
The Warp Computer: Architecture, Implementation,

and Performance

M. Annaratone
E. Arnould
T. Gross

H.T. Kung
M. Lam

0. Menzilcioglu
J.A. Webb

Reprinted from
IEEE T H A N S A < ‘ T I O N S ON <‘OMPlITERS

Vol. <‘-36. No. 12, December 1987

.

IEEI TRANSACTIONS ON COMPIITERS. VOL C - 3 6 . N O I ? . IXCEMBER 1'4x7 I523

The Warp Computer: Architecture,
Implementation, and Performance

M A R C 0 A N N A R A T O N E . E M M A N U E L A R N O U L D , T H O M A S GROSS, M E M R F R . I F , E ~ , H . T. K U N G , MONICA LAM.
O N A T M E N Z I L C I O G L U . AND J O N A. WEBB

Absrrucf-The Warp machine is a systolic array computer of
linearly connected cells. each of which is a prognmmabk
processor capabk of performing 10 million floating-point opera-
tions per second (IO MFLOPS). A typical Warp amy includes
ten cells, thus having a peak computatioa rste of 100 MFLOPS.
The Warp amy can be extended to include more cells to
accommodate applhtions capable of using the inercucd compu-
tational bandwidth. Worp is imtegrsted as am attached processor
into a Unix host system. Progrsms for Warp are written in a
high-level language supported by an optimizing compiler.

The first tencell prototype was completed in February 1986;
delivery of production machines s t u t e d im April 1987. Extemsive
experimentation with both the prototype and production ma-
chines has demonstrated that the Warp architecture is effective in
the application domain of robot mavigatioa as well as in otbcr
fields such ms signal processing. schttific computation, and
computer vision research. For these applications. Warp is
typically several hundred times faster tb8n a VAX 11/780 class
computer.

This paper describes tbe architecture, implementation, and
performaace of t k W.rp mschime. ErL major arcbitecturd
decision is discussed and evmlmated with system, software, and
application considcratloms. l'k pr0gmnmi.g model sad tods
devdoped for t k mwbinc are also described. Tk paper
codudes with performam dah for a luge number of applii-
tioas.

I n k Tenns-Computer system implenteatation. computer
visioo, image pnmssim, optimiziog eonpikr, punlkl pnrck
m, performam evaluatiom, pipelined processor, scientific
computing. signal pnmsdmg. sysldk m y , vision mearch.

I. INTRODUCTION

HE Warp machine is a high-perfonnance systolic array T computer designed for computation-intensive
applications. In a typical configuration, Warp consists of a
linear systolic array of ten identical cells, each of which is a IO
MFLOPS programmable processor. Thus, a system in this
configuration has a peak performance of 100 MFLOPS.

The Warp machine is an attached processor to a general
purpose host running the Unix operating system. Warp can be

Manuscrip receival February 2. 1987: revised June IS . 1987 and July 27.
1987. This work wss supponcd in part by the Defense Advanced Research
ROJUXS Agency (DOD) monitored by the Space and Naval Warfate Syslem
C m d under Cuntroct NO0039-85-C-0134. and in pnn by the O f f i of
Naval Research under C m m s N00014-87-K-0385 and N00014-87-KM33.
Warp is a service mark of C w g i c Melh. UNlX is a trademark of A T d T
Bell Laboruories. Sun-3 is a cmJm0rk of Sun Microsyst~ms.

M. AnIIardtOnC was with the Dcpvnment of Computer Science. Camgie
Mehn University. Pinsburgh. PA 15213. He is now with the Institute for
lntcgratal Systems. ETH Zcntrum. UO92 Zurich. Switzerland.

E. Amould. T. Grew H. T. Kung. M . Lam. 0. Menzilciuglu. ancl J. A.
Wcbh are with rhe Dcpvrmcnt of Computer Science. Camcgie Mellon
University. Pittsburgh. PA 15213.

IEEE Log Numhcr 8717037.

accessed by a procedure call on the host, o r through an
interactive, programmable command interpreter called the
Warp shell [SI. A high-level language called W2 is used to
program Warp; the language is supported by an optimizing
compiler [121, [231.
The Warp project started in 1984. A twocell system was

completed in June 1985 at Carnegie Mellon. Construction of
two identical ten-cell prototype machines was contracted to
two industrial partners, GE and Honeywell. These prototypes
were built from off-the-shelf parts on wire-wrapped boards.
The first prototype machine was delivered by GE in February
1986. and the Honeywell machine arrived at Carnegie Mellon
in June 1986. For a period of about a year starting from early
1986, these two prototype machines were used on a daily basis
at Carnegie Mellon.

We have implemented application programs in many areas,
including low-level vision for robot vehicle navigation. image
and signal processing. scientific computing, magnetic reso-
nance imagery (MRI), image processing, radar and sonar
simulation, and graph algorithms [3]. [4]. In addition, we have
developed an image processing library of over 100 routines
[17). Our experience has shown that Warp is effective in these
applications; Warp is typically several hundred times faster
than a VAX 1 11780 class computer.

Encouraged by the performance of the prototype machines,
we have 'revised the Warp architecture for reimplementation
on printed circuit (PC) boards to allow faster and more
efficient production. The revision also incorporated several
architectural improvements. The production Warp machine is
referred to as the PC Warp in this paper. The PC Warp is
manufactured by GE, and is available at about $350 OOO per
machine. The first PC Warp machine was delivered by GE in
April 1987 to Carnegie Mellon.

This paper describes the architecture of the Warp machine.
the rationale of the design and the implementation. and
performance measurements for a variety of applications. The
organization of the paper is as follows. We first present an
overview of the system. We then describe how the overall
organization of the array allows us to use the cells efficiently.
Next we focus on the cell architecture: we discuss each feature
in derail. explaining the design and the evolution of the
feature. We conclude this section on the cell with a discussion
of hardware implementation issues and metrics. We then
describe the architecture of the host system. To give the reader
some idea of how the machine can be programmed. we
describe the W2 programming language, and some general
methods of partitioning a program onto a processor array that
has worked well for Warp. To evaluate the Warp machine

0018-9340/87~1200-1523~1.00 (9 1987 IEEE

.
IEEE TRANSACTIONS ON COMPUTERS. VO1. (. 36. N O I ? . DI-C'EMRER I9H7

r

INTERFACE

I 1

I WARP PROCESSOR ARRAY I
Fig. 1. Warp system overview.

architecture. we present performance data for a variety of
applications on Warp. and a comparison of the architecture of
Warp to other parallel machines.

11. WARP SYSTEM OVERVIEW
There are three major components in the system-the Warp

processor array (Warp urruy). the interface unit (ZU), and the
hosf, as depicted in Fig. I . The Warp array performs the
computation-intensive routines such as low-level vision mu-
tines or matrix operations. The IU handles the inputloutput
between the array and the host. and can generate addresses
(Adr) and control signals for the Warp array. The host
supplies data to and receives results from the array. In
addition. it executes those parts of the application programs
which are not mapped onto the Warp array. For example, the
host may perform decision-making processes in robot naviga-
tion or evaluate convergence criteria in iterative methods for
solving systems of linear equations.

The Warp array is a linear systolic array with identical cells,
called Warp cells, as shown in Fig. I . Data flow through the
array on two communication channels (X and Y). Those
addresses for cells' local memories and control signals that are
generated by the IU propagate down the Adr channel. The
direction of the Y channel is statically configurable. This
feature is used, for example, in algorithms that require
accumulated results in the last cell to be sent back to the other
cells (e.g., in back-solvers), or require local exchange of data
between adjacent cells (e.g.. in some implementations of
numerical relaxation methods).

Each Warp cell is implemented as a programmable horizon-
tal microengine, with its own microsequencer and program
memory for 8K instructions. The Warp cell data path, as
depicted in Fig. 2. consists of a 32-bit floating-point multiplier
(Mpy), a 32-bit floating-point adder (Add). two local memory
banks for resident and temporary data (Mem). a queue for
each intercell communication channel (XQ. YQ. and AdrQ).
and a register tile to buffer data for each floating-point unit
(AReg and MReg). All these components are connected
through a crossbar. Addresses for memory access can be
computed locally by the address generation unit (AGU). or
taken from the address queue (A d a) .

The Warp cell data path is similar to the data path of the
Floating Point Systems AP- I 2OB/FPS- 164 line of proccssors
19). which are also used as attached prcxcssors. Both the Warp
cell and m y of thcw FPS prcxessors contain two floating-point
units, mcmory and an address gencrator. and are oriented

,. . I I

I

Fig. 2. Warp cell data path.

towards scientific computing and signal processing. In both
cases, wide instruction words are used for a direct encoding of
the hardware resources, and software is used to manage the
parallelism (that is. to detect parallelism in the application
code, to use the multiple functional units. and to pipeline
instructions). The Warp cell differs from these earlier proces-
sors in two key aspects: the full crossbar of the Warp cell
provides a higher intrace11 bandwidth, and the X and Y
channels with their ~ssociated queues provide a high intercell
bandwidth. which is unique to the Warp array architecture.

host consists of a Sun-3 workstation that serves as the
muster controller of dw Wup machine, and a VME-based
multiprocessor externul h a t , SO named because it is external
to dw workstation. The wortcsuuion provides a Unix environ-
ment for running rpQlicaticm programs. The external host
controls the periphtrpls and contains a large amount of
memory for storing data to be processed by the Warp array. It
also transfers data to and from the Warp array and performs
operations on the data when necessary, with low operating
system overhead.

Both the Warp cell and IU usc off-the-shelf. TTL-compati-
ble parts. and are epd, impkmented on a 15x 17 in: board.
The entire Warp machine. with the exception of the Sun-3, is
housed in a single 19 in w k . which also contains power
supplies and cooling fans. The machine typically consumes
about I s 0 0 w.

111. WARP ARRAY ARCHITECTURE

In the Warp machine, prrlklism exists at both the array
and cell levels. This scuba discusses how the Warp architec-
ture is designed to dkw efficient use of the array level
parallelism. ArchitecrorPi fcaNres to suppon the cell level
parallelism am describd io tbe next section.

The key features in Ihe VFbacCtUre that support the array
level patallelism an s impk topology of. a linear array,
powerful cells with Loal program control. large data memory
for each cdl. and high inttcdl communication bandwidth.

features SuppOrr ? c ~ d pogram panitioning methods
imponant to many a p p l n a 121 1. [22]. More dctails on the
pamtioning methods are given in Section VII-9. and a sample
of applications using drsc an&& is listed in Section VIII.

ANNARAIONE CI ul. WARP C'OMPUTER I525

A linear array is easier for a programmer to use than higher
dimensional arrays. Many algorithms in scientific computing
and signal processing have been developed for linear arrays
[181. Our experience of using Warp for low-level vision has
also shown that a linear organization is suitable in the vision
doinain as well. A linear array is easy t o implement in
hardware. and demands a low external I/O bandwidth since
only the two end cells communicate with the outside world.
Moreover, a linear array consisting of powerful, programma-
ble processors with large local memories can efficiently
simulate other interconnection topologies. For example, a
single Warp cell can be time multiplexed to perform the
function of a column of cells, so that the linear Warp array can
implement a two-dimensional systolic array.
The Warp array can be used for both fine-grain and large-

grain parallelism. It is efficient for fine-grain parallelism
needed for systolic processing, because of its high intercell
W w i d t h . The I/O bandwidth of each cell is higher than that
of other processors with similar computational power. Each
cell can transfer 20 million 32-bit words (80 Mbytes) per
second to and from its neighboring cells, in addition to 20
million 16-bit addresses. This high intercell communication
bandwidth permits efficient transfers of large volumes of
intermediate data between neighboring cells.

The Warp array is efficient for large-gain parallelism
because it is composed of powerful cells. Each cell is capable
of operating independently; it has its own program sequencer
and program memory of 8K instructions. Moreover, each cell
has 32K words of local data memory, which is large for
systolic array designs. For a given 110 bandwidth, a larger
data memory can sustain a higher computation bandwidth for

Systolic arrays are known to be effective for local opera-
tions, in which each output depends only on a small
corresponding area of the input. The Warp array's large
memory size and its high intercell UO bandwidth enable it to
perform global operations in which each output depends on
any or a large portion of the input [21]. The ability of
performing global operations as well significantly broadens
the applicability of the machine. Examples of global opera-
tions are fast Fourier transform (FFT), image component
labeling, Hough transform. image warping, and matrix com-
putations such as LU decomposition or singular value decom-
position (SVD).

Because each Warp cell has its own sequencer and program
memory, the cells in the array can execute different programs
at the same time. We call computation where all cells execute
the same program homogeneous, and heterogeneous other-
wise. Heterogeneous computing is useful for some applica-
tions. For example, the end cells may operate differently from
other cells to deal with boundary conditions. Or, in a
multifunction pipeline [131, different sections of the array
perform different functions, with the output of one section
feeding into the next as input.

some algorithms [20].

IV. WARP CELL ARCHITECTURE

This section describes the design and the evolution of the
architectural features of the cell. Some of these features were

significantly revised when we reimplcmented Warp on PC
boards. For the wire-wrapped prototype. we omitted some
architectural features that are difficult to implement and are
not necessary for a substantial fraction of application programs
[I] . This simplification in the design permitted us to gain
useful experience in ;1 relatively short time. With the experi-
ence of constructing and using the prototype, we were able t o
improve the architecture and expand the application domain of
the production machine.

A. lnrercell Communicarion

Each cell communicates with its left and right neighbors
through point-to-point links, two for data and one for
addresses. A queue with a depth of 512 words is associated
with each link (XQ, YQ and Ad@ in Fig. 2) and is placed in
the data path of the input cell. The size of the queue is just
large enough to buffer one or two scan-lines of an image,
which is typically of size 512 x 512 or 256 x 256. The
ability to buffer a complete scan line is important for the
efficient implementation of some algorithms such as two-
dimensional convolutions (191. Words in the queues are 34
bits, wide; along with each 32-bit data word, the sender
transmits a 2-bit control signal that can be tested by the
receiver.

Flow control for the communication channels is imple-
mented in hardware. When a cell tries to read from an empty
queue, it is blocked until a data item arrives. Similarly, when a
cell tries to write to a full queue of a neighboring cell, the
writing cell is blocked until some data are removed from the
full queue. The blocking of a cell is transparent to the
program; the state of all the computational units on the data
path freezes for the duration the cell is blocked. Only the cell
that tries to read from an empty queue or to deposit a data item
into a full queue is blocked. All other cells in the array
continue to operate normally. The data queues of a blocked
cell are still able to accept input; otherwise, a cell blocked on
an empty queue will never become unblocked.
The implementation of run-time flow control by hardware

has two implications. First, we need two clock generators-
one for the computational units whose states freeze whenever a
cell is blocked. and one for the queues. Second. since a cell
can receive data from either of its two neighbors. it can block
as a result of the status of the queues in either neighbor. as well
as its own. This dependence on other cells adds serious timing
constraints to the design since clock control signals have to
cross board boundaries. This complexity will be further
discussed in Section V.

The intercell communication mechanism is the most revised
feature on the cell; it has evolved from primitive programma-
ble delay elements to queues without any flow control
hardware. and finally to the run-time flowcontrolled queues.
fn the following. we step through the different design changes.

I) Programmable Delay: In an early design, the input
buffer on each communication channel of a cell was a
programmable delay element. In a programmable delay
element. data are latched in every cycle and they emerge at the
output port a constant number of cycles later. This structure i..
found in many systolic algorithm designs to synchronize or

1526

delay one data stream with respect to another. However,
progrslmmable high-performance processors like the Warp
cells require a more flexible buffering mechanism. Warp
programs do not usually produce one data item every cycle; a
cltxking discipline that reads and writes one item per cycle
would be too restrictive, Furthermore, a constant delay
through the buffer means that the timing of data generation
must match exactly that of data consumption. Therefore, the
prognmmable delays were replaced by queues to remove the
tight coupling between the communicating cells.

2) Flow Control: Queues allow the receiver and sender to
run at their own speeds provided that the receiver does not
read past the end of the qucuc and the sender does not
overtlow the quews. There arc two different flow control
disciplines, run-time and compile-time flowcontrol. As dis-
cussed above, hardware support for run-time flow control can
be difficult to design. implement, and debug. Alternatively,
for a substantial set of problems in our application domain,
compile-time flow control can be implemented by generating
code that requires no run-time support. Therefore, we elected
not to support run-time flow control in the prototype. This
decision permitted us to accelerate the implementation and
experimentation cycle. Run-time flow control is provided in
the production machine, so as to widen the application domain
of the machine.

Compile-time flow control can be provided for all programs
where data only flow in one direction through the array and
where the control flow of the programs is not data dependent.
Data dependent control flow and two-way data flow can also
be allowed for programs satisfying some restrictions [6].
Compile-time flow control is implemented by skewing the
computation of the cells so that no w i v i n g cell ctads from a
queue before the corresponding sendiig cell writes to it. For
example, suppose two adjacent cells each execute the follow-
ing program:

dequeue (X);
output (X) :
dequeue (X):
compute :
compute ;
output (X) :

In this program, the first cell removes a data item from the
X queue (dequeue (X)) and sends it to the second cell on X
(output (XI). The first cell then removes a second item, and
forwards the result to the second cell after two cycles of
computation. For this program, the second cell needs to be
delayed by three cycles to ensure that the dequeue of the
second cell never overtakes the corresponding output of the
first cell, and the compiler will insert the ntcessary nops. as
shown in Fig. 3.

Run-time flow control expands the application domain of
the machine and often allows the compiler to produce more
efficient code; therefore. it is provided in the production
machine. Without run-time flow control. WHILE loops and
FOR loops and computed loop bounds on the cells cannot be
implemented. That is, only loops with compile-time constant
bounds can be supported. This restriction limits the class of

IfiEE TRANSACTIONS ON COMPUTERS. VOL C-36. NO 12. I>tCF.MBtR IYH7

Fig. 3

programs executable

second cell

noQ
noP
noP
dequeue (X I ;
output()o ;
dequeue (X) ;
compute ;

compute ;

output(X) ;

Compile-rime !low control

on the machine. Moreover, many pro-
grams for the prototype machines can be made more efficient
and easier to write by replacing the FOR loops with WHILE
loops. For example. instead of executing a fixed number of
iterations to guarantee convergence, the iteration can be
stoppcd as w o n as the termination condition is met. The
compiler can produce more efficient code since compile-time
flow control relies on delaying the receiving cell sufficiently to
guarantee correct behavior, but this delay is not necessarily the
minimum delay needed. Run-time flow control will dynami-
cally find the minimum bound.

3) Inpur Conrrol: In the current design, latching of data
into a cell's queue is controlled by the sender, rather than by
the receiver. As a cell sends data to its neighbor. it also signals
the receiving cell's input queue to accept the data.

In our first twoccll prototype machine, input data were
latched under the microinstruction control of the receiving
cell. This implied that intercell communication required close
cooperation between the sender and the receiver; the sender
presented its data on the communication channel, and in the
same clock cycle the receiver latched in the input. This design
was obviously not adequate if flow control was supported at
run time; in fact, we discovered that it was not adequate even
if flow control was provided at compile time. The tight
coupling between the sender and the receiver greatly increased
the code size of the programs. The problem was corrected in
subscquent implementations by adopting the design we cur-
rently have, that is, the sender provides the signal to the
receiver's queue to latch in the input data.

In the above discussion of the example of Fig. 3. it was
assumed that the control for the second cell to latch in input
was sent with the output data by the first cell. If the second cell
were to provide the input control signals, we would need to
add an input operation in its microprogram for every output
operation of the first cell, at exactly the cycle the operation
takes place. Doing so, we obtain the following program for the
second cell:

-P *
input (X) 9

WP .
dequeue (X);
output (XI ;

input (XI, dequeue (XI;
compute ;
compute ;
output (XI ;

Each line in the program is a microinstruction; the first column

I

IS27

r

b

n- 1

0
1
2 a
3 b
o r :
I r i

2 . 3
3 b

7

-
C

d -

(C)

Fig. 4. Merglng equal-length lap with an offset. (a) Original loops. (b)
Execution trace. (c) Merged loop.

contains the Input operations to match the Output operations
of the first cell. and the second column contains the original
program.

Since the input sequence follows the control flow of the
sender, each cell is logically executing two processes: the
input process, and the original computation process of its own.
These two processes must be merged into one since there is
only one sequencer on each cell. If the programs on
communicating cells are different, the input process and the
cell's own computation process are different. Even if the cell
programs are identical, the cell's computation process may
need to be delayed with respect to the input process because of
compile-time flow control as described above. As a result, we
may need to merge control constructs from different parts of
the program. Merging two equal-length loops, with an offset
between their initiation times, requires loop unrolling and can
result in a threefold increase in code length, Fig. 4 illustrates
this increase in code length when merging two identical loops
of n iterations. Numbers represent operations of the input
process. and letters represent the computation process. If two
iterative statements of different lengths are overlapped. then
the resulting code size can be of the order of the least common
multiple of their lengths. For example. in Fig. 5 . a two-
instruction loop of 3n iterations is merged with a three-
instruction loop of 2n iterations. Since 6 is the minimum
number of cycles before the combined sequence of operations
repeats itself, the resulting merged program is a six-instruction
loop of n iterations.

4) Randomly Accessible Queues: The queues in all the
prototype machines are implemented with RAM chips, with
hardware queue pointers. Furthermore. there was a feedback
path from the data crossbar back to the queues, because we
intended to use the queues as.local storage elements as well
I I I . Since the pointers must be changed when the queue is
accessed randomly. and there is only a single pair of queue
pointers, it is impossiblc to multiplex the use of the buffer as a
communication queue and its use as a local storage element.
Therefore, the queues in the production machine are now
implemented by a FIFO chip. This implementation allows us

2n 1 3 n k

(a)

n

-
0.3
1 b

2 . 3

O b
l a

2 h -

Fig. 5. Merging loops with different lengths. (at Original loop\ tb)
Execution trace. (c) Merged Itmp.

to increase the queue size from 128 to 512 words, with board
space left over for other improvements as well.

5) Queue Size: The size of the queues is an important factor
in the efficiency of the array. Queues buffer the input for a cell
and relax the coupling of execution in communicating cells.
Although the average communication rate between two com-
municating cells must balance, a larger buffer allows the cells
to receive and send data in bursts at different times.

The long queues allow the compiler to adopt a simple code
optimization strategy (231. The throughput for a unidirectional
array is maximized by simply optimizing the individual cell
programs provided that sufficient buffering is available be-
tween each pair of adjacent cells. In addition, some al-
gorithms, such as two-dimensional convolution mentioned
above, require large buffers between cells. If the queues are
not large enough. a program must explicitly implement buffers
in local memory.

8. Control Path
Each Warp cell has its own local program memory and

sequencer. This is a good architectural design even if the cells
all execute the same program, as in the case of the prototype
Warp machine. The reason is that it is difficult to broadcast the
microinstruction words to all the cells. or to propagate them
from cell to cell, since the instructions contain a large number
of bits. Moreover. even if the cells execute the same program.
the computations of the cells are often skewed so that each cell
is delayed with respect to its neighboring cell. This skewed
computation model is easily implemented with local program
control. The local sequencer also supports conditional branch-
ing efficiently. In SIMD machines. branching is achieved by
masking. The execution time is equivalent to the sum of the
execution time of the thenclause and the else-clause of a
branch. With local program control. different cells may follow
different branches of a conditional statement depending on
their individual data; the execution time IS the execution time
of the c1au.s taken.
The Warp cell is horizontally microcoded. Each component

in the dau path is controlled by a dedicated field; this
orthogonal organization of the microinstruction word makes
scheduling easier since there is no interference in the schedule
of different components.

IS28

I

1EF.E 'TRANSAC'TIONS O N C O M P U T E R S . VOL. (' ~ 1 6 . N O I ? . I)F.('tMHtW 10x7 .
C. Data Path 4) Address Generation: As shown in Fig. 2, each cell

/) F/oafing-Poin[units: E;lch Warp cell has two floating- contains an integer unit (AGU) that is used prcdominantly as a
VJint units, one multiplier and one adder. implemented with local address generation unit. The AGU is a self-contained
commercially available floating-point chips 1351. These float- integer ALU with 64 registcrs. I t can compute up to two

;ng-point dcpt.nd on cxtcnsivc piplining [o achicvc high addrCsSCS pcr Cycle (OnC read addre55 and One WrIIL' addrCS5).
perf,ornlancc, ~ , , t h [he adder and nlultiplicr have tive-stagc The I c x ~ l address generator on the cell IS one o f the
piplincs, General purpose computation is difficult t o imple- enhancements that distinguish the PC Warp machine t'rom the
men[efficiently on deeply piplined machines because data- prototype. In the prototype, data indcpcndcnt acldrews were
dependent branching is common. There is less data &pen- generated on the I U and propagated down the cells. Data
dency in numerical or computer vision programs, a d we dependent addresses were computed locally on each cell using
developed scheduling techniques that use the pipelining the floating-point units. The IU of the prototype had the
efficiently. Performance results am in Section V ~ I . additional task of generating the loop termination signals for

2) c r o s b r : Experience with the Programmable Systolic the cells. These signals were propagated along the Adr channel
Chip showed that the internal data bandwidth is often the to the cells in the Warp a m y .
bottleneck of a systolic cell [I 11. In the Warp cell, the two There was not enough space on the wire-wrapped board to
floating-point units can consume up to four data items and include local address generation capability on each Warp cell.
generate two results per cycle. Several data storage blocks Including an AGU requires board space not only for the AGU
interconnected with a crossbar support this high data process- itself, but also for its environment and the bits in the
ing rate. There are six input and eight output porn connected instruction word for controlling it. An AGU was area
to the crossbar switch; up to six data items can be transferred expensive at the time the prototype was designed, due to the
in a single cycle, and an output port can receive any data item. lack of VLSI parts for the AGU functions. The address
The use of the crossbar also makes compilation easier when generation unit in the prototype IU uses AMD2901 parts
compared to a &-based system since conflicts on the use of which contain 16 registers. Since this number of registers is
one or more shared buses can complicate scheduling tremen- too small to generate complicated addressing patterns quickly,
dously . the ALU is backed up by a table that holds up to 16K

Custom chip designs that combine the functionality of the PreCOmPrttd addresses. This table is too large to replicate on
crossbar interconnection and data buffers have bccn proposed all the cells. The address generation unit on the PC Warp cells
[16]. [28]. In the interconnection chip designed for polycyclic is a new V U 1 component (IDT-49C402). which combines the
architectures [28]. a "queue" is associated with each cross @-word register file and ALU on a single chip. The large
point of the crossbar. In these storage blocks, data are always number of registers makes the backup table unnecessary for
written at the end of the queue; however, data can be read, or most addresing patterns, so that the AGU is much smaller and
removed. from any location. The queues arc compacted can be nplkatcd on each cell of the production machine.
automatically whenever data arc removed. The main advan- The protorype was designed for applications where all cells
tage of this design is that an optimal c a k schedule can be extCUtC the same program with data independent loop bounds.
readily derived for a class of inner loops [27]. In the Warp cell However, not all such programs could be supported due to the
architecture, we chose to use a conventional crossbar with data of the address queue. In the pipelining mode. where the
buffers only for its outputs (the AReg and MReg register files Cells impiement different stages of a computation pipeline. a
in Fig. 2). because of the lower hardware cat. Near- id cell does not StaR executing until the preceding cell is finished
schedules can be found cheaply using heuristics [23]. with the first set of input data. The size of the address queue

3) Data Sforage Blocks: As depicted by Fig. 2. the local must at least equal the number of addresses and control signals
memory hierarchy includes a local data memory, a register file used in the computation of the data set. Therefore. the size of
for the integer unit (AGU). two register files (one for each the address queues limits the number of addresses buffered.
floating-point unit), and a backup data memory. Addresses for and thus the grain sue of parallelism.
both data memories come from the address crossbar. The local For the production machine. each cell contains an AGU and
data memory can store 32K words. and can be both read and can mrett addrsseS and loop control signals efficiently.
written every (200 ns) cycle. The capacity of the register file This iIIIprOVement allows the compiler to support a much
in the AGU unit is 64 words. The register files for the floating- l v g t r Class Of @kathn. we have preserved the address
point units each hold 31 usable words of data. ('I~Ic register geMatOr and address bank on tbe IU (and the associated Adr
file is written to in every cycle so that one word is used as a chpnn~l, as shown in Fig. I). Therefore. the IU can still
sink for those cycles without useful write operations.) They SUpQoct those homogeneous computations that demand a small
are five-ported data buffers and each can accept two data items se(ofcomplicatcd addressing patterns that can be conveniently
from the crossbar and deliver two operands to the functional stored in the addrcss bank. .
units every cycle. The additional pons are used for connecting

contains 2K words and is used to hold all scalars, floating-
p i n t constants. and small arrays. The addition of the backup
memory increases memory bandwidth and improves through-
put for thosc programs operating mainly on local &ta.

the register tiles to the backup memory. This backup memory v. WARP CELL AND Iu IMPLEMENTATION

The Warp array arcfiitarute operates on 32-bit data. All
data channels in the W q m y , including the internal data
path of the cell. am implement& as 16-bit wide channels
operating at 100 N. There arc two reasons for choosing a 16-

Bliwk in W:irp cell Chip ctwnt hrca contrihuticin (Percent)

0
II

IO
9
6
35
20

100

bit time-multiplexed implementation. First. a 32-bit wide
hardware path would not allow implementing one cell per
board. Second. the 200 ns cycle time dictated by the Weitek
floating-point chips (at the time of design) allows the rest of
the data path to be time multiplexed. This would not have been
possible if the cycle time of the floating-point chips were under
160 ns. The microengine operates at 100 ns and supports high
and low cycle operations of the data path separately.

All cells in the array are driven from a global 20 MHz clock
generated by the IU. To allow each cell to block individually,
a cell must have control over the use of the global clock
signals. Each cell monitors two concurrent processes: the
input data flow (1 process) and the output data flow (0
process). If the input data queue is empty. the I process flow
must be suspended before the next read from the queue.
Symmetrically, the 0 process is stopped before the next write
whenever the input queue of the neighboring cell is full.
Stopping the I or 0 process pauses all computation and output
activity, but the cell continues to accept input. There is only a
small amount of time available between detection of the queue
full/empty status and blocking the d w r i t e operation. Since
the cycle time is only 100 ns, this tight timing led to race
conditions in an early design. This problem has been solved by
duplicating on each cell the status of the I/O processes of the
neighboring cells. In this way, a cell can anticipate a queue
full/empty condition and react within a clock cycle.

A large portion of the internal cell hardware can be
monitored and tested using built-in serial diagnostic chains
under control of the IU. The serial chains are also used to
download the Warp cell programs. Identical programs can be
downloaded to all cells at a rate of 100 ps per instruction from
the workstation and about 67 ps per instmction from the
external host. Starting up a program takes about 5 ms.

The Warp cell consists of six main blocks: input queues,
crossbar, processing elements, data memory, address genera-
tor, and microengine. Table I presents the contribution of
these blocks to the implementation of the Warp cell. The
microengine includes the program memory (8K instruction
words of 272 bits. including parity). The Warp cell consumes
94 W (typical) and 136 W (maximum).

The IU handles data inpuVoutput between the host and the
Warp array. The host-IU interfacc is streamlined by imple-
menting a 32-bit wide interface. even though the Warp array
has only 16-bit wide internal data paths. This arrangement is
preferred because data transfers hctween the host and IU are

TABLE I1
IMPLEMENTATION METRIC3 FOH Iu

Chip count Arca contrihurion t Percent I Blcrk in IU

Data-convener 44
Addre\\ generator -15
Clwk and ho\t interlace IO1
Micrwnginc 4')
Other 25
TotalJor IU 264

UNIX 4.2 Workstation alPf3
SUPPORT
PROCESSOR LOCAL BUS "3

P: processor

S: switch

0: graphics ourgut
I : graphics input

Fig. 6. Host of the Warp machine.

slower than the transfers between IU and the array. Data
transfers between the host and 1U can be controlled by
interrupts; in this case, the IU behaves like a slave device. The
IU can also convert packed &bit integers transferred from the
host into 32-bit floating-point numbers for the Warp array. and
vice versa.
The IU is controlled by a %-bit wide programmable

microengine, which is similar to the Warp cell controller in
programmability. The IU has several control registers that are
mapped into the host address space; the host can control the IU
and hence the Warp array by setting these registers. The IU
has a power consumption of 82 W (typical) and 123 W
(maximum). Table I1 presents implementation metrics for the
IU.

VI. HOST SYSTEM

The Warp host controls the Warp array and other periph-
erals. suppolts fast data transfer rates to and from the Warp
array. and also runs application code that cannot easily be
mapped on the array. An overview of the host is presented in
Fig. 6. The host is partitioned into a standard workstation (the
master) and an external host. The workstation provides a Unix
programming environment to the user. and also coctrols the
external host. The external host consists of two L-lusrer
processors. a subsystem called support processor, and some
graphics devices.

I520 l E t t TRANSACTIONS O N C O M P U T t R S . VOI. c' 10 NO I ? 1)1(F b i H I - K I Y X 7

Control of the cxtcrnal host is strictly centralized: the
workstation. thc master prcxcssor, issues commands to the
cluster and support processors through mcs.mge buffers local
t o each ot these prtxessors. The two clusters work in parallel.
each handling a unidirectional flow of' data t o or from the
Warp processor through the IU. The two clusters can
exchange their roles in sending or receiving data for different
phases o f a computation. in a ping-pong fashion. An arbitra-
tion mechanism transparent to the user has been implemented
to prohibit simultaneous writing or reading to the Warp array
when the clusters switch roles. The support processor controls
peripheral 110 devices and handles floating-point exceptions
and other intempt signals from the Warp array. These
interrupts are serviced by the support pmcessor, rather than by
the master processor. to minimize interrupt response time.
After servicing the interrupt, the suppon processor notifies the
master processor.

The external host is built around a VME bus. The two
clusters and the support processor each consist of a standalone
MC68020 microprocessor (P) and a dual-ported memory
(M). which can be accessed either via a local bus or via the
global VME bus. The local bus is a VSB bus in the production
machine and a VMX32 bus for the prototype; the major
improvements of VSB over VMX32 arc better support for
arbitration and the addition of DMA-type accesses. Each
cluster has a switch board (S) for sending and receiving data
to and from the Warp array, through the IU. The switch also
has a VME interface, used by the master processor to start,
stop, and control the Warp array. The VME bus of the master
processor inside the workstation is con@ to the VME bus
of the external host via a buscoupler (bus m e r) . While the
prototype Warp used a commercial bus-coupler, the PC Warp
employs a customdesigned device. The difference between
the two is that the customdesigned bus repeater dccouples the
external host VME bus from the Sun-3 VME bus: intrabus
transfers can occur concurrently on both buses.

There are three memory banks inside each cluster processor
to support concurrent memory accesses. For example, the first
memory bank may be receiving a new set of data from an I/O
device, while data in the second bank are transferred to the
Warp array. and the third contains the cluster program code.

Presently. the memory of the external host is built out of I
Mbyte memory boards; including the 3 Mbytes of memory on
the processor boards. the total memory capacity of the external
host is I 1 Mybtes. An expansion of up to 59 Mbytes is possible
by populating all the 14 available slots of the VME card cage
with 4 Mbyte memory boards. Large data structures can be
stomf in these memories where they will not be swapped out
by the operating system. This is important for consistent
performance in real-time applications. The external host can
also support special devices such as framc buffers and high-
speed disks. This allows the programmer to transfer data
directly between Warp and other devices.

Except for the switch, all boards in the external host arc off-
the-shell' components. The industry standard boards allow us
to take advantage of commercial processors. 110 boards.
memory. and software. They also make the host an Open
system to which it is relatively easy to add new devices and

interfaces to other computers. Moreover. standard boards
provide a growth path for future system improvements with a
minimal investment of time and resources. During the
transition from prototype t o production machine. faster
processor bourds (from 12 t o 16 MHz) and largcr mcmoric~
have been introduced, and they have been incorporated into
the host with little effort.

A. Host I/O Bmdwidrh

The Warp array QD input a 32-bit word and output a 32-bit
word every 200 RP. Carrspondingly, to sustain this peak rate,
each cluster rrmst k abk to read or write a 32-bit data item
every 200 IU. This pat YO bandwidth requirement can be
satisfied if tht inpu rd output data are 8-bit or 16-bit integers

In signal, image, pad low-level vision processing, the input
and output data are d l y 16- or 8-bit integers. The data can
be packed into 32-bic woccIs before being transferred to the IU.
which unpacks the cbua into two or four 32-bit floating-point
numben before sending them to the Warp array. The reverse
operation talres piace with the floating-point outputs of the
Warp array. With this pecking and unpacking, the data
bandwidth requbemca betwen the host and IU is reduced by
a factor of two or krr. Image data can be packed on the
digitizer boerds. rabrr incurring overhead on the host.

TheYOkndr rd lL o f t t ~ ~ FC Warp external host is greatly
improved over rLr ai tLt pototype machine [5] . The PC
Warp supports DMA Pd uses faster processor and memory
boards. If the drr trsrakr if sequential, DMA can be used to
achieve the VplrSLcr riC of kss than 500 ns per word. With
block tmnekr mtnk. cla -fer time is funher reduced to
about 350 m. TLr spal for nonsequential data transfers
depends 011 tbe c a q k x i ~ of the address computation. For
simple address 32-bit word is transferred in
about 900 m.

There arc two cbscs of applications: those whose input/
output dim are phcv vducs (e&, vision). and those whose
input/outp* dam me --point quantities (e.g.. scientific
computing). In v k h a applications. data are often transferred
in raster orda. By pPcking/unpacking the pixels and using
DMA. the hosl U O boAdwidth can sustain the maximum
bandwidth of dl d p p m s . Many of the applications that
Reed fldng- irpr rd output data have nonsequential
data access plum- The b e t kcomes a bottleneck if the rate
of data tnrrfir (d ;ddrrss generation if DMA cannot be
used) is larar'lLCm tLc b are processed on the array.
Fortunudy, h scindfic applications. the computation
per dpa hcm b eypcally cpk large and the host I/O
bandwidth is *de limiting factor in the performance of

that can bc aCCCSSCd SeqUcntiaIIy.

the army.

B. H o s t S O / t w

The WSrp bosl La a m i m e software library that allows
P%- lo qshrotlizc the support processor and two

C h c n ;md to abeate memory in the external host. The run-
time softworr rbo Bpdlts the communication and interrupts
betwem tbt -Id rLt pmcessors in the external host.

a

ANNARAIONI - t.1 d WARP ('OMPlI I'hR .
The library o f run-time routines includes utilities such as
copying and moving data within the host system. subwindow
selection of images. and peripheral device drivers. The
compiler generates program-specific input and output routines
for the clusters s o that a uscr nccd not be conccrncd with
progrmniiiing at this level; these routines arc linked at load
timc to the two cluster prtxcssor libraries.

The application program usually runs on thc Warp array
under control of the master: however, it is possible to assign
subtasks to any of the processors in the external host. This
decreases the execution time for two reasons: there is more
parallelism in the computation, and data transfers between the
cluster and the array using the VSB bus are twice as fast as
transfers between the master processor and the array through
the VME bus repeater. The processors in the e x t e d host
have been extensively used in various applications, for
example, obstacle avoidance for a robot vehicle and singular
value decomposition.

Memory allocation and processor synchronization inside the
external host are handled by the application program through
subroutine calls to the run-time software. Memory is allocated
through the equivalent of a Unix rna//oc() system call, the
only difference being that the memory bank has to be explicitly
specified. This explicit control allows the user to fully exploit
the parallelism of the system; for example, different proces-
sors can be programmed to access different memory banks
through different busses concurrently.
Tasks are scheduled by the master processor. The applica-

tion code can schedule a task to be nm on the completion of a
different task. Once the master processor determines that one
task has completed, it schedules another task requested by the
application code. Overhead for this nm-time scheduling of
tasks is minimal.

VU. PROGRAMMING WARP

As mentioned in the Introduction, Warp is programmed in a
language called W2. Programs written in W2 are translated by
an optimizing compiler into object code for the Warp machine.
W2 hides the low-level details of the machine and allows the
user to concentrate on the problem of mapping an application
onto a processor array. In this section, we first describe the
language and then some common computation partitioning
techniques.

A. The W2 Language
The W2 language provides an abstract programming model

of the machine that allows the user to focus on parallelism at
the array level. The user views the Warp system as a linear
array of identical. conventional processors that can communi-
cate asynchronously with their left and right neighbors. The
semantics of the communication primitives is that a cell will
block if it tries to receive from any empty queue or send to a
full one. This semantics is enforced at compile time in the
prototype and at run time in the PC Warp. as explaincd in
Section IV-A-2.
The user supplies the code to be executed on each cell. and

the compiler handles the dctails of code generation and
scheduling. This arrangement gives the user full control over

1531

module UatrirP(ultip1y (A in, B in, C out)
f loa t Atlo, l o] , B [l O , lo] , C[10,101,'

cellprogram (cid : 0 : 9)
w i n

function nm
begin

f loa t col[lO]; / * stores a column of the B matrix * /
f loa t row; I* accumulates the result of a rov * f
f loa t elemsnt;
f loa t tonp;
fat i. j;

I* first load a column of 8 in each c e l l * /
for i := 0 t o 9 do win

-1- (L, X, co l [i l . B t i , O l) :
for 3 :I 1 to 9 do win

-i- (L. x. t g . ncr. j l) ;
..ad (R. X . t r p l :

d;
a d (1, X, 0 . 0) :

d;

/* calculate a row of C kr each i t a ra t ion * I
for i := 0 to 9 do boqin

/*
row :I 0 . 0 ;
f o r 3 :I 0 t o 9 do w i n

uch cell coqut.8 r)u dot product
bot- its col- .nd the s u m row of A * I

-in (L. X, e lmant , A [i , j l) ;
a d (R, X, a l m a n t) ;
row := rou + elumnt c o l [j] :

d;

/* 8 d Out thr m S U l t of aach r o w of C * /
-2.. (1, 'I, trp, 0 . 0) ;
fo r j := 0 to 8 bo win

-1- (1. 'I, t q , 0 . 0) ;
aood (1. 1. trp, C t i . j l) :

.ad;
Hld (1, Y , mr, C [i . 9 1) :

ad:
.ad
ea11 =;

d
Fig. 7. Example W2 program.

computation partitioning and algorithm design. The language
for describing the cell code is Algol-like. with iterative and
conditional statements. In addition, the language provides
receive and send primitives for specifying intercell communi-
cation. The compiler handles the parallelism both at the system
and cell levels. At the system level, the external host and the
IU are hidden from the user. The compiler generates code for
the host and the IU to transfer data between the host and the
array. Moreover, for the prototype Warp. addresses and loop
control signals are automatically extracted from the cell
programs; they are generated on the IU and passed down the
address queue. At the cell level. the pipelining and parallclism
in the data path of the cells are hidden from the user. The
compiler uses global data flow analysis and horizontal
microcode scheduling techniques. software pipelining and
hierarchical reduction to generate efficient microcode directly
from high-level language constructs 1121. [23].

Fig. 7 is an example of a IO x IO matrix multiplication
program. Each cell computes one column of the result. We
first load each cell with a column of the second matrix
operand, then we stream the first matrix in row by row. As
each row passes through the array. we accumulate the result
for a column in each cell. and send the entire row of results to
the host. The loading and unloading of data are slightly
complicated because all cells execute the same program. Send
and m i v c transfer data between adjacent cells; the first

I532

8

iEEE TRANSACTIONS O N COMPII'TEKS. VOI. (' 36. NO I?. i)I-.('I-.MBkK 1987

I

The system is solved by repeatedly combining the current
values of u on a two-dimensional grid using the following
recurrence.

parameter determines the direction, and the second parameter
wlects the hardware channel to be used. The third parameter
specitiies the source (.send) or the sink (receive). The fourth
parameter, only applicable to those channels communicating
with the host. binds the array input and output to the formal
parlrnieters of the cell programs. This intormation is used by
thc compilcr to gcnemtc ctwfc t i w the host.

B. Progruirr Purririoning

As discussed in Section Ill. the architecture of the Warp
army can support various kinds of algorithms: fine-grain or
large-grain parallelism, local or global operations, homogene-
ous or heterogeneous. There arc three general program
partitioning methods [41, [221: input partitioning. output
partitioning. and piplining.

I) fnput Purtifioning: In this model. the input data are
partitioned among the Warp cells. Each cell computes on its
portion of the input data to produce a corresponding portion of
the output data. This model is useful in image processing
where the result at each point of the output image depends only
on a small neighborhood of the corresponding point of the
input image.

Input partitioning is a simple and powerful method for
exploiting parallelism-most parallel machines support it in
one form or another. Many of the algorithms on Warp make
use of it. including most of the low-level vision programs. the
discrete cosine transform (DCT). singular value decomposi-
tion [2], connected component labeling [22]. border follow-
ing, and the convex hull. The last three algorithms mentioned
also transmit information in other ways; for example. con-
nected components labeling first partitions the image by rows
among the cells, labels each cell's portion separately. and then
combines the labels from different portions to create a global
labeling.

2) Output Partitioning: In this model. each Warp cell
processes the entire input data set or a large part of it, but
produces only part of the output. This model is used when the
input to output mapping is not regular, or when any input can
influence any output. Histogram and image warping act
examples of such computations. This model usually requires a
lot of memory because either the required input data set must
be stored and then processed later, o r the output must be stored
in memory while the input is processed. and then output later.
Each Warp cell has 32K words of local memory to support
efficient use of this model.

3) Piplining: In this model, typical of systolic computa-
tion, the algorithm is partitioned among the cells in the army,
and each cell performs ollc stage of the processing. The Warp
array's high intercell communication bandwidth and effective-
ness in handling fine-grain parallelism make it possible to use
this model. For some algorithms. this is the only method of
achieving parallelism.

A simple example of the u.se.of pipelining is the solution of
elliptic partial differential equations using successive overre-
laxation (361. Consider the following equation:

a2u azu
ax2 a y + - =f(x. Y)- -

wherc w I\ LI comtant parameter

In the Warp implementation, each cell I\ re\p)nsible tor one
relaxation; as expressed by the above equation. In raster order,
each cell receives inputs from the preceding cell. performs its
relaxation step. and anputs the results to the next cell. While a
cell is performing the kth relaxation step on row i, the
preceding d next d l s perform the k - 1st and k + 1st
relaxation steps OR rows i + 2 and i - 2, respectively. Thus.
in one pass of the Y vdues through the ten-cell Warp array, the
above recurrence is applied ten times. This process is
repeated, under control of the external host, until convergence
is achieved.

VIII. EVALUATION

Since the two copies of the wire-wrapped prototype Warp
machine became operational at Carnegie Mellon in 1986. we
have used the machina substantially in various applications
[2]-[4], [IO]. [I3J. (221. The application effort has been
increased s i n x April 1987 when the first PC Warp machine
was delivered to C- Mellon.
The applkatitms area &at guided the development of Warp

most strongly was colllputcr vision, particularly as applied to
robot navigation. We studied a standard library of image
processing algaduns 1301 and concluded that thc great
majority of algoridmr could efficiently use the Warp ma-
chine. Morrover. roba eavigatiOn is an area of active research
at Carnegie Mellar ud has d - t i m e requirements where
Warp can mpke a si@fiC;m difference in overall performance
1321, [33]. Since the rtguirrmcrHs of computer vision had a
significant influence 011 dl aspects of the design of Warp. we
contrast the Warp rmeLisy with other architectures directed
towards computer vis ia~ in Seaion VIII-B.

Our first effort was to dtvelop applications that used Warp
for robot navigation. R s e n t l y mounted inside of a robot
vehicle, Warp has bem used to perform road following and
obstacle avoidance. We have implemented road following
using color classificrioa. obstacle avoidance using stereo
vision, obstacle avoid;mrr using a laser range-finder. and path
planning using dynrroic pmgmnming. We have also imple-
mented a significor image processing library (over 100
programs) on Worp 1301. lo mrt robot navigaion and
vision m h in pud. Some of the library routines are
listed in Table IV.

i using Warp in signal processing
and scientifc compuiag. Wrp's high floating-point computa-
tion rate and systolic stmc~ec mslre it especially attractive for
these appiimtiocls. We have implemented singular value
decomposition (SVD) fa adaptive beam forming. fast two-
dimensional image cOm&iol using FFT. successive overre-
laxation (SOR) for tlr SolutiOS of elliptic partial differential
equations (PDE). ai weil P computational geometry ai-

A second interest

ANNARATONF ct ul WARP COMPII I t R I533

TABLE IV
PERFORMANCE OF SPECIFIC ALGORITHMS ON THE WIRE-WRAPPED

PROTOTYPE WARP MACHINE

MROPS
(uppsband)

la,

94

90

u)

62

61

60

67

n
87

66

51

52

S8

92
94

94

50

78

75

50

n
Y)

71

61

66

58

MROPS
(Achieved)

79

66
59

51

49

43

36

30

30
27

25

24

23

22

21

21

20

16

Ih

13

12

I I

7

7

5

4

3

gorithms such as convex hull and algorithms for finding the
shortest paths in a graph.

A. Performance Data

Two figures of merit are used to evaluate the performance
of Warp. One is overall system perfOI'InaWe. and the other is
performance on specific algorithms. Table 111 p m t s Warp's

performance in several systems for robot navigation. signal
processing. scientific computation. and geometric algorithms,
while Table IV presents Warp's performance on a large
number of specific algorithms. Both tables report the perfotm-
ance for the wire-wrapped Warp prototype with a Sun-3/160
as the master processor. The Pc warp will in general exceed
the reported performance. because of its improved architec-

I534

I

IEEE TRANSACTIONS ON COMPIJTERS. V O L C . M . NO 12. I>FX'F.MBF.:R I Y X 7

*

2 5 T

0 10 20 30 40 50 60 7 0 80 90

t4FMPS

Fig. 8.

ture and increased host I/O speed as described earlier. Table
I11 includes all system overheads except for initial program
memory loading. We compare the performance of Warp to a
VAX I11780 with floating-point accclentor because this
computer is widely used and, therefore, familiar to most

Statistics have been gathered for a collection of 72 W2
programs in the application areas of vision, signal processing.
and scientific computing [23]. Table IV presents the utilization
of the Warp array for a sample of these programs. System
overheads such as microcode loading and program initializa-
tion are not counted. We assume that the host 110 can keep up
with the Warp array; this assumption is realistic for most
applications with the host of the production Warp machine.
Fig. 8 shows the performance distribution of the 72 programs.
The arithmetic mean is 28 MFLOPS, and the standard
deviation is 18 MFLOPS.

The Warp cell has several independent functional units.
including separate floating-point units for addition and multi-
plication. The achievable performance of a program is limited
by the most used resource. For example. in a computation that
contains only additions and no multiplications, the maximum
achievable performance is only 50 MFLOPS. Table IV gives
an upper bound on the achievable performance and the
achieved performance. The upper bound is obtained by
assuming that the floating-point unit that is used more often in
the program is the most used resource. and that it can be kept
busy all the time. That is, this upper bound cannot be met even
with a perfect compiler if the most used reSOurce is some other
functional unit. such as the memory, or if data dependencies in
the computation prevent the most used resource from being
used all the time.

Many of the programs in Tables 111 and IV are coded
without fine tuning the W2 code. Optimizations can often
provide a significant speedup over the times given. First. the
W2 code can be optimizd. using conventional programming
techniques such as unrolling loops with few iterations,
replacing array references by scalars. and so on. Second. in
some cases in Tablc Ill the external host in the prototype Warp

people.

is a bottleneck, and it is possible to speed up this portion of the
Warp machine by recoding the 110 transfer programs gener-
ated by the W2 compiler in MC68020 Assembly language.
Monover. the external host for the PC Warp is faster and
supports DMA, so that even with the compiler generated code
it will no longer be the bottleneck. Third, since restrictions on
using the Warp cells in a pipeline are removed in PC Warp as
explained in section IV-&4, it will be possible to implement
many of the vision algorithm in a pipelining fashion. This can
lead to a threefold speedup. since input. computation, and
output will be done at the same time. Fourth. in a few cases we
have discoverad a better algorithm for the Warp implementa-
tion than what was originally programmed.

In Table 111, the speedup ranges from 60 to 500. With the
optimizations we discuss above, all systems listed should show
at least a speedup of about 100 over the VAX I11780 with a
floating-point accekrator.

B. Architectural Alternatives

We discuss the architectural decisions made in Warp by
contrasting them with the decisions made in bit-serial proces-
sor arrays. such as the Connection Machine [34] and MPP [7].
We chose these architectures because they have also been used
extensively for computer vision and image processing, and
because the design choices in these architectures were made
significantly differently than in Warp. These differences help
exhibit and clarify the design space for the Warp architecture.

We attempt to Nke our comparison quantitative by using
benchmark data 'from a DARPA Image Understanding
("DARPA IU") workshop held in November 1986 to com-
pare various computers for vision [29j. In this workshop.
benchmark.. for low and midlevel computer vision were
defined and programmed by researchers on a wide variety of
computers. including Warp and the Connection Machine [3].

We briefly review salient features of the Connection
Machine. called CM-I. used in these benchmarks. It is a
SlMD machine, consisting of an a m y of 64K bit-serial
processing elements. each with 4K bits of memory. The

I535
A N N A R A T O N E el ul. W A R P COMPUTER

processors are connected by two networks: one connects each
processor to four adjacent prcxcssors. and the other is a 12-
dimensional hypercube, connecting groups of 16 processors.
The array is controlled by a host. which is a Symbolics 3640
Lisp machine. C M - I is prograniiiicd in an cxtension to
Conimon Lisp called *Lisp (24) . in which references to data
objects stored in the CM-I array and objccts on the host can be
intermi xed.

Although our intention is to illustrate architectural decisions
made in Warp, not to compare it to the Connection Machine,
we should not cite benchmark performance figures on two
different computers without mentioning two critical factors,
namely cost and size. CM-I is approximately one order of
magnitude more expensive and larger than Warp.

1) Programming Model: Bit-serial processor arrays imple-
ment a data para/le/ programming model, in which different
processors process different elements of the data set. In the
Connection Machine, the programmer manipulates data ob-
jects stored in the Connection Machine array by the use of
primitives in which the effect of a Lisp operator is distributed
over a data object.

In systolic arrays; the processors individually manipulate
words of data. In Warp, we have implemented data parallel
programming models through the use of input and output
partitioning. We have encapsulated input panitioning over
images in a specialized language called Apply [141. In addition
to these models, the high interprocessor bandwidth of the
systolic array allows efficient implementation of pipelining. in
which not the data, but the algorithm is partitioned.

2) Processor I/O Bandwidth and Topology: Systolic
arrays have high bandwidth between processors. which are
organized in a simple topology. In the case of the Warp array,
this is the simplest possible topology, namely a linear array.
The interconnection networks in the Connection Machine
allow flexible topology, but low bandwidth between communi-
cating processors.

Bit-serial processor arrays may suffer from a serious
bottleneck in 110 with the external world because of the
difficulty of feeding a large amaunt of data through a single
simple processor. This bottleneck has been addressed in
various ways. MPP uses a “staging memory” in which image
data can be placed and distributed to the array along one
dimension. The 110 bottleneck has been addressed by a new
version of the Connection Machine. called CM-2 [3 I]. In this
computer, a number of disk drives can feed data into various
points in the array simultaneously. The CM-I benchmark
figures do not include image WO: the processing is done on an
image which has already been loeded into the array, and
processing is completed with the image still in the array.
Otherwise, image I/O would completely dominate processing
time. In many cases it is necessary to process an image which
is stored in a frame buffer or host memory, which is easier in
Warp because of the high bandwidth between the Warp array
and the Warp host. All the Warp benchmarks in this section
include I/O time from the host.

The high bandwidth connection between processors in the
Warp array makes it possible for all processors to see all data
in an imagc. while achieving useful image processing time. (In

fact, because of the linear topology, there is no time advantage
to limit the passage of an image through less than all
processors.) This is important in global image computations
such as Hough transform, where any input can influence any
output. For example. the transform o f a 5 I2 x 5 I2 image into
a 180 x 512 Hough space takes I . 7 s o n Warp. o n l y 2 .5 times
as long as on CM- I , The ratio here is far less than for a hirnplc
local computation on a large image, such as Laplacian and
zero crossing.

In some global operations, processing is done separately on
different cells, then combined in a series of pairwise merge
operations using a “divide and conquer” approach. This type
of computation can be difficult to implement using limited
topology communications as in Warp. For example, in the
Warp border following algorithm for a 512 x 512 image,
individual cells trace the borders of different portions of the
image, then those borders are combined in a series of merge
operations in the Warp array. The time for border following
on Warp is 1100 ms, significantly more than the 100 ms the
algorithm takes on CM- 1.

3) Processor Number and Power: Warp has only ten
parallel processing elements in its array, each of which is a
powerful 10 MFLOPS processor. CM-1, on the other hand,
has 64K processing elements, each of which is a simple bit-
serial processor. Thus, the two machines stand at opposite
ends of the spectrum of processor number and power.

We find-that the small number of processing elements in
Warp makes it easier to get good use of the Warp array in
problems where a complex global computation is performed
on amoderate-sized data set. In these problems, not much data
parallelism is “available.” For example, the DARPA IU
benchmarks included the computation of the two-dimensional
convex hull [26] of a set of IO00 points. The CM-I algorithm
used a brush-fire expansion algorithm, which led to an
execution time of 200 ms for the complete computation. The
samc algorithm was implemented on Warp, and gave the 18
ms figure reported in Table 111. Similar ratios are found in the
times for the minimal spanning tree of IO00 points (160 ms on
Warp versus 2.2 s on CM-I) and a triangle visibility problem
for IO00 three-dimensional triangles (400 ms on Warp versus
1 s on CM-I).

Simple algorithms at the lowest level of vision, such as edge
detection computations, run much faster on large arrays of
processors such as the Connection Machine than Warp. This is
because no communication is required between distant ele-
ments of the array. and the large array of processors can be
d i l Y mapped Onto the large image array. For example. the
computation of an 11 x I1 Laplacian [I51 on a 512 x 512
image. followed by the detection of zero crossings, takes only
3 m~ on CM-I.
The floating-point processors in Warp aid the programmer

in eliminating the wed for low-level algorithmic analysis. For
exafnple, the Connection Machine used discrete fixed-point
WroXimatiOn to several algorithms. including Voronoi dia-
gram d convex hull. The usc of floating-point made it
unnecessary for the Warp programmer to make assumptions
about the data range and distribution.

In conclusion. we see that bit-serial processor arrays excel

opposed to 400 ms on Warp.

1536

in the lowest level o f vision, such as edge detection. The CM-
1's performance at this level exceeded Warp's by two orders
of magnitude. However. specialized hardware must be used to
climinate a severe IIO bottleneck to actually observe this
performance. The use of the router in the Connection Machine
allows i t t o do wcll ;dso at higher levels o f vision, such as
border following. Wc also see that the more general class ot'
programming tiicdels and use o f tloating-point hardware in
Warp give i t g ~ ~ d actual performance in a wide range of
algorithms. especially including complex global computations
on moderately sized data sets.

IX . CONCLUSIONS

The Warp computer has achieved high performance in a
variety of application areas. including low-level vision, signal
processing. and scientific computation. Currently produced by
our industrial partner (GE). Warp is much more powerful and
programmable than many other machines of comparable cost.
The effectiveness of the Warp computer results from a

balanced effort in architecture. software. and applications.
The simple. linear topology of the Warp array naturally
supports several useful program partitioning models; the Warp
cells' high degree of programmability and large local memory
make up for the lack of higher dimensional connectivity. The
highcomputation rate on each cell is matched by an equally
high inter- and intracell bandwidth. The host system provides
the Warp array with high I/O bandwidth. The optimizing W2
compiler maps programs from a high-level language to
efficient microcode for the Warp array. Integration of the
Warp array into Unix as an attached processor makes the
Warp machine easily accessible to users. A sizable application
library has been implemented to support development of
research systems in vision.

The development of a compiler is essential in designing the
architecture of a machine. Designing and implementing a
compiler require a thorough study of the functionality of the
machine; the systematic analysis of the machine allows us to
uncover problems that may otherwise be undetected by writing
sample programs. The compiler is also an excellent tool for
evaluating different architectural alternatives. The develop-
ment of the W2 compiler has significantly influenced the
evolution of the architecture of Warp.

An early identification of an application area is essential for
the development of an experimental machine such as Warp
whose architecturr is radically different from conventional
ones. Including the application users in the early phase of the
project-the vision research group at Carnegie Mellon in our
case-helped us focus on the architectural requirements and
provided early feedback.

Prototyping is important for architecture development. An
early prototype system gives the designers realistic feedback
about the constraints of the hardware implementation and
provides a base for the software and application developers to
test out their ideas. TO speed up implementation of the
prototype. we used off-the-shelf parts. To concentrate our
efforts on the architecture of the Warp a m y . we developed the
host from industry \tandard boards.

IEEE 'rRANSA('TI0NS O N COMPUTERS. VOL C' .Ih. N O I ? . L)F.('F.MHtH 1'4x7
*

The Warp machine has demonstrated the feasibility of
programmable, high-performance systolic array computers.
The programmability of Warp has substantially extended the
machine's application domain. The cost o f Programmability is
limited t o an incrcase in the physical cize o f the machine; i t

d(ws not incur il loss in performance. given appropriate
architectural support. This is shown by Warp, as it can be
programmed to execute many well-known systolic algorithms
as fast as special-purpose arrays built using similar technol-
ogy.

ACKNOWLEDGMENT

We appreciate the contributions to the Warp project by our
colleagues and visiton at Carntgie Mellon: D. Adams, F.
Bia, C. Bono, M. Btomt, B. Bruegge. C. H. Chang. E.
Clune, R. Cohn, R. Conde, J. Deutch. P. Dew, B. Endenon.
L. Hamey, P. K. Hsiung. K. Hughes. T. Kanade, G. Klinker,
P. Lieu, P. Maulik. D. Morris, A. Noaman, T . M. Parng, H.
Printz, J. Race, M. Ravishankar, J. Rendas. H. Ribas. C.
Sarocky, K. Sarocky. J. Senko, Y. Shintani, B. Siegell. H.
Sohn, P. Steenkiste, Y. B. Tsai. P. S. Tseng. R. Wallace, J .
K. Wang, I. C. Wu, D. Yam. and A. Zobel. We thank our
industrial partners GE and Honeywell for their contribution
towards the consmdon ofthe wire-wrapped prototypes. We
appreciate rhc continued collaboration with GE for the
development of the prodPction Warp machine. In particular,
we thank R. Bamcd, S. Cumcl. J. Cokus, J . Condon. D.
Cmmp. R. A. Field, R. Gaus, N. Gearhart, J . Iannuzzi, A.
Lock. C. Pickcring. A. PTutlkr, M. Sarig. S. Sillich, T.
Stark, W. Tates, A. Tdl, C. Wairath. and J. Weimar of GE in
Syracuse for their efforu.

REFuercEs
M. Annurorr.E.-T. Gr0ss.H. T. Kung, M . S. Lam, 0.
Menziklghr. K. M y . d J. A. Webb, "Warp architecture and
irnpkmemooa ' .'* b M. I W Annu. Inr. Symp. Compur. Archi-
fafum, IEEUACM. kr. I-. pp. 346-356.
M. A-. E. kd4 H. T. Kung, and 0. Menzilcioglu.
"kif46 Wup X a in signal processing." in froc.

M. Annmtoac. F. Btz. E. cbr. H. T. Kung. P. Maulik. H . Ribas.
P. T m , and 1. We&. "Apdiions and algorithm DanitioninE on

ICASSP 86, Ap. l a . m. 2895-2898.

Warp."-in Pra. Com&'*nng 87, San-Francixo. CA. &b.,
I 987. pp. mas.
M . A n k t o ~ u . F. Bia, J. R r r h . L. Hamey. H. T. Kung. P. C.
Maulik. P. T q . rd J. A. Webb. "Applications experience on
Warp." in Pra. I W 7 N I . Comptf. Con/.. AFIPS. Chicago, IL.
Junc 1987. pp. I*+-IsI.
M.Aannrorr.EAl.djR.Cohr.T.Gross.H.T.Kung.M.Lam.
0. Menzilcmglm. K. slrt]r. J. scllto. and J . Webb. "Architecture of
Warp." in Pror. C-m87, Ssn Francisco. CA. Feb. 1987.

- , "Wup nLbarr .)men proaayp to production," in h.
1987N0r. C m . Cw..AAps, -0. IL. June. 1987, pp. 133-
140.
K. E. 8.rctn. "Dcluq, of a mpssivcly parpllel processor." /€E€
T m . C ~ p f . . vd. C-29. R 836-840. 1980.
8. Brucggc. C. a It. C h . 1. GKES. M. Lam. P. Lieu. A.
Ncmnun. and D. Yu. 'Tu Warp programming environment." in
Pmc. I987Nur. C m . Car/.. AflPS. Chicago. IL. June 1987.
pp. 141-148.

pp. n4-267.

A. E. C h r k s w a d . "Am F h to scientific array processing: The
m h i t e a u n i -0ftk AP-EZDBIFPS-164 family." Compurer. vol.
14. p ~ . 18-27. Scp. IWI.

I537

E. Clunc.. J . D. Criaiiian. G . 1. Klinkcr. a d J A. Wchh. "lmplernenta-
tion and perfiirmncc of a complex vis ion systcm on a systolic array
machine." in Prin. Cmf. Frontiers Cornput.. Amsterdam. Dee.
IYX7
A L. Fisher. H. T. Kung. and K. Sarcrky. "Experience with theCMU
progrviiiirivhlc \y%iidic chip. ' ' ,Mic.ri,urchictrrur~ VI..$/ Cornpur.. pp.
2 0 Y - 2 2 2 . IYXS
T Grohs m d M I.JIII. "Cimipilatwn tor rl high-prlorniawc systdic
array. " in Proc. S1GPI.A N 86 Syrnp. C'ornptlcv Construcrion. ACM
SICPLAN. June. IYX6 . pp. 27-3X.
T Gn>*s. H T Kung. M. L m . a d 1. Wchh. "Warp a. 3 mxhinc l i w
Ii)w-lcvcl vision." in Proc. 198s IEEE In/. Conj. Robot. Automat..
Mar. 1985. pp, 7W-800.

warp and the apply programming model." in Parallel Computation
and Computen for Artificial Intelligence, 1. Kovlnlik. Ed.
Hingham. MA: Kluwer Academic, 1981.
R. M. Haralkk. "Digital step edges fmm tcm crossings of second
directional derivatives." IEEE Trans. Pattern Anal. Machine Inrell.,
vol. PAMI-6. pp. 58-68, 1984.
F. H. Hsu. H. T. Kung. T. Nishizawa, and A. Sussman. "Architecture
of the link and interconnection chip." in Proc. IWS Chu@ Hill
Con/.. VLSI. Cmput. Sci.. Dep.. Univ. North Carolina. May, 1985,

T. Kanclde and J . A. Webb. "End o f year repm for parallel vision
algorithm design a d implementatinn." Tech. Rep. CMU-RI fR-87-
I5 RthH. Instit.. Carnegie Mcllor~ Univ., 1987.
H. f,. Kung. "Why systolic architectures?." Computer, vul. 15. pp.

. "Systolic algorithms liw the CMU Warp processor." in Pror.
Seventh Int. Con/. Portern Recognition. Int. Ass. Pattern Rccogni-

. "Memory requirements for balanced computer archi taum."

L. G . C. Hamy. J . A. Webb. anl 1. C. WU. "Low-kvd vision on

p ~ . 186-195.

37-46. Jan. IY82.

IIW. I ~ M . pp. 570-577.

1. Comolexitv. vni. I. w. 147-157. 1985.

Marco Annamtonc received ihc I>i)tt.lng. degrco
in computer r icnco and electrical snginccring Iron1
Politcrnico di Milano. Milan. Itvly. in I Y X O

From lYX2 io 19K4 hc wah Vi\iting Scicnli\i in

the Dcpanrncnt 1 1 1 Coriiputcr Science 4 1 (' .mupic
Mcllon llnivcr\iiy. I'iti\hurgh. I'A l . i c # i i i I'IXJ lo

19x7 hc was a laculty riicirihcr i r i ihc \.iiiic d c , p ~ ~ f l
mcnt. l i n t as v Rcwvrch A \ \ I K I * I I ~ .ind i l icn J

Rcscvrch Clmpuicr Scicnii\i tic 1.1 Ihc ,itith<ir ol
Diprtul CMOS C'ircurr Drrrptr fHifi&!hsiiii, M
Kluwcr academic^. a hndi on VLSI hip nicth-

dologies. His current research interests include computer architecturc.
parallel computer architecture. and parallel implementatmn ill' algorithm5 in
the fKld of scientific computation. He is now an A
Computer Science at the Swiss Federal Institute of Technology (ETH). Zurich
and can be rurhed at the Institute for Integrated Systems. ETH Zentrum.
8092 Zurich, Switzerlwd.

Emmanuel Amould was born in Paris. France. He
received the M.S. degree in electrical engineering
from the Univrnite des Sciences. Paris. France. in
1981. and the M.S. degree in computer science
from the Ecole Nationale Superieure des Telecorn-
munications. Paris. France. in 1983.

Since February IYX4. he has been il Research
Engineer in the Department of Computer Science.
Carnegie Mellon University. Pittsburgh. PA. where
he actively participated in the design ot the Warp

H. r. Kung GJ J . A. web. -GIW operations on the CMU warp
-him." in prm. 1 ~ 5 A/AA comput. AeWp. y con/., A m r ,
Instit. Aeronaut. Astnmsut.. OCI., 1985, pp. 209-218.

. "Mapping image pmcessing operations onto a linear systolic
machine." Dkfributed Compur.. vol. I. pp. 246-257. 1986.
M. S. Lam, "A systolic a m y optimizing cmpikr," Ph.D. disscna-
tion. Camegie Mellon Univ.. May 1987.
C. Laser. The Complete *Lisp Munual, Thinking Machines Corp..

. computer. His research interests include computer
system architecture. supercomputing. and supercomputer nerworkh.

Cambridge, MA, 1986.
I. J . Little. G. Gelloch. and T. Cats. "Parallel algorithms for computer
vision on the connection mochinc." in Proe. Imuge Undmrunding
Workshop, DARPA. Fcb.. 1987, pp. 628-638.
F. P. Preparata and M. 1. S h a m , Compufarional Geomerry-An
Introducrion. New York: Springer-Vedag. 1985.
B. R. Rau and C. D. G1-r. "Some scheduling rechniqucs and an
easily rhedulable horizontal architecture for high performance scien-
tific computing." in Proc. 14th Annu. Workshop Microprogmm-
ming, Oct.. 1981. pp. 183-198.
B. R. Rau. P. J . Kwkcs. and C. D. Glacser. "A statistically scheduled
VLSl interconnect for parallel procesws," VLSI S p t . Cornput..
Oct. 1981. w. 389-395. practical aspects of high

Thomu Cross (S'79-M'83J received the M.S.
degree in computer science fmm Stanford Univer-
sity. Stanford. CA. the Diploni-lnli)rmatiker de-
gm from the Technical University. Munich, Cer-
many. and the Ph.D. degree in electrical
engineering from Stanford University. Stanford.
CA, in 1983. where he panicipated in the MIPS
project.

He joined the faculty of the Department of
Computer Science. Carnegie Mellon Uni\ersity. in
1984. His current re.wdrch interests include the

-performance computer sybiems: coniputcr architec- _ _ . r .

A, HtMenjcld. ..A rcp,n on the DARPA understanding
architiu.turcs workshop." in Pnn. Image Understanding Workshop,
DARPA. LIS Angclcs. CA. Feb., 1987. pp. 298-301.
H. Tamura. S. salunc. F. Tomila. N. Yokoya, K. salrauc. and N.
Kaneko. SPIDER Usem' Manual, J o i n (System Development Corp..
Tokyo, Japan. 1983.
Thinking Machines C q . , Connection Machine Model CM-2 Tech-
nical Summary HA 874, Thinking Machines Carp., Apr. 18w.
R. W a l k . A. !jlenu. C. Thrrpc. W. Whittaker. and T. Kudc,
"First results in mba mad-following." in h. //CAI. 1985. pp.
1089-IW3.
R. Wallace. K. MaLwzaki. Y. GIIO. 1. C r i s m . 1. Webb. and T.
Kanade. "Progm. in r c h t nd-fnllowing," in Proc. 1986 IEEE Int.
Conf. Robot. Automut.. Apr.. I Y M . pp. 1615-1621.
D. L. Waltz. "Applicatinns of the connection mPr-him." Computer,
VOI. 20. p ~ . 85-97. Jan. IYX7.
8. W(w. L. Lin. anl F. Ware. "A high-speed 32 bit IEEE floating-
pnint chip WI for digital \ignal prcrcssing." in Pmr. ICASSP 84.

D. Young. Iterurrve Solutcon (IJ Large l.mear Sy.srrms. New Ytuk:
AcademK. IY71. their applicatwns.

NIX. m e s s o r design. optimizing compilers. and the wltuarc \>\tcnir that
mdtd Io make high-prfomnce complters

Dr. Gross received an IBM Faculty Development Award in 1985

ti. T. Wvng meived the Ph.D. degree from
Carnegie Mellon University. Pittsburgh. PA. in
1974.

He joined the Iiaculty oCCarnegie Mellon Univer-
sity in 1974 a d wasappointed to Professor in 1982.
He is currently holding the Shell Distinguished
Chair in Computer kiencc at Carnegle Melton. He
Was Guggenheim Fellmu in 1983-1984. and a full
time Architecture Ctwrsultant IO ESL. Inc.. ;I SUhsld-

am in high-performance computer architKture,

IEEE. IVU4. pp. 16.6.1-16.6.1.

I538 IEEE TRANSACTIONS ON COMPUTtRS. VOL C Ih NO I?. I>I-.('CMHhR 1'4x7

Dr. Kung has wrvcd on editorial tnwrds o l wvcral journals and program \?+. O n t Mcn;rileioylu rcceivcd the B S. dcgree in
electrical engineering I'rom Middle E h t Technical
University, Ankara, Turkey. in IYXO. and the M.S.
Jegrec in computcr enginwring Trim Carnegic
Mcllon Univcrhity. Pitthhurgh. PA. in IYX2 .

He I\ a Ph D degree candidak in rhc I)cpanment
01 Electrical and Coiiiputcr hginccrinp. Cdrncgic

committees o l numerws conlcrenccs in VLSl and computer science.

M o n k Lam received the Ph.D. degree in com-
puter science from Carnegie Mcllon University.
Pittsburgh. PA. in 1987. and the B.S. degree in
computer scicnce from the University of British
Columbia. Vancnuver. B.C. in 1980.

She is currently a Research Associate in the
k p n m n t of Computer Science a~ Camgie Mel-
Ion University. Her re.warch interests include pnl-
le1 architectures and optimizing compilers.

Mcllon Univcrhity He ha\ k e n worhlng iin pro -
grartiniahle \ystolic array architecture\ \incc 19x7
Hi% rc*arch intcrehtb include computer architecture
and design. and h u h tolerance.

lorn A. Webb received the B.A. degree in mathe-
matics from The University of South Florida.
Tamp, in 1975. the M.S. degree in computer
x i e m from The Ohio State University. Columbus,
in 1976. and the Ph.D. degree in computer science
from The University of Texas. Austin. in 1980.

Since 1981 he has worked on the faculty of the
Department of Computer Science at Carnegie
Mcllon University, where he is currently a Research
Computer Scientist. His research interests include
the theory of vision and parallel architectures for

vision. He has published papers on the recovery of btructure from motion. the
shape of subjective contours, the design and use of a parallel architecture for
low-level vision, and expcritrnms in the visual control of a robot vehicle

Dr. Webb is a member of the IEEE Computer Society and the Association
for Computing Machinery.

.
~ - k ..

a

!

