6 or Equation 8 can be rewritten in the
form
Gx))=AXP+Bxy+CyP+Dx+Ey+F=0 )

It may be shown that all conics may be represented in the form of Equation 9.

Purcell [Purcell, p.130] shows that Equation 9 represents a hyperbola if the indicator, BE—4ACis

positive, a parabola if it is zcro, oran cllipse if it is negative.

Furthermore, the parameters of Equations 6 or 8 may be recovered by the following procedure: Apply a

rotation @ in which @ = 45 degreesif 4 = Cand
B

A-C
if A = C. 'This transforms Equation 9 into an equivalent form in which B (the cocfficient of the xy term) is

tan2 4 =

zero. Itis then a straightforward matter to extract the other four parameters.



NMinimization and Approximation Theory

Approsimation theory is a mathematical discipline that addresses curve fitting [Rivlin]. Usually, a sct of n
data points arc specified as pairs of the form { () 1=1, ., n }, where x is regarded as an independent
variable and y, represents values measured at # particular values of x. I.et the symbol v denote the set of given
data pairs. et ¥ be the set of all functions defined on {xi, i=1, .. .a}. Fis thus an a-dimensional lincar

space, and veV,

Admissible solutions to curve fitting problems are usually represented in the form y=f(x). The sct of all
admissible solutions constitutes a subspace W of V, whose dimensionality corresponds to the number
paramcters used to characterize £ For example, the set of all quadratic functions of one variable constitutes a
space of dimensionality three. Given some w €W we need a measure of the diffcrence between w and v,
which we denote as [w—|, the norm of w—v. The norm may be defined in the Euclidean manner as the
square root of the sum of the squares of w— v, where summation is over all values of x for which both w(x)
and W x) are defined. Another norm in frequent use is the maximum of all elements of w— v, again over all

points where both functions arc defined.

A central theorem of approximation theory states that there exists some w* such that
W=y < lw—H|
for all we . When we use the Euclidean norm, we say the minimizing w* is the best approximation in the
least-squares sense. If the norm is the maximum of all elements of w— v, the minimizing w* is referred to as

the best uniform approximation.

The paradigm outlined above can be generalized to several dimensions. For example, given triples of the
form { x, y, z,i=1, .., n } and a space of functions w(x,y) we may find w* that minimizes (in the appropriate
sensc) the difference between w(xi,yi) and z. But however many dimensions there are, the basic assumption

remains: that wis a single valued function of one or more independent variables.

1t is difficult to represent an ellipse as a single-valued function. Therefore, the "difference” between a data
point and an cllipse is not uniquely and unambiguously defined. Intuitively, the difference should represent
the perpendicular distance from the point to the curve. If an ellipse were represented in the form y=f(x),
then f would be multivalued over some range of x, and have no value clsewhere.  Usually cllipses are
represented implicitly by cquations of the form g(x,y)=0. We might choose a norm that estimates the
magnitude of gitself, (i.c., it measures the difference between g and zero,) and scarch for a ¢* that minimizes
that norm. But the "classical” techniques of approximation theory arc no longer applicable, so we must

develop other techniqucs.



Choosing an crror Function

The basic paradigm for cllipse fitting is as follows: First, choose a method of estimating the "crror”™ of a
point with respect to any given sccond-order curve; second, choose a method of calculating an aggregate error
from all the individual crrors; third, systematically scarch for the ellipsc that minimizes the aggregate error.
The choice of an error measure and an aggregating rule affects not only the solution, but also the

computational cffort necded to obtain the solution.

It should be noted that any five arbitrary points on the planc are sufficient to specify a second-order curve.
As long as no three of the five points are coplanar, there exists a unique sccond-order curve that passcs exactly
through each of the five points. An algebraic procedure exists for finding this curve [Bolles). . More

sophisticated methods become necessary only when there are more than five data points to be fit.

If all the data points lie on, or very close to, a mathematically perfect curve, then almost any method for
fitting cllipses will give acceptable results. In practice, problems usually arisc when the data become noisy
and dispersed. Very eccentric cllipses are harder to fit than nearly circular ones. Cases where only a portion
of the complete curve is represented by data points gencrally create problems: the less complete the

perimeter the greater the difficulty of estimating the curve to represent it.

For the rest of this discussion, we will consider only a Euclidean norm. In other words, we are restricting
our attention to least-squares methods. This reflects a desire to let the solution represent an "average” of all
the data, rather than being influenced primarily by the outlying points, as would be the case if we used a

uniform norm.

Using the General Quadratic Form
Onc possible choice of an error function is the general quadratic form of a second-order curve as given in
Equation 9. We must avoid the trivial solution 4 = B = C = D = £ = F = 0, so we arbitrarily assign
F = 1. This gives
Gxy)=Ax*+Bxy+Cy2+Dx+Ey+1=0. (10)
Given a data point (xi,yi), we let the pointwise error §i be given by
£=Gxy)=Ax>+Bxy +Cyr+Dx +Ey +1.
The aggregate crror is given by

E=3¢t2
:E(lei2+Bxiyi+Cyi2+Dxi+Eyi+l)2 (11)

Obtaining the partial derivatives of Equation 11 with respect to 4, B, C, D, and E, and sctting these to zero,



we obtain the following system of cquations:

A =X+ B Zx3y + C 2x2y2+ D =3 + E szy + =x2 0
A 2x3y + B )Z)(zy2 + C ny3 + D Zxy + I ny2 + 2xy = 0
A2 BEP +C S + DE? + FE % + 52 =0 (12)
A 33 + B E,xzy + C 21)(}/2 + D 3+ F Zxy + Zx =0
ANy + BE0? + C P + D Sxy + £ 52 + 2y =0

The solution to these cquations represents the the ellipse that minimizes the error function given in Equation
11.

Figure 5: Fit Obtained by Minimizing Equation 11

Figure 6: Fit Obtained by Minimizing Equation 11

Figurc 5 shows a sct of computer-generated data points and the curve generated by this method to fit it.
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‘The method appears to work adequately in this ¢ But Figure 6 shows another case, where the minimizing
cllipse clearly misses the data points near the erigin of coordinates. What we are secing is the result of a poor
choice of error function. When we went from the ellipse representation of Equation 9 to that of Equation 10
by fixing I to be 1, we allowed the representation to become degenerate; we lost the ability to represent an
cllipse that passes through the origin, An cllipse as represented by Equation 10 that passes close to the origin
must have large cocfficients 4, B, C, D, and b hence the error measure = of Equation 11 will be large.

Therefore, minimizing = implics keeping the curve away from the origin.

A requirement of a useful curve fitting method is that it should be independent of scaling, translation, or
rotation of the data points. That is, the choice of a coordinate system should not affect the solution curve;

except, of course, that the solution curve should be scaled, moved, or rotated along with the data points,

The Average Gradient Constraint

Ideally, the crror function we choose to minimize should be related to the distance from a point to the
curve. Suppose we were to choose some primitive error measure such as the G(x,y) given in Equation 9. G'is
zero along the curve, and its magnitude increases when we measure G at points farther and farther from the
curve. Fora point in a small ncighborhood the curve, G is proportional to the perpendicular distance from

the point to the curve. The constant of proportionality is the reciprocal of the magnitude of the gradient of G.

We will choose a constraint on the coefficients of Equation 9 such that the average gradient is unity. Then

the resulting error function will be directly related to the distances from points to curves.

A shift in notation will make the following mathematics casier. Define the vectors X and V to be

C 2] [ 4]
X B
X = );V and V = C
X D
y E
1 . F

Then we may rewrite Equation 9 as
e =vVix=xTv.
Using the Euclidean norm, our aggregate error = is given by
2=3¢2=32G=2(VIXx"V)=vlzxxHv=vipv. (13)
P = = X X' is a matrix of sums of powers of x and y, whose first five rows and columns are, in fact, the

cocfficients of 4, B, C, D, and I in IEquation 12 and whose last column provides the constant terms.



il

‘The magnitude of the gradient ot G, |V G may be determined from the partial derivatives of G with respect

10 xand y.
EE:VTEE:VTX
0x 0x X
G D) .
a_’:vrg}:v‘x
dy dy y
where -
[ 2x [0 ]
y X
X, = 0 Xy = 2y
1 0
0 1
. 0 L 0

w6y = (29)2 4 (29) 2= yr XXT+XXDV
o0x oy vy

SweE=VvT z(xxxxT+xyxyT) \%
=ViQvVv
Q== (XXXXT+XyXyT) is another matrix summed from powers of x and y. The mean-square gradicnt of G,
measured at all data points { (xp). 1=1...n}is Z(Vv G)2 / n. Requiring this "average gradient magnitude”

to be unity is cquivalent to specifying

vIQV = n. " (14)

We wish to find the vector V that minimizes the matrix product VI PV, under the constraint that V¥ Qv

= n. Itis well known [Courant] that at the constrained minimum there exists some LaGrange multiplier, A,
such that

PY=AQYV (15)

This equation would be casy to solve by normal cigenvatlue methods were it not for the fact that Q is a

singular matrix, and P is ncarly singular. (It secms that the closer the data points approximate a conic scction,

the closer P approaches singularity.) The appendix gives a mcthod.for solving Equation 15 that yiclds five

cigenvalucs {)\i, i=1,..,5} corresponding to five eigenvectors {Vi, i=1,..,5}

To determine the aggregate error, Equation 13, we may usc Equations 15 and 14 to produce the result

Z=VIpv=AvVIQvV=2an
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Then we know that the cocfficients of the quadratic function giving the minimum aggregate error under the

given constraint arc given by the ¢igenvector corresponding to the smatlest eigenvalue.

Solutions to the curve fitting problem are invariant with translation, rotation, and scaling of the input data.

A proof of this is presented in Appendix B.

Figure 7: Curve Fitting with Average Gradient Constraint

Figure 7 show the same data points that were used for Figure 6 fit using the "cigenvaluc” mecthod

described above. Comparing figures 6 and 7, shows that the new method gives superior results.

Some Difficulties
The problem of curve fitting gets worse when the points to be fit represent only part of an cllipse. Noisc

and digitization crror accentuate the problem.

Figures 8 through 10 show increasingly difficult cases. The data points for Figure 8 are a subsct of those
used to generate Figures 6 and 7. There is a noticecable flattening of the solution curve, but not so much that
if we had no knowlcdge of how the points wcfe generated we would say the fit was "wrong.” The misfit in
Figure 9 is more appércnt. The samc ideal ellipsc as before was used to generate the points, but a "fattening™
of the data points has been simulated. Figurc 10 represents an extreme case. The data points were not

generated theoretically, but are from an actual light-stripe experiment [Agin 72).

What we arc sceing is a systematic tendency for the solutions to flatten, becoming clongated ellipses

parallel to the general linear trend of the data points. The tendency arises from the fact that, all other things
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Figure 8: Curve I¥it to a Short Segment

Figure 9: Curve Fit to a Short, Fattened Scgment

being equal, the crror of a scatter of points about a curve G(x,») = 0 depends on the second derivative of the
error function G. That is, a function whose gradient varies rapidly tends to "fit” better, in a normalized least-
squares sensc, than a function with a constant gradient. Flattened ellipses and hyperbolas are characterized
by a high sccond dcrivative of their defining function. The curve fitting solution chooses these squashed

curves over the more intuitive curves we would prefer.

The problem is not limited to fitting with the average gradient constraint. Lyle Smith [Smith] noted the

same phenomenon using the general quadratic form, i.e., minimizing Equation 11.



Figure 10: Curve Fit to a Gently-Curving Segment

It is tempting to try some method that would keep the general idea of constraining the average gradient, for
cxample by computing that average over the entire curve instead of over all the data points. This would
amount to a constraint on the coefficients 4 through F of Equation 9 independent of the data points. A little
thought will show that this approach will not work at all. The RMS error can be made arbitrarily small by
choosing a very large and very clongated cllipse with a gradient magnitude near unity along most of its length,

but a vanishingly small gradient magnitude in the vicinity of the data points.
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Curve Fitting by Hill Climbing

The best measure of the goodness of fit of a point or sct of points to a given mathematical curve G{xy) = 0
is provided by mecasuring the perpendicular distance from cach point to the curve. A reasenable
approximation to that distance may be had by dividing the crror function G(xi,y.l) by the magnitude of the

gradient of ( measured at (x;,p). With such a definition, aggregate error Z is given by

- Gxy) 'y
[V G(x.y)|
vixxTv
=2 (16)

VigxxT+xxThv’
x7x Yoy
where V, X, X, and Xy are the same as in the previous section.

The point-by-point division makes it impossible to move the summation sign inside the matrix product as
wc did in the previous section. Minimizing Equation 16 will require a hill-climbing approach. We¢ must
postulate a coefficient vector V, use it to evaluate =, then choose another V to see whether or not it improves

the error =, etc.

Even though there are six elements in the vector V, there are really only five independent parameters
necessary to specify an cllipse. The hill climbing algorithm will manipulate these five. We are free to specify
these parameters in any way we choose. We only require that it be possible to derive V uniquely from these
parameters. For example, we could choose to optimize over a, ¢, 8, A, and k given in Equation 6. A
somewhat better approach is to represent the ellipse in the form

a(x=+Bx—HNy-b+y—k =1 (17)
and optimize over a, 8, ¥, A and k. This formulation avoids degencracy in 4 (orienfation) when the cllipse is

ncarly circular.

Hill-climbing must start with some initial guess as to the approximating ellipse. The casicst way to do this
is to choosc three data points, preferably at both ends and near the middle, and calculate the circle that passes
through these three points. Hill-climbing tends to preserve the form of the initial guess. If the initial guess
represents an cllipse, the method will not converge to a hyperbolic solution. A roughly circular ellipse will not

be transformed to a drastically elongated one.

The minimization problem is rather ill-conditioned. Care must be cxercised to use the correct numcrical
technique, or the results will be poor. We have tried scveral methods. Tt turns out that the method of steepest
descent with accelerated convergence is totally unacceptable. It may take many minutes of computer time for
the method to converge, if at all. Evaluation of the gradient of Z docs not appcar to help appreciably. The

only mcthod that gives acceptable results requires evaluating the matrix of second partial derivatives of =,
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then finding the cigenvectors of that matrix. "The complete method is given in Appendix C.

We shall not attempt to prove formally that results obtained from hill climbing on the expression given by
Equation 16 are independent of position, orientation, and scale. Instcad we shall appeal to an intuitive
understanding of an error function and its gradient. The error function should not be affected by changes of
coordinates, nor should its gradient. A change of scale will affect the error function and its gradient, but
should multiply them by the same constant value everywhere. Hence, a local minimum will stay a local
minimum under translation, rotation, and scaling. Dcpending on the particular hill-climbing method used,

there may be some dependence of convergence properties on scaling and rotation.

+

Figure 11: Hill-Climbing Curve Fit

RSy

Figure 12: Hill-Climbing Curve Fit
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Figure 13: Hill-Climbing Curve Fit

Figures 11 through 13 show the data points of Figures 8 through 10 fitted by hill climbing with an initial
circular estimate. Figure 11 is approximately equivalent to Figure 8. Figure 12 shows a more noticeable
improvement with respect to Figure 9. While the result doesn’t come near the ellipse from which the data
points were generated (cf. Figure 7), the fit at the lower end of the data points is more "intuitive.” In the case

of Figure 13, the improvement is dramatic.
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Applying the Gradient Constraint to Straight Lines
The following section is a digression from the main topic of fitting sccond-order curves. A new

formulation of straight-line fitting is obtained when we apply the methods developed here to the linear case.

A straight linc is defined by the equation

Gxy)=Ax+By+C=0. (18)
We define
X A
X = y and V = B ,
1 C

so that we may rewrite Equation 18 as
GOy =ViX=XTv=0.
We seck to minimize the error function

Z=2¢=26=Vpy

where
= Zxy Zx
P=3XxX= Ixy Ty* Sy
3x 2y n

The magnitude of the gradient of G is constant for all x and y, and is equal to the square root of A2+ B

| 100
w6} = vl 010 |v = vl Q.
000

If the gradient is constrained to unity, then the error function G(x,y) will be preciscly equal to the

perpendicular distance from (x,y) to the line G = 0.

Just as in the second-order case, the vector V that minimizes = subject to the given constraint must be a

solution to the cigenvalue equation

PY=AXQYV.
Some algebra yiclds the pair of solutions
A 1 [ —5 ]
V= B = —— X r—A ' 19)
C \/52+(r— }\)2 | (sZx — (r=A)Zy)/n |
1 [ 1= A ]
o —— % -5 20)

\/(1— )\)2+SZ [—(1=A)Zx + sZy)/n]
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where
r= 3x — (Zx)z/n
s = 2Zxy — Zx2Zy/n

(= 5 — ()2 n

A= L+ - \/(r—~1)2+4's2 ).

The two forms are mathematically equivalent unless s=0, in which case one form or the other will involve a
division by zero. For this reason, Equation 19 is to be preferred whenever r is greater than ¢, and Equation 20
when the reverse is true. Once 4 and B have been computed using either form, C may be easily computed as

—(AZx + BZy)/n. The mean-square crror of the fit is equal to A/n.

Figure 14: Straight Line Fit Minimizing Vertical Distances

Figures 14 and 15 show a startling comparison between the traditional method of fitting straight lincs and
the method presented above. The data points show a wide scatter about a nearly-vertical linc. The line in
IFigure 14 was fit using the traditional lincar regression formulas, where a line is represented by the equation

y=Mx+ B

and M and B arc calculated as _
NZ3xy — 2Zx 2y

NExX2—(2x)
_ Ix2Zy - ZxZxy

NEZP® - (3x)
The straight line of Figure 15 was based on the line representation of Equation 18 and the solution of

M=

B

Equation 19.
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Figure 15: Straight Line Fit Minimizing Perpendicular Distances

A failure of a "tried and true” method deserves some analysis and discussion. In this casc, the failure is
traccable to the assumption that x is the independent variable, that y depends on x. But when the trend of the
data is ncarly vertical, it may be that x is more a function of y. A vertical line is degenerate using the
regression formulas. If it makes sense for a collection of points on the plane to approximate a vertical line,

then we should not use linear regression.

I have not seen this formulation published anywhere else. I would appreciate anyone who has scen this

result published elsewhere letting me know.

Conclusions
Three methods for fitting second-order curves to sets of data points on the plane have been presented and
analyzed. These methods are distinguished principally by the way they measurc the amount of misfit between

a given curve and a given sct of points. The three measures are:

1. the quadratic form, with the constant term set equal to 1 (Equation 11),

2. the quadratic form (Equation 13) subject to the average gradient value being held to 1 (Equation
14),

3. the quadratic form divided by the gradient magnitude at cach point (Equation 16).
As may be expected, the three measures lead to different results when minimized. The first measure has

been shown to be sensitive to translation in the plane, and to give grossly incorrect results under certain

conditions. The sccond measure has been formally shown to be insensitive to translation, rotation, and
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scaling, and reasons have been given why the third mecasure ought to be the same. The third measure has
been shown to give somewhat better results than the second, particularly in difficult cases with small angular

arcs and widcly scattered data points.

The three measures also lead to very different computational procedures for their minimization,
Minimizing measurcs 1 and 2 both require summing products of x and y up to the 4th power; in this
summation they are O(n), where # is the number of data points. But for fewcr than 100 data points, the major
use of computation time is in solution of the simultaneous lincar cquations (for measure 1), or the cigenvalue
solution (for measure 2). On a Digital Equipment Corporation 2060 computer, generation of Figures such as

6 and 7 typically require about 50 milliseconds,

On the other hand, measure 3 is very expensive computationally. Computation time is a direct function not
only of the number of data points, but also of the initial solution estimate and the accuracy required.
Generation of Figures 11 and 12 required 24 and 42 scconds respectively. Hence hill climbing is to be

reccommended only when all other methods prove inadequate.
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Appendix A: Solution of the Generalized Eigenvalue Equation
We wish to solve the generalized eigenvalue cquation
PV=AQYV,
given that Q is singular and P may be close to singular. The following method was derived by Richard

Underwood.

We know that the last row and the last column of matrix Q are zero. Q may be represented by the

partitioncd matrix

Q* | 0

We may usually expect the 5x5 matrix Q* to be positive definite. We¢ may use a Cholesky decomposition

[Forsythe and Moler] to factor Q* into a lower diagonal matrix L* and its transpose L*T 5o that

Q* = L* L*T
If we let 1. represent the augmented matrix
1 | 0
L=|—— —-—
0 | 1
then we have the result
I | o
Lot =|—— ——
0 | 0

where I denotes the five-by-five unit matrix and LTis the transpose of L

The original generalized eigenvalue equation, Equation 15, may be transformed into
LPLTLTv=L1QLTLTAV.
Applying the substitution

~

C | U
C=L'pPLT =|—= ——
| Ul | «
and letting Y be the partitioned column vector
[z
Y=LTv= |—-
| W
yiclds the representation
C | U Z I |1 o Z
- == —-—— J|=A |- —= —— . 21
u' | a w 0 | 0 /4

The bottom row of this result represents the scalar equation



u'zZ+aw=0.
This may be solved to give
ulz
W= — . (22)
a

The top five rows of Equation 21 represent the vector equation
CZ+UW=AL
into which we may substitute our result for W, Iiquation 22, to yield

1 .
(C'—=-uvuhHz=2xrzZ. (23)
o

Equation 23 may be solved by usual eigenvalue methods, such as the Q-R algorithm [lsaacson). Given a

particular solution Zi’ the corresponding V i is given by

where W is given by Equation 22,

Appendix B: Rotational, Translational, and Scaling Invariance
The rotational, translational, and scaling invariance of the method may be shown as follows: I.ct there be a
coordinate system (u,v) related to (x,y) by the transformations

u=ax+by+ec 29
v=dx+ey+f.

We may define a vector U analogous to X such that

( ut ] [ & 2ab B 2ac 2bc [ 2 ]
uy ad ae+be be aftcd bf+ce ¢ Xy
U=| ¥ [|=HX=| & 2e & 2df 2 j{ x | s
u 0 0 0 a b c X
v 0 0 0 d e f y
L 1 L 0 0 0 0 0 1 L 1 |

Just as a vector V dcfines an error function G(x,y) = VT X, a vector V °can define an error function G’ =V T

U. Equating the two crror functions (for all X) yiclds the relationship

v=HTvV"

Now, suppose that for some collection of data points {Xi, i=1...n} Y minimizcs the aggregate crror given
by Equation 13. We have shown that V satisfies Equation 15, and that the corresponding eigenvalue A is the

smallest of all cigenvalues that satisfy the equation.

Rewriting Equation 15 and performing some algebra gives
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PY=AQY
o) T ro gt l 'l‘
ZXXHV=A2ZX X "+ XyXy )V
TXXTHTV) = AZX X HIV + X X THT V)
sxx'utvy=azaix X "H' v+ 1 X, xy"‘nT V)
ZUUTVY =AU VU UTTYY)
where U and Uy denote the partial derivatives of U with respect to x and y, respectively. If the
transformation of Equation 24 is an orthonormal transformation, that is, if
&+ 0=+ b
and
ad + be =0,
then it may be shown that
T T .2 2 T T
uu’+ UyUy = (a" + b)(UuUu +U,U).
Substituting this result in the above,
s(uUH) V=@ +HAz@,u +U UunHv
yiclds the result we scck: any solution to Equation 15 in one coordinate system is also a solution in any

orthonormally related coordinate system. Since the cigenvalues are proportional, the swiallest eigenvalues in

the two coordinate systems correspond.

Appendix C: Hill Climbing Method

Hill climbing refers to a class of numerical methods that minimize a function G(U), where U may be a n-
dimensional vector. For our purposcs, we may assume the existence of a subroutine MIN1 that minimizes G
along a straight linc. It accepts an initial cstimate U0 and an increment AU, finds a value of & that locally
minimizes G(UO + k AU), and updates U, to the new minimizing valuc. Different hill-climbing strategics
consist of different means of selecting a sequence of AU vectors. The scquence terminates when no further

improvement in G can be obtained.

A mcthod that requires no knowledge about the function G 'is to search scquentially along the # dimensions

of U, i.c., to apply the secquence

1 0 0 1
AU: 0 s 1 » are g 0 Py 0 ’
0 0 1 0

This is one form of the method of steepest descent. For somc functions this method will suffice. But if the

function G is ill-conditioned, that is if the clements of U interact to a great degree in their influence on G(U),
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or if the equipotentials of G tend to form squashed cllipsoids, then this simple approach will converge very

slowly. Figure 16 shows a hypothctical sequence of iterations in minimizing a function of two variables.

Figure 16: Iterations in Method of Steepest Descent

Convergence can be enhanced by kecping track of the cumulative change in U as the minimization
proceeds. After n minimizations along the 1 coordinate directions of U, an additional minimization step can
be attempted along the direction indicated by the sum of the individual ki AUi terms measured in the

preceding # calls to MIN1. This is called the method of steepest descent with accelerated convergence.

Some improvement in performance can be obtained if it is possible to evaluate the gradient of ¢, that is,
the n partial derivatives of G with respect to the elements of U. At each minimization step let AU point in the
direction of the gradient. Use of the gradient can give a computational advantage in reducing the number of

calls to MINT1, but it is doubtful whether this technique affects overall convergence properties.

The situation illustrated in Figure 16 can be completely avoided if the second partials of G arc available. In

the neighborhood of U, G(U) may be approximated by the expression

GU) = Gy + D' (U~ Uy + (U - Up'PU - Uy (25)
where D =D (UO) is the gradient vector, or vector of first partial derivatives, and P = P (UO) is the matrix of
seccond partial derivatives. P is a symmectric matrix. An cigenvalue analysis of P will give n lincarly
independent cigenvectors {U,, i= 1,...,n} and associated eigenvalues {}\i, i=1,...,n} such that

PU =AU..

1 ] 1

These cigenvectors point in the directions of the principal axes of the equipotential cllipsoids of . Function

minimization may take place in the cigenvector directions independently without cross-coupling or co-
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variance cffects. Convergence will be quite rapid.

If the cigenvectors are normalized to unit magnitude, and we let U = U, + k£ U, then Equation 25

becomes
GU) = G+ kDT U + A 2. (26)

Taking the derivative with respect to k and sctting the result equal to zero, we find that the minimum ought to
occur when & = DT U /7(2k }‘i ). If A is negative, as it frequently turns out to be, then the k above actually
points to a relative maximum. ‘This result can be used to guide the minimization by subroutine MINI, to

suggest initial step size for the search, but experience shows that the use of MIN1 should not be bypassed.

For the case at hand, cllipses are represented by
a(x=h? + B (x=H -k + Y-k = 1,
or
ax®+Bxy+ vy — Qah+Bk)x — (Bh+2yk) y + ak® + Bhk + yk2— 1 = 0.
Thercfore let '

a [ a ]
B B
U=] ¥ and Y(U) = Y ,
h —2ah—Bk
k —Bh—2vk
| ai?+Bhk+yk2—~1 |

and let X, X , and Xy be defined as before. G(U) is given by

GU)=Z2=3¢2= z%

where
N=vIxxTyv=(xTv)?
D=VT(x X"+ X, X,V = (XXTV)2+(XYTV)2.

The first and second partial derivatives of N and D with respect to the elements of U are:

Fx?

Fxy

VN = 2 Fy?
—FF,
X
— FF,
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x4 x’3y’ )(‘zy‘2 - 1" x2- 20y —F x*
X3y x2y? X y’3 —F XY =1y = Xy —=Ftx
VN =2 x’zy’z xy3 4 Ziy? Iy'yy’2—21'y’
~FX -—221’x’ ~FxXy—Fy —I’y’z 1’2+2ra F B
Fyx =4 xy~1x —Iyy ~21~y [x1y+1/3 I +2ly
[ 2F x
ny’+17yx’
vD =2 2hy
~2Fa-Fp
|~ FB—2F Y
4x? 4xy 0 —4xXa—=2F, —-2x'B
Xy y24x? 2y -2y a-xfB- -k -y B-F-2xy
v = 2 0 2Xy 4y B T —ayy-2r |,
~4xa—2F, -ya-xB-2F, -2yp 4a?+2p2 2aﬁ+2,87y
| -2xB -yB-F-2xy —4y’y—2Fy 208 +2BYy 283 +4y2
where
X=x-—h
y=y—k

F=ax?+ B xy+ yy’z -1
F=2ax+ By
I"y: BxX+2yy.

The first and second partials of £, can be derived from the partials of N and D by use of the formulas
o N DN — ND
—p b

op D D?

2 2

0 _]Y_:2NDDDQ—NDDDO-—N0DDD+NDQD +NDDm
dpdg D p*

where p and ¢ stand for any of the set {a, B8, vy, h and k}, and subscripting denotes taking the partial
derivative. The derivative of a sum is equal to the sum of the derivatives of the terms. Hence, the partial

dcrivatives of = are the sums of the partial derivatives of the individual §i terms.
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