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Abstract 
Manually censusing and monitoring bird colonies can be a time consuming, frustrating, and sometimes error prone 
process. Automation of censusing would efficiently provide consistent and easily collected data which would aid in 
the monitoring of bird colonies. This paper analyzes some typical scenes from bird colonies and describes our 
experiments of applying well-known computer vision techniques to those scenes. After a short description of the 
template matching, convolution, and motion analysis methods we used, we analyze four different classes of sccnes 
using those techniques. They are as follows: 

0 Kittiwake colony scenes are analyzed by convolution with a filter especially constructed to find light 
circles with dark edges. Results of that analysis show an improvement over directly thresholding such 
images. 

Murre colony scenes prove to be highly resistant to analysis because of the coloration and crowding 
behavior of murres. However, we do show that it is possible to identify murres with profile 
presentations in such scenes by using template matching. 

Motion analysis techniques are applied to fmd auklets loitering on the surface of their talus slope 
nesting areas. Though the birds are practically invisible in these scenes, we show it is possible to find 
areas of high movement indicating the presence of birds. 

Thresholding and convolution are used to recover counts of birds from scenes of flying auklets. Ideas 
about tracking individual birds through such scenes are also explored. 



In t reduction 
Manually censusing and monitoring bird colonies can be a time consuming, frustrating, and sometimes error 

prone process. Automation of censusing would efficiently provide consistent and easily collected data which would 
aid in the monitoring of bud colonies. The purpose of this paper is to analyze some typical scenes from bird colonies 
and describe our experiments of applying well-known computer vision techniques to those scenes. 

There has been a limited amount of work applying computer vision techniques to censusing and monitoring birds. 
Bajzak and Piatt [2], and Gilmer et. al. [a rely on thresholding and some post-thresholding analysis to estimate 
goose populations from digitized photographs. Anthony [l] uses similar methods to estimate goose populations 
from video imagery. Strong et. al. [12] describes using multispectral data to inventory geese and Best [4] analyzed 
the feasibility of using infrared measurements to census geese. Sidle [ 111 reports on an airborne video system used 
to monitor the availability of nesting habitat for cranes while Meisner [8,9] describes a general purpose aerial 
videography system. 

The remainder of this paper begins with a quick review of some of the techniques we employed in our analysis of 
images from this domain. Following a short section on the source and preparation of the video data we used. the 
major portion of this paper is devoted to a discussion of four different classes of scenes and analysis of examples 
from each. The first three classes are typical views of kittiwake, murre, and auklet colonies. The final scene class 
we analyze consists of views of a flock of flying auklets. After those four sections we summarize our observations 
about our analysis of the scene classes. 

Analysis Techniques 
The tools we applied to this domain are common image processing techniques, some of which may not have been 

applied to the domain before. They include thresholding, template matching, convolution, and optical flow or 
motion calculation. We will give a brief explanation of some of these techniques, but a full description of them is 
beyond the scope of this paper. See Ballard and Brown [3] for more detail. 

Thresholding. Throughout our analysis we will be using thresholding a great deal but have not given the actual 
threshold values used. This is because they are generally picked in an ad hoc manner (e.g. “this value seems to 
work”) and depend on the scaling of the image values. We have tried to use thresholding qualitatively instead of 
quantitatively so that particular threshold values are not important in themselves. 

Template Matching. Template matching is a method for computing the “goodness” of a match between a patch 
of an image and a template. The result of a match calculation at a point in the image can be considercd to be a 
distance measure. If F(r, c) is the image and T(i.J is a template with 2x+1 columns and 2y+l rows then the sum of 
differences squared, d2(r, c). between the image at (r, c) and the template is their match value and is computed as 
follows: 

Y x 
&(r, c) = 

A small match value at a point corresponds to a good match of the image patch centered at that point with the 
template; large values indicate a poor match. Depending on the analysis to be performed, the template to be 
matched can be part of the image itself, part of another image, calculated mathematically, or hand crafted. In our 
use of template matching, templates come fmm the images being analyzed. 

In both template matching and the convolution technique discussed below, analysis of the edges of images is 
impossible since the computations depend on having pixel values in a neighborhood surrounding the pixel for which 
a result is being calculated. Thus there is a narrow border around images that contribute in the calculation of match 
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and convolution for other points but do not have such values calculated for themselves. 

Convolution. Convolution is similar to template matching in that a response between the image and a filter is 
calculated at each point in the image (except for pixels near the edge). If F(r, c) is the image and T(i.1’) is the filter 
with 2x+ 1 columns and 2y+1 rows then the result or response, F(r, c), of the convolution between the two at ( T ,  c) is 
computed as follows: 

V X 

Unlike template matching, a large response at a point corresponds to a good match of the filter and the image at that 
point; a small response indicates a poor match. The filter used for a convolution should have the propcrty that xi  xj T(i, 1’) = 0 so that it does not respond to featureless areas of constant intensity. 

We used two filters for the convolutions in our analysis. The fmt is constructed to give a large response at points 
in the image that are dark circles surrounded by a light edge. The second filter is based on the first, but is spccialized 
to respond at points with a light edge only on two opposite sides of the circle. The filters are shown in figure 1. 

Figure 1: Filters constructed for use in convolution (left h,, right: $). 

Computing the Laplacian The basis for the first filter is the two dimensional Gaussian functionflx, y)=e-2$ .  
2+? 

of the Gaussian function gives the first filter h,(x, y): 

2 
The second filter, ~ J x .  y) is created by using the one dimensional Gaussian g(x)=e-2$ in one direction and the 

second derivative of a one dimensional Gaussian in the other direction: 



2 

In using these filters, a is set to be equal to the expected radius, in pixels, of the inner dark circle to which the 
filter is to respond. Since the filters approach zero around the edges we found it sufficient to compute the filter to 
about 4 0  pixels from the center. Note that to create a filter that responds to the opposite situation of a light circle 
with dark edges one need only negate the fonnulas above. 

It should also be noted that the h, filter can be approximated by computing the difference of two appropriately 
sized Gaussians in each of the two dimensions. The primary advantage of this approximation is that the computation 
of the convolution can be decoupled into horizontal and vertical directions and then recombined to get the response 
values. This results in a big savings of computation time over calculating the convolution with the original form of 
the filter. 

Optical Flow. The fundamental idea of optical flow or motion analysis is to compare two sequential images of 
the same scene and compute the speed at which the intensity of the pixels in the scene is changing. The presence of 
motion at a point in the scene is indicated by a high velocity or speed at that point. We will give only our actual 
implementation of these methods; see Ballard and Brown [3] for a full treatment of optical flow. 

The basic operation we perform is to compute a velocity image, V(r, c), of the scene to be analyzed. If Fl(r ,  c), 
F2(r, c), . . . is a time ordered sequence of images taken at regular intervals then they may be considered as a single 
function, F(r, c, t ) ,  which gives the intensity of the image at row r and column c at time t. The velocity image at time 
t is computed as follows: 

where V,(r, c) and VJr, c) are the components of velocity at time t in the row and column directions respectively. 
They are computed as follows: 

aF F(r, C. t) - F(r, c, r-1) - 
F(r, c, r )  - F(r. c, r -  1) 

dt dF F ( ~ , c .  r )  - F(r- 1,  c, r )  F(r, c. r )  - F(r-1 ,  c, t )  
- - dr dt - 1 

V,(r, c) = - = - - 
- 
dr 1 

aF F(r ,c ,  r )  - F(r, c, t -1 )  - 
F(r, c, r )  - F(r, c, 1- 1) dc - dt 

dt dF F(r,c,  r )  - F(r , c -1 , t )  F(r, c , t )  - F(r, c - 1 ,  t )  
- - 1 

dc 1 

- V&, c) = - - - - 
- 

This gives a measure of motion fmm an image pair which we will use in the analysis of scenes of an auklet colony. 

Video Image Source and Preparation 
Video Data Source. The video data we used was gathered at seabird colonies on Little Diomede Island, Alaska in 

the summer of 1 9 9 1 .  With one exception, it consists of scenes typical in sampling and monitoring seabirds by 
manual methods. Originally recorded on an 8mm camcorder, we received the data after it was transferred to VHS 
format. Though only some of our analysis required it, we transferred the data once more to 3/4 inch Umatic video 
tape since our Umatic equipment allows sequential frame-by-frame digitization. Undoubtedly, these transfers have 
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resulted in a loss of quality from the original. 

Resolution. One of the biggest challenges in using video imagery to census or otherwise monitor birds is the 
relatively low resolution of standard video cameras. For effective censusing it is desirable to capture a fairly large 
number of birds in the field of view of the camera, but mdeoffs usually must be made to ensure that individual birds 
are recorded by enough pixels to facilitate recognizing the presence and, possibly, the species of a bird. (But see 
Strong e t  al. [12] for a description of their multispectral system with a resolution less than the size of a bird.) The 
resolution of our data varied with the focal length of the lens and the distance to the foreground of the scene. 

Color. Though the original video data we have is in color, all the analysis described here has been done with 
black and white images derived from the color images. This is done by averaging the intensities for the red, green, 
and blue bands at each pixel in the image. We believe that this does not result in the loss of much significant data 
since neither the birds nor the background in the scenes are very colorful. To the human eye, the most significant 
color in the video data we have is the orange of the bills of crested auklets, but the low resolution of video imagery 
negates any significance of that color in Scenes containing that species. 

Shift Correction. During the digitization process the video images sometimes get shifted a few rows and/or 
columns one way or the other. It is important that this shift be taken into account if the analysis to be done relies on 
matching sequential frames of the same scene. The cause of this shifting is unknown but probably has its roots in 
the many transfers the video footage we are using has gone through. The shifting is easily corrected for by using 
template matching to calculate a match between a small patch from each image. This results in a pair of offsets such 
that Fl(r ,  c)  = F2(r+row-oflser, c+coZumn-offset). This correction works best if the matching template contains a 
distinct edge or some other high contrast feature. Note that using patches with only horizontal edges or only vertical 
edges is to be avoided since that will most likely result in a meaningful correction for only rows or columns 
respectively. Some of the video data had a time and date stamp in the lower right comer of the frame; we used a 
portion of that as the template when correcting for shift in that data. In other scenes we used the intersection of 
approximately orthogonal edges for calculating shift correction. 

Kittiwakes 
Kittiwakes are gulls that breed in colonies and build nests on ledges and outcroppings of cliffs. Their head, 

shoulders, and underside are white while the rest of their body is gray. The density of birds depends mainly upon 
nest density which can be fairly high when nests are situated along a ledge. Cliff faces and outcroppings at colonies 
are often covered with substantial amounts of guano turning naturally dark colored rock white. Figure 2 shows two 
different kittiwake cliffs at different distances. 

There are two fundamental problems to overcome before automating the censusing of kittiwake colonies. The first 
is to assure that guano-covered rocks and outcrops are not mistaken for the white portion of kittiwakes. The second 
is to take into account the fact that birds are sometimes so close to one another that they appear as a single bird in a 
video image. Such close proximity of birds often happens only when the two adults tending a nest are 
simultaneously present. 

As can be seen from figure 3, thresholding by itself is insufficient for counting kittiwakes because of the problem 
with guano-covered rocks (and, in this case, bright water reflections in the upper left comer of the left image). For 
our analysis we used convolution with a filter that was the negative of the h, filter developed above. This gave a 
light-on-dark filter with a large response to small, light-colored kittiwake blobs on dark rocks while minimizing the 
response to larger, light-colored guano-covered rocks. The result of the convolving the images from figure 2 with 
the filter are shown in figure 4.The Q parameter in the filter is set to 4 pixels for the left image and 6 pixels for the 
right image. 
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Figure 2: Left Long distance image of kittiwake nesting cliff. 
Right: Closer view of different cliff. 

Figure 3: Result of thresholding images in figure 2. 

Thresholding the convolution responses from the right image of figure 4 at two different values gives the imagcs 
in figure 5. The right image corresponds to a relatively high threshold value while the left image uses a lowcr 
threshold. A manual count of the kittiwakes in the original image gives 13 kittiwakes within the range of the 
convolution filter. (The two leftmost kittiwakes are out of filter range as is the kittiwake closest to the lowcr left 
comer.) Using a high threshold gives 10 areas of high response, 9 of which are actually kittiwakes. The rcmaining 
high response area is a rock. As shown in the left image of figure 5, lowering the threshold to get the most number 
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Figure 4: Convolution of images in figure 2 with - h, filter 
(left: Q = 4, right Q = 6). 

of kittiwakes results in finding only 12 kittiwakes and many other high response areas that are rocks and murrcs. 
Note that the filter would never find al l  13 kittiwakes in this image because the two kittiwakes just left of center are 
standing at the same nest and are too close together for the filter to distinguish separately. 

Figure 5: Result of thresholding the right image in figure 4 (right: relatively high threshold, left: lower threshold). 

A manual count of kittiwakes in the left image of figure 2 gives about 38 birds. That is a rough figure because the 
quality of the image is extremely poor and even when watching the video it is difficult to tell which small white 
blobs are birds and which are guano. (At this level of quality and resolution ground truth counts would have to be 
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made at the site of video data collection.) The left image of figure 6 is the result of thresholding the left image in 
figure 4. It shows that most of the kittiwake-looking portions of the original image are found as well as some 
guano-covered rocks. Some positively identified kittiwakes are missing from the threshold image while some 
positively identified rocks are included. There are many spots of high response for which we are unable to 
determine the true identity. Notice that large patches of guano from the original image are not mistaken for 
kittiwakes. Only smaller patches or fingers of larger guano patches that are about kittiwake sue give a high response 
and are ambiguous. 

After noticing the vertical striping in the response of the h, filter on the left image of figure 2 we applied the 
negative of the 4 filter to the original image to try to minimize the striping. The threshold image of the convolution 
response with the - 4 filter is shown on the right of figure 6. That result is similar to the result with the - h, filter 
but responds to different kinds of non-kittiwake features. 

We believe that this analysis has shown that, though far from perfect, the application of convolution using these 
types of filters represents progress over directly rhresholding such images. Future work could be directed at using 
the high response areas to define areas of inkrest in images where detailed motion analysis could be performed. It 
also seems the analysis of these types of scenes could benefit from using data in other spectral bands where birds 
have different intensity than guano. 

Figure 6: Left Result of thresholding left image in figure 4. 
Right: Result of thresholding convolution response of - h, filter with left image of figure 2. 

Murres 
Murres also breed in colonies on cliffs but do not build nests; eggs are laid directly on ledges and outcroppings. 

These birds are often packed close together so that they touch and crowd each other. The body of murres are black 
except for their white undersides. Actually, two species of murres are usually found in the same colonies, but 
differentiation can be made only by fine distinctions visible to the human eye but not apparent in low resolution 
video imagery. The left image in figure 7 shows a portion of a murre cliff in a presentation typical for censusing 
while the right image of that figure gives a closeup of the birds. 



7 

Figure 7: Left Typical census presentation of murres with template outlined. Right: Closeup of murres. 

Challenges to the automated censusing of murre species are their severe crowding behavior, dark coloration, and 
the inconsistent presentation of their highly visible white underside. Visibility of the underside may range from a 
full frontal view to the more common full fear view where the underside is not visible at all. 

These challenges make analysis of murre images exmmely difficult. We had limited success in applying templalc 
matching to murre images to pick out individuals with a profie presentation. Such an individual is outlined in thc 
left image of figure 7. The result of using that outlined area as a template and computing the match of the template 
across the image is shown in the left image of figure 8. Thresholding that result image gives the image on the right 
of figure 8 showing three small dark blobs where good matches occur. The rightmost blob corresponds to the 
outlined bud used as the template. The other two blobs correspond to two other munw with a similar profile posture 
that have successfully been identified. Though not completely encouraging, this result does show that it is possible 
to do limited analysis of murre images when the birds cooperate by giving a profie view and exposing their high 
contrast sides. 

Auklets 
Auklets breed in colonies situated on talus slaps and nest in the cavities and interstitial spaces created by the 

talus. They are counted during daily activity periods when they loiter on the surface of the talus. Often more than 
one species is present, but the species are usually easily distinguished by humans through gross differences in 
coloration and size. Though those distinctions are apparent even at relatively low resolution videography it is 
beyond the capabilities of current computer analysis to differentiate the species at the even lower resolutions 
necessary to make counting efficient. All trials that we describe here consider auklets without regard to species. 

Though the birds are indistinguishable from the talus, the left image in figure 9 shows a typical scene of auklets 
loitering on the surface of their colony. Even in a still video image shown on a display, viewers are hard put to find 
the auklets in the scene. While watching the video being played, however, it is much easier to find the auklets 
because the eye picks out their movement against the background. This observation led us to apply motion analysis 
techniques to this video sequence. 
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Figure 8: Left: Result of template matching between the left image of figure 7 
and the outlined template in that image. Right: Result of thresholding left image. 

A good count is hard to determine, but we estimate there are at least 20 birds in the scene. From about elcven 
seconds of video of this scene we selected 23 images spaced one half second apart for the following analysis. Shift 
correction using a high contrast rock corner was performed to this sequence before analysis. This removes most 
shifting due to digitization and inadvertent camera movement. 

Figure 9: Left: Auklets on talus slope. Right Result of motion analysis of talus slope sequence. 

The output image on the left in figure 9 shows a measure of how much motion occurred over the sequence in each 
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section of the input images. The sections or blocks in the output image correspond to 10x10 pixel regions of the 
input images. The value of an output block is an average of velocities for points in that block with significant 
computed motion, calculated as follows. A velocity image was computed for each input image pair and the 16 points 
from the velocity image with largest values from that pair were selected. The velocity of these high-motion points 
were used to update the running averages of their corresponding blocks in the output image. 

The success of this analysis is difficult to discuss in anything but a general way. The bright blocks in the output 
image correspond to areas of a great deal of movement in the original sequence. Regions showing many less intense 
points also correspond to where movement is seen in the original sequence. Black regions in the output image 
indicate places where no significant movement was found. It is almost impossible to tell if the non-black singleton 
points in the output image correspond to actual movement or not. It seems that the results of motion analysis would 
have to be combined with the original sequence in some way so they could be viewed together to see if there is a 
correspondence between motion observed and motion detected from analysis. Falsely detected movement is 
possible when critical image features such as sharp edges are between the pixel elements in the digitizer. This can 
cause an edge to appear in different adjacent pixels in sequential images resulting in the detection of motion when 
there actually is none. 

Flying Auklets 
Part of our analysis efforts used some imagery that showed crested auklets flying in a flock fairly close to the 

camera. As shown on the left of figure 10, the background is of a plain sky while the foreground consists of birds 
flying away from the camera at an angle very oblique to the direction of view. Though we are unaware of any 
sampling method that uses this presentation of birds we analyzed it because it looked particularly amenable to 
automated counting methods. Whether automation of this type could be developed into a sound and meaningful 
biological sampling method remains to be seen. 

Figure 10: Left Crested auklets flying. Right Threshold of left image. 

As shown in the right image of figure 10. simple thresholding works quite well and captured all the birds with 
only a bit of extraneous data in the lower left corner. The result of convolving the h, filter (a = 5) with the original 
image from figure 10 is shown in the left image of figure 11. Thresholding that response image gives the image on 
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the right of figure 11 which clearly identifies all the birds and nothing else. 

Though it seems that simple thresholding could be made to work with a little postproceSsing, convolution 
provides a better and more robust method of analysis for scenes of this type. Convolution should provide bctter 
results in in the face of less than perfect images showing, for example, high contrast clouds in the sky or diffcrcnt 
lighting conditions. Note that neither of these methods gets the correct result when some birds partially or fully 
occlude others. One bird partially occluding another will probably result in the occluded bird being considered part 
of the occluding bird so the two will be counted as one. This problem could be minimized by counting birds in a few 
images taken several (5-10) frames apart and using the largest or average count from the images. 

Figure 11: Left: Result of convolving image in figure 10 with h, filter and (T = 5. 
Right: Result of thresholding left image. 

We also had limited success in tracking individual birds through sequential images of this scene . We digitized 15 
sequential frames of the scene and applied a very simple hacking algorithm to the sequence. Digitization shift 
correction was done using the “AM’ portion of the time stamp in the lower right comer of the images. After 
convolving the h, filter over the first image of the sequence, the response was thresholded to find the initial 
positions of the birds. In subsequent images convolution was used to search the areas around the previous known 
positions of the birds. A suitably high response in the search area indicated the presence of the bird. Otherwise the 
search area was increased and the convolution was performed again. This method worked quite well for areas of low 
bird density but failed spectacularly in high density areas such as the lower right quadrant of the scene. Failure in 
high density areas was expected because of the simplicity of the algorithm. The method also failed to take into 
account birds entering and leaving the scene. One simple improvement we made to the algorithm was to calculate a 
trajectory for each bird and start the search centered in the area of the image where the bird was expected to bc 
instead of where it was found in the previous image. We did not spend too much time on this tracking algorithm 
because a great deal of work has already been done in the area of tracking multiple moving targets. Reid [lo] and 
David et. al. [5] are just two of many papers available on the topic. 

We noted that it is important to perform digitization shift correction on sequences such as this to correct for 
movement of the image during digitization. Note that in this case the correction was performed on video data not 
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actually in the scene but overlaid on the scene by the camera. In the motion analysis of auklets the shift corrcction 
was done using a feature actually in the scene. It is important to realize the difference between the results of thcsc 
two applications of shift correction. The correction in the motion analysis was being done using a scene feature and 
thus corrected for digitization shift and camera movement at the same time (though in that case camera movement 
was insignificant because it was mounted on a tripod). In the present analysis, there is significant camera movement 
because the camera is being hand held. Since we used a featwc for shift correction that is not actually in the scene, 
only digitization shift and not camera movement is corrected. 

In the flying auklet sequence the birds. and the camera are both moving with respect to the ground and each other. 
Thus camera movement is difficult to distinguish fmm bird movement. The trajectories of some of the birds in the 
sequence are on the left of figure 12. We can pick a subset of the birds and compute their centroid for each image in 
the sequence. The movement of such a centroid is shown on the right of figure 12. That graph shows the estimated 
combined effect of camera and flock movement. If a similar sequence were recorded with a stable camera and thc 
same analysis performed, such a graph would be a good estimate for flock movement alone. In that case, we would 
hope to see more consistent motion from frame to frame for individual birds. This would make tracking much easier. 
The availability of new video cameras with built-in “steadycam” processing that corrects for camera rnovemcnt 
might keep even hand held sequences steady. 

mm I- I 1 I I A- 
imm rom ma, ORDD mm 

Figure 12: Left Result of hand tracking several birds from flying auklet sequence. 
Right Centroid of selected birds throughout sequence. 

Summary 

vision techniques to scenes commonly encountered in bird colonies. 
In an attempt to come closer to automated bird censusing we have applied fairly simple, well-known computcr 

0 Kittiwake colony scenes were analyzed by convolution with a filter especially constructed to find light 
circles with dark edges. Results of that analysis showed an improvement over directly thresholding such 
images. 

Images taken of m u m  colonies proved to be highly resistant to analysis because of the coloration and 
crowding behavior of murres. We did, however, show that it is possible to identify murres with profile 
presentations in such scenes through the use of template matching. 
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We explored using motion analysis to find auklets loitering on the surface of their talus slope nesting 
areas. Given the practical invisibility of these birds in typical talus slope scenes, we feel that our initial 
results of finding areas of high movement in the scene are promising, but are a very, very long way 
from any practical application. 

Though recovery of good counts from scenes of flying auklets could be done with thresholding and a 
little post-threshold processing, we believe convolution with a filter would prove to be more robust in 
images with different lighting conditions and backgrounds. Ideas about tracking birds through such 
scenes were also explored. We do not know if the counts recovered from scenes of flying birds have any 
meaning with respect to biological sampling. 

We hope that this work will be of use to other researchers interested in using computer vision techniques in this 
domain. With the growing availability of higher resolution video cameras and infrared video equipment 
[71 significant progress should be possible in the near future. 
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