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NEURAL NETWORK METHODS FOR ERROR CANCELING IN HUMAN-
MACHINE MANIPULATION
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Abstract — A neural network technique is employed to cancel
hand motion error during microsurgery. A cascade-
correlation neural network trained via extended Kalman
filtering was tested on 15 recordings of hand movement
collected from 4 surgeons. The neural network was trained to
output the surgeon’s desired motion, suppressing erroneous
components. In experiments this technique reduced the root
mean square error (rmse) of the erroneous motion by an
average of 39.5%. This was 9.6% greater than the reduction
achieved in earlier work, which followed the complementary
approach of estimating the error rather than the desired
component. Preliminary results are also presented from tests
in which training and testing data were taken from different
surgeons.

Keywords —Microsurgery, accuracy, tremor, robotics

I. INTRODUCTION

The human ability to perform micromanipulation is
hampered by inherent erroneous hand motion. This manual
imprecision affects the performance of microsurgery [1].
It complicates many procedures and makes certain delicate
procedures impractical and often impossible [2].

The most familiar type of involuntary or erroneous
movement affecting microsurgery is physiological tremor
[3]. Tremor is defined as any involuntary, approximately
thythmic, and roughly sinusoidal movement [4].
Physiological tremor is inherent in the movement of
healthy subjects. The resulting tool tip oscillation can be
50 um peak-to-peak (p-p) or greater [5]. Besides
physiological tremor, measurements of the hand motion of
surgeons have shown that non-tremorous components of
erroneous or undesired motion such as jerk (i.e., normal
- myoclonus) .and drift are often larger than physiological
tremor [3,5].

For some time there has been research interest in
enhancing human  positioning accuracy  during
microsurgery. A number of efforts have followed a
telerobotic approach [6,7], involving a robotic arm in place
of the shaky human arm. Taylor et al. have used a "steady
hand" approach, in which a robot and a surgeon directly
manipulate the same tool, the robot having high stiffness
and complying with only those components of the manual
input force that are deemed desirable [8].

In order to further reduce cost, and to maximize ease
of use, user acceptance, and compatibility with current
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surgical practice, the present authors are implementing active
error compensation within a completely hand-held tool,
seeking to keep the instrument size and weight as close as
possible to those of existing passive instruments. This device,
known as Micron, must sense its own motion, estimate the
undesired component of the sensed motion, and manipulate its
own tip to nullify the erroneous motion in real-time as shown
in Fig. 1.
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Fig. 1. Active hand-held instrument for error compensation in microsurgery

For this approach to work, it is of paramount importance
to accurately model and predict both.tremor and various types
of non-tremorous involuntary movement, so as to enable
online canceling without time delay. Several techniques have
been developed for tremor modeling and suppression. Riley
and Rosen [9], among others, have investigated lowpass
filtering. Gonzalez et al. [10] proposed an equalizer to
suppress pathological tremor. Riviere e al. [11] developed an
adaptive filter to cancel physiological tremor during surgery,
using an artificial frequency-modulated sinusoid as a
reference. However, other significant sources of error, e.g.,
myoclonic jerk, have yet to be substantially suppressed. Since
little is known about these components, and since practical
reference signals for adaptive noise canceling are unavailable,
suppression is difficult.

The mapping from human intention to human movement
output is nonlinear [12]. Neural networks model nonlinear
processes well, and have been used in modeling of human
control strategies [12]. The complexity and multiplicity of
involuntary hand motion components, and the paucity of



knowledge about many of them, makes a neural network
approach well suited to modeling them. Riviere and
Khosla [13] used a cascade-correlation neural network for
noise canceling in human hand motion. Their experiments
showed that the neural network successfully modeled and
reduced the errors in recorded hand movement of four
surgeons. This paper presents a different approach,
employing the same neural network to model a different
quantity (the desired part instead of the erroneous part) for
the same set of data.  We might call this the direct
approach to suppressing positioning error. We then
compare our results with those obtained by Riviere and
Khosla using the indirect approach, i.e., modeling the
erroneous component. We also go a step further and cross-
test the networks, investigating the effectiveness of the
trained networks on surgeons other than those on which
they were trained.

Though the experiments presented here focus on
surgery, the concepts demonstrated are directly relevant to
a variety of manipulation applications with low signal-to-
noise ratio, e.g., assistive computer and powered-
wheelchair interfaces, and manual accuracy enhancement
for cell micromanipulation in the biomedical laboratory.

) 1. METHODS
A. Neural Network Architecture

Instead of the traditional fixed architecture network with
backpropagation, we used a technique introduced by
Nechyba and Xu [12]. The technique combines (i) flexible
cascade-correlation neural networks, which dynamically
adjust the size of the neural network as part of the learning
process, and (ii) node-decoupled extended Kalman
filtering (NDEKF) [14], a fast-converging alternative to
backpropagation.

When training starts, the network has no hidden
nodes, only linear connections between the input and the
output nodes. This enables the network to capture any
linear relationship between the inputs and outputs (Fig. 2).

0] Output
[] Hidden
Input

Fig.2. Diagram of the cascade-correlation neural network architecture.

The diagram shows a network with three hidden nodes. As each hidden

node is added, it is connected to the input and output nodes, as well as
each of the preceding hidden nodes

During training, each time the error performance
stagnates, a new hidden node is added to the network from
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a pool of candidate units (transfer functions). In- our
experiments, these candidates include sigmoid, Gaussian, sine,
and Bessel functions. The best candidate unit is selected after
all candidates have been trained independently and in parallel
with different random initial weights. Once a new hidden unit
is installed, the hidden-unit input weights are frozen, while
weights to the output units are retrained. The process is
repeated until the algorithm succeeds in reducing the root
mean square error (rmse) sufficiently for the training set or the
number of hidden units reaches a specified maximum number.

Extended Kalman filtering (EKF) is an extension of
Kalman filter to deal with non-linear systems via linearization
about the current parameter estimates. In neural network
training, learning is cast as an identification problem for a
nonlinear dynamic system. The neural network weights
represent the state of the non-linear system. The EKF theory
is then used to derive a recursion for the weight updates. This
work uses NDEKF, in which the network weights are grouped
such that each group contains the input nodes, the output
nodes and one hidden node. For each group, elements of the
error covariance matrix estimate corresponding to other
groups can be ignored, greatly reducing the computational
complexity.

B. Experimental Methods

The hand movement of surgeons was recorded at Wilmer Eye
Institute of Johns Hopkins University. Each surgeon held a
microsurgical instrument with the tip inserted in a sclerotomy
in the eye of a vitreoretinal microsurgical simulator. A Hall
effect sensor mounted inside the mannequin eye detected the
position, in one dimension, of a 0.26g permanent magnet
mounted on the tip of the instrument. Data were recorded for
16s at a sampling rate of 250Hz. The surgeons attempted to’
hold the instrument motionless for the duration of each test,
therefore any motion in these recordings is considered to be
error. A total of 15 files were obtained from four surgeons (5,
5, 3, and 2 files, respectively).

To ease differentiation of erroneous movement from
desired movement for purposes of evaluation, surgeons were
given fixed targets at which to point, and tried to keep the
instrument motionless, thus ensuring that all recorded motion
is error. To make the experiments more realistic we generate
low frequency pseudo-voluntary motions by lowpass filtering
Gaussian white noise with a cutoff frequency of 1 Hz. This
signal is then added to the recorded still hand error movement.
The pseudo-voluntary motion serves as the target or desired
motion in these experiments. The magnitude of the randomly
generated pseudo-voluntary motions has a ratio of roughly 1:1
to the mean rmse of the 15 data recordings. Two different
pseudo-voluntary motions are generated in this manner, one
for the training the network and the other for testing.

A separate neural network was trained and tested for each
of the four surgeons. In each case, one data recording was
used for training, and the remaining data sets from that
surgeon were used for testing of the trained network. The



rmse with respect to the pseudo-voluntary motion was
calculated for each file, both before and after processing
by the neural network.

The input to the neural network was a window of data

in the time series, i.e. the number of input nodes depended
on the length of the window. The output of the neural
network was the error-compensated motion, and since the
data are one-dimensional, there is only one output node.
Different numbers of input nodes and hidden nodes were
tested to obtain the best net architecture for each surgeon.
Riviere and Khosla [13] used the same set of data but
chose the error estimate as the network output, so that the
output of the neural network could be used directly as a
compensation command to cancel the error. In addition,
Riviere and Khosla fixed the number of input nodes at 100
and the maximum number of hidden nodes at 10.

Each neural network was also tested on one data file
from each of the other surgeons.

III. RESULTS

The neural network reduced the rmse with respect to the
randomly generated pseudo-voluntary motion in all cases.
For each surgeon, Table I shows the mean raw rmse of the
data (with the number of testing data sets in parentheses),
the mean and standard deviation of the rmse of the output
of the neural network, and the architecture that yielded the
best result. Table II demonstrates that the direct approach
- outperformed the indirect. approach in these tests. Fig. 3
depicts sample results from the two approaches. Table III
shows how well each network performed in filtering data
from surgeons other than the one on which it was trained.
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Fig.3. Comparison of direct and indirect approaches to error suppression.

“Target’ is the pseudo-voluntary motion, generated by lowpass filtering white
Surgeon # Mean raw Mean mse of Sta:}dz_:rd Best noiseg at 1 Hz clI:toff frequency.ry‘ Input’ re%resems theynet\v:/%rk input, oitained
g;.i:f (:rnnrsn e) ncur:l:me‘::vork g?gﬁ:'z’: Arlj;tizzlt-ﬁre by adding recorded erroneous hand motion error to the target motion.
ﬁles)g (nfm) (mmp) ‘Output’ indicates the filtered version of the data. (a) Sample result from Athe
1) 0.112 0.055 0.005 75 input, direct approach, in which the network estimates the pseudo-voluntary motion.
3 hidden (b) Sample result from the indirect approach, 'in which the network estimates
0] 0.036 0.033 0.002 60 input, the erroneous motion.
6 hidden
3(2) 0.048 0.037 0.001 100 input, Ckg;ggsglmc
) 0127 0.056 . 2 Ohil:ss:' Parentheses indicate rmse for the surgeon the network was trained on.
: : 6 hid der; Boldfaf:e means perfonnanc.e ec'lua!ed or surpassed what the network achieved
on its own surgeon. Italics indicate performance worse than raw rmse.
TABLE TT NN trained on Surgeon # NN test on Surgeon # | % rmse reduction
ABLE
COMPARISON OF MODELING APPROACHES 1 2 26.2 (23.1)
Surgeon # Rmse reduction, Rmse reduction, 3 38.1 (28.6)
direct approach (%) indirect approach (%) 4 45.1 (56)
1 50.9 44.6 2 1 -85.5
2 28.3 26.1 3 28.6 (28.6)
3 22.9 18.8 4 -243.1
4 55.9 29.9 3 1 0
Average 39.5 29.9 i 15.4 0(293-1)
4 1 32.7 (54.5)
2 -30.8
3 22.7 (28.6)
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IV. DISCUSSION

The results show the feasibility of neural network-based
error canceling in human-machine control. The neural
network reduced the rmse of the surgeons’ erroneous
motion by an average of 39.5%.

The direct approach outperformed the indirect by
9.6% in reduction of rmse. During training, both methods
terminated at the specified maximum allowable number of
hidden nodes. The tests of the indirect approach used 100
input nodes in each case [13], whereas the present work
explored the effect of different input-hidden node
combinations on network performance. It is not yet clear
whether the superior performance of the direct approach in
these tests is due to an inherent superiority in the method,
or is due simply to the fact that the network architecture
was optimized for the direct approach.

The motion profiles produced by the direct and
indirect approaches are distinctly different, as is clearly
visible in Fig. 3. The direct approach produces much less
high frequency noise than the indirect, and seems to
preserve the general shape of the voluntary motion much
better. In future work, appropriate performance metrics
will be used in order to quantify this effect.

The cross-testing experiments yielded inconclusive
results. Of twelve tests, three produced equal or better
filtering than the network trained on data from the same
surgeon, and nine produced worse results. Of those nine,
four yielded results even worse than the raw rmse for the
testing data set, i.e., the error was increased rather than
decreased by the filtering process. Further study is
necessary in order to determine whether a network can be
successfully trained for general application to more than
one subject. Additional work in the near future will
involve training the networks using data from dynamic
tasks, rather than static “pointing” tasks, so that the
networks can be trained using real desired movement
rather than pseudo-voluntary signals.

V. CONCLUSION

The use of cascade-correlation neural networks to suppress
undesired components of microsurgical instrument motion
has been demonstrated using 15 hand movement
recordings collected from 4 surgeons. The neural network
reduced the rmse of the surgeons’ erroneous motion by an
average of 39.5%. The networks performed better when
trained to estimate the desired component than when
trained to estimate the undesired component of motion.
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