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The Warp Computer: Architecture, 
Implementation, and Performance 

M A R C 0  A N N A R A T O N E .  E M M A N U E L  A R N O U L D ,  T H O M A S  GROSS, M E M R F R .  I F , E ~ ,  H .  T. K U N G ,  MONICA LAM.  
O N A T  M E N Z I L C I O G L U .  AND J O N  A. WEBB 

Absrrucf-The Warp machine is a systolic array computer of 
linearly connected cells. each of which is a prognmmabk 
processor capabk of performing 10 million floating-point opera- 
tions per second (IO MFLOPS). A typical Warp amy includes 
ten cells, thus having a peak computatioa rste of 100 MFLOPS. 
The Warp amy can be extended to include more cells to 
accommodate applhtions capable of using the inercucd compu- 
tational bandwidth. Worp is imtegrsted as am attached processor 
into a Unix host system. Progrsms for Warp are written in a 
high-level language supported by an optimizing compiler. 

The first tencell prototype was completed in February 1986; 
delivery of production machines s t u t e d  im April 1987. Extemsive 
experimentation with both the prototype and production ma- 
chines has demonstrated that the Warp architecture is effective in 
the application domain of robot mavigatioa as well as in otbcr 
fields such ms signal processing. schttific computation, and 
computer vision research. For these applications. Warp is 
typically several hundred times faster tb8n a VAX 11/780 class 
computer. 

This paper describes tbe architecture, implementation, and 
performaace of t k  W.rp mschime. ErL major arcbitecturd 
decision is discussed and evmlmated with system, software, and 
application considcratloms. l'k pr0gmnmi.g model sad tods 
devdoped for t k  mwbinc are also described. Tk paper 
codudes  with performam dah for a luge number of applii- 
tioas. 

I n k  Tenns-Computer system implenteatation. computer 
visioo, image pnmssim, optimiziog eonpikr, punlkl pnrck 
m, performam evaluatiom, pipelined processor, scientific 
computing. signal pnmsdmg. sysldk m y ,  vision mearch. 

I. INTRODUCTION 

HE Warp machine is a high-perfonnance systolic array T computer designed for  computation-intensive 
applications. In a typical configuration, Warp consists of a 
linear systolic array of ten identical cells, each of which is a IO 
MFLOPS programmable processor. Thus, a system in this 
configuration has a peak performance of 100 MFLOPS. 

The Warp machine is an attached processor to a general 
purpose host running the Unix operating system. Warp can be 
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accessed by a procedure call on the host, o r  through an 
interactive, programmable command interpreter called the 
Warp shell [SI. A high-level language called W2 is used to 
program Warp; the language is supported by an optimizing 
compiler [ 121, [231. 
The Warp project started in 1984. A twocell system was 

completed in June 1985 at Carnegie Mellon. Construction of 
two identical ten-cell prototype machines was contracted to 
two industrial partners, GE and Honeywell. These prototypes 
were built from off-the-shelf parts on wire-wrapped boards. 
The first prototype machine was delivered by GE in February 
1986. and the Honeywell machine arrived at Carnegie Mellon 
in June 1986. For a period of about a year starting from early 
1986, these two prototype machines were used on a daily basis 
at Carnegie Mellon. 

We have implemented application programs in many areas, 
including low-level vision for robot vehicle navigation. image 
and signal processing. scientific computing, magnetic reso- 
nance imagery (MRI), image processing, radar and sonar 
simulation, and graph algorithms [3]. [4]. In addition, we have 
developed an image processing library of over 100 routines 
[ 17). Our experience has shown that Warp is effective in these 
applications; Warp is typically several hundred times faster 
than a VAX 1 11780 class computer. 

Encouraged by the performance of the prototype machines, 
we have 'revised the Warp architecture for reimplementation 
on printed circuit (PC) boards to allow faster and more 
efficient production. The revision also incorporated several 
architectural improvements. The production Warp machine is 
referred to as the PC Warp in this paper. The PC Warp is 
manufactured by GE, and is available at about $350 OOO per 
machine. The first PC Warp machine was delivered by GE in 
April 1987 to Carnegie Mellon. 

This paper describes the architecture of the Warp machine. 
the rationale of the design and the implementation. and 
performance measurements for a variety of applications. The 
organization of the paper is as follows. We first present an 
overview of the system. We then describe how the overall 
organization of the array allows us to use the cells efficiently. 
Next we focus on the cell architecture: we discuss each feature 
in derail. explaining the design and the evolution of the 
feature. We conclude this section on the cell with a discussion 
of hardware implementation issues and metrics. We then 
describe the architecture of the host system. To  give the reader 
some idea of how the machine can be programmed. we 
describe the W2 programming language, and some general 
methods of partitioning a program onto a processor array that 
has worked well for Warp. To evaluate the Warp machine 
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I WARP PROCESSOR ARRAY I 
Fig. 1. Warp system overview. 

architecture. we present performance data for a variety of 
applications on Warp. and a comparison of the architecture of 
Warp to other parallel machines. 

11. WARP SYSTEM OVERVIEW 
There are three major components in the system-the Warp 

processor array ( Warp urruy). the interface unit (ZU ), and the 
hosf, as depicted in Fig. I .  The Warp array performs the 
computation-intensive routines such as low-level vision mu- 
tines or matrix operations. The IU handles the inputloutput 
between the array and the host. and can generate addresses 
(Adr) and control signals for the Warp array. The host 
supplies data to and receives results from the array. In 
addition. it executes those parts of the application programs 
which are not mapped onto the Warp array. For example, the 
host may perform decision-making processes in robot naviga- 
tion or evaluate convergence criteria in iterative methods for 
solving systems of linear equations. 

The Warp array is a linear systolic array with identical cells, 
called Warp cells, as shown in Fig. I .  Data flow through the 
array on two communication channels (X and Y). Those 
addresses for cells' local memories and control signals that are 
generated by the IU propagate down the Adr channel. The 
direction of the Y channel is statically configurable. This 
feature is used, for example, in algorithms that require 
accumulated results in the last cell to be sent back to the other 
cells (e.g., in back-solvers), or require local exchange of data 
between adjacent cells (e.g.. in some implementations of 
numerical relaxation methods). 

Each Warp cell is implemented as a programmable horizon- 
tal microengine, with its own microsequencer and program 
memory for 8K instructions. The Warp cell data path, as 
depicted in Fig. 2. consists of a 32-bit floating-point multiplier 
(Mpy), a 32-bit floating-point adder (Add). two local memory 
banks for resident and temporary data (Mem). a queue for 
each intercell communication channel (XQ. YQ. and AdrQ). 
and a register tile to buffer data for each floating-point unit 
(AReg and MReg). All these components are connected 
through a crossbar. Addresses for memory access can be 
computed locally by the address generation unit (AGU). or  
taken from the address queue ( A d a ) .  

The Warp cell data path is similar to the data path of the 
Floating Point Systems AP- I 2OB/FPS- 164 line of proccssors 
19). which are also used as attached prcxcssors. Both the Warp 
cell and m y  of thcw FPS prcxessors contain two floating-point 
units, mcmory and an address gencrator. and are oriented 

,. . I I  
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Fig. 2. Warp cell data path. 

towards scientific computing and signal processing. In both 
cases, wide instruction words are used for a direct encoding of 
the hardware resources, and software is used to manage the 
parallelism (that is. to detect parallelism in the application 
code, to use the multiple functional units. and to pipeline 
instructions). The Warp cell differs from these earlier proces- 
sors in two key aspects: the full crossbar of the Warp cell 
provides a higher intrace11 bandwidth, and the X and Y 
channels with their ~ssociated queues provide a high intercell 
bandwidth. which is unique to the Warp array architecture. 

host consists of a Sun-3 workstation that serves as the 
muster controller of dw Wup machine, and a VME-based 
multiprocessor externul h a t ,  SO named because it is external 
to dw workstation. The wortcsuuion provides a Unix environ- 
ment for running rpQlicaticm programs. The external host 
controls the periphtrpls and contains a large amount of 
memory for storing data to be processed by the Warp array. It 
also transfers data to and from the Warp array and performs 
operations on the data when necessary, with low operating 
system overhead. 

Both the Warp cell and IU usc off-the-shelf. TTL-compati- 
ble parts. and are epd, impkmented on a 15x 17 in: board. 
The entire Warp machine. with the exception of the Sun-3, is 
housed in a single 19 in w k .  which also contains power 
supplies and cooling fans. The machine typically consumes 
about I s 0 0  w. 

111. WARP ARRAY ARCHITECTURE 

In the Warp machine, prrlklism exists at both the array 
and cell levels. This scuba discusses how the Warp architec- 
ture is designed to dkw efficient use of the array level 
parallelism. ArchitecrorPi fcaNres to suppon the cell level 
parallelism am describd io tbe next section. 

The key features in Ihe VFbacCtUre that support the array 
level patallelism an s impk topology of. a linear array, 
powerful cells with Loal program control. large data memory 
for each cdl. and high inttcdl communication bandwidth. 

features SuppOrr ? c ~ d  pogram panitioning methods 
imponant to many a p p l n a  121 1. [22]. More dctails on the 
pamtioning methods are given in Section VII-9. and a sample 
of applications using drsc an&& is listed in Section VIII. 
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A linear array is easier for a programmer to use than higher 
dimensional arrays. Many algorithms in scientific computing 
and signal processing have been developed for linear arrays 
[ 181. Our experience of using Warp for low-level vision has 
also shown that a linear organization is suitable in the vision 
doinain as well. A linear array is easy t o  implement in 
hardware. and demands a low external I/O bandwidth since 
only the two end cells communicate with the outside world. 
Moreover, a linear array consisting of powerful, programma- 
ble processors with large local memories can efficiently 
simulate other interconnection topologies. For example, a 
single Warp cell can be time multiplexed to perform the 
function of a column of cells, so that the linear Warp array can 
implement a two-dimensional systolic array. 
The Warp array can be used for both fine-grain and large- 

grain parallelism. It is efficient for fine-grain parallelism 
needed for systolic processing, because of its high intercell 
W w i d t h .  The I/O bandwidth of each cell is higher than that 
of other processors with similar computational power. Each 
cell can transfer 20 million 32-bit words (80 Mbytes) per 
second to and from its neighboring cells, in addition to 20 
million 16-bit addresses. This high intercell communication 
bandwidth permits efficient transfers of large volumes of 
intermediate data between neighboring cells. 

The Warp array is efficient for large-gain parallelism 
because it is composed of powerful cells. Each cell is capable 
of operating independently; it has its own program sequencer 
and program memory of 8K instructions. Moreover, each cell 
has 32K words of local data memory, which is large for 
systolic array designs. For a given 110 bandwidth, a larger 
data memory can sustain a higher computation bandwidth for 

Systolic arrays are known to be effective for local opera- 
tions, in which each output depends only on a small 
corresponding area of the input. The Warp array's large 
memory size and its high intercell UO bandwidth enable it to 
perform global operations in which each output depends on 
any or a large portion of the input [21]. The ability of 
performing global operations as well significantly broadens 
the applicability of the machine. Examples of global opera- 
tions are fast Fourier transform (FFT), image component 
labeling, Hough transform. image warping, and matrix com- 
putations such as LU decomposition or singular value decom- 
position (SVD). 

Because each Warp cell has its own sequencer and program 
memory, the cells in the array can execute different programs 
at the same time. We call computation where all cells execute 
the same program homogeneous, and heterogeneous other- 
wise. Heterogeneous computing is useful for some applica- 
tions. For example, the end cells may operate differently from 
other cells to deal with boundary conditions. Or, in a 
multifunction pipeline [ 131, different sections of the array 
perform different functions, with the output of one section 
feeding into the next as input. 

some algorithms [20]. 

IV. WARP CELL ARCHITECTURE 

This section describes the design and the evolution of the 
architectural features of the cell. Some of these features were 

significantly revised when we reimplcmented Warp on PC 
boards. For the wire-wrapped prototype. we omitted some 
architectural features that are difficult to implement and are 
not necessary for a substantial fraction of application programs 
[ I ] .  This simplification in the design permitted us to gain 
useful experience in ;1 relatively short time. With the experi- 
ence of constructing and using the prototype, we were able t o  
improve the architecture and expand the application domain of 
the production machine. 

A. lnrercell Communicarion 

Each cell communicates with its left and right neighbors 
through point-to-point links, two for data and one for 
addresses. A queue with a depth of 512 words is associated 
with each link (XQ, YQ and Ad@ in Fig. 2) and is placed in 
the data path of the input cell. The size of the queue is just 
large enough to buffer one or two scan-lines of an image, 
which is typically of size 512 x 512 or 256 x 256. The 
ability to buffer a complete scan line is important for the 
efficient implementation of some algorithms such as two- 
dimensional convolutions (191. Words in the queues are 34 
bits, wide; along with each 32-bit data word, the sender 
transmits a 2-bit control signal that can be tested by the 
receiver. 

Flow control for the communication channels is imple- 
mented in hardware. When a cell tries to read from an empty 
queue, it is blocked until a data item arrives. Similarly, when a 
cell tries to write to a full queue of a neighboring cell, the 
writing cell is blocked until some data are removed from the 
full queue. The blocking of a cell is transparent to the 
program; the state of all the computational units on the data 
path freezes for the duration the cell is blocked. Only the cell 
that tries to read from an empty queue or to deposit a data item 
into a full queue is blocked. All other cells in the array 
continue to operate normally. The data queues of a blocked 
cell are still able to accept input; otherwise, a cell blocked on 
an empty queue will never become unblocked. 
The implementation of run-time flow control by hardware 

has two implications. First, we need two clock generators- 
one for the computational units whose states freeze whenever a 
cell is blocked. and one for the queues. Second. since a cell 
can receive data from either of its two neighbors. it can block 
as a result of the status of the queues in either neighbor. as well 
as its own. This dependence on other cells adds serious timing 
constraints to the design since clock control signals have to 
cross board boundaries. This complexity will be further 
discussed in Section V. 

The intercell communication mechanism is the most revised 
feature on the cell; it has evolved from primitive programma- 
ble delay elements to queues without any flow control 
hardware. and finally to the run-time flowcontrolled queues. 
fn the following. we step through the different design changes. 

I )  Programmable Delay: In an early design, the input 
buffer on each communication channel of a cell was a 
programmable delay element. In a programmable delay 
element. data are latched in every cycle and they emerge at the 
output port a constant number of cycles later. This structure i.. 
found in many systolic algorithm designs to synchronize or 
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delay one data stream with respect to another. However, 
progrslmmable high-performance processors like the Warp 
cells require a more flexible buffering mechanism. Warp 
programs do not usually produce one data item every cycle; a 
cltxking discipline that reads and writes one item per cycle 
would be too restrictive, Furthermore, a constant delay 
through the buffer means that the timing of data generation 
must match exactly that of data consumption. Therefore, the 
prognmmable delays were replaced by queues to remove the 
tight coupling between the communicating cells. 

2) Flow Control: Queues allow the receiver and sender to 
run at their own speeds provided that the receiver does not 
read past the end of the qucuc and the sender does not 
overtlow the quews. There arc two different flow control 
disciplines, run-time and compile-time flowcontrol. As dis- 
cussed above, hardware support for run-time flow control can 
be difficult to design. implement, and debug. Alternatively, 
for a substantial set of problems in our application domain, 
compile-time flow control can be implemented by generating 
code that requires no run-time support. Therefore, we elected 
not to support run-time flow control in the prototype. This 
decision permitted us to accelerate the implementation and 
experimentation cycle. Run-time flow control is provided in 
the production machine, so as to widen the application domain 
of the machine. 

Compile-time flow control can be provided for all programs 
where data only flow in one direction through the array and 
where the control flow of the programs is not data dependent. 
Data dependent control flow and two-way data flow can also 
be allowed for programs satisfying some restrictions [6]. 
Compile-time flow control is implemented by skewing the 
computation of the cells so that no w i v i n g  cell ctads from a 
queue before the corresponding sendiig cell writes to it. For 
example, suppose two adjacent cells each execute the follow- 
ing program: 

dequeue (X); 
output (X) : 
dequeue (X): 
compute : 
compute ; 
output (X) : 

In this program, the first cell removes a data item from the 
X queue (dequeue (X)) and sends it to the second cell on X 
(output (XI). The first cell then removes a second item, and 
forwards the result to the second cell after two cycles of 
computation. For this program, the second cell needs to be 
delayed by three cycles to ensure that the dequeue of the 
second cell never overtakes the corresponding output of the 
first cell, and the compiler will insert the ntcessary nops. as 
shown in Fig. 3. 

Run-time flow control expands the application domain of 
the machine and often allows the compiler to produce more 
efficient code; therefore. it is provided in the production 
machine. Without run-time flow control. WHILE loops and 
FOR loops and computed loop bounds on the cells cannot be 
implemented. That is, only loops with compile-time constant 
bounds can be supported. This restriction limits the class of 
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Fig. 3 

programs executable 

second cell 

noQ 
noP 
noP 
dequeue (X I  ; 
output()o ; 
dequeue ( X )  ; 
compute ; 

compute ; 

output(X) ; 

Compile-rime !low control 

on the machine. Moreover, many pro- 
grams for the prototype machines can be made more efficient 
and easier to write by replacing the FOR loops with WHILE 
loops. For example. instead of executing a fixed number of 
iterations to guarantee convergence, the iteration can be 
stoppcd as w o n  as the termination condition is met. The 
compiler can produce more efficient code since compile-time 
flow control relies on delaying the receiving cell sufficiently to 
guarantee correct behavior, but this delay is not necessarily the 
minimum delay needed. Run-time flow control will dynami- 
cally find the minimum bound. 

3) Inpur Conrrol: In the current design, latching of data 
into a cell's queue is controlled by the sender, rather than by 
the receiver. As a cell sends data to its neighbor. it also signals 
the receiving cell's input queue to accept the data. 

In our first twoccll prototype machine, input data were 
latched under the microinstruction control of the receiving 
cell. This implied that intercell communication required close 
cooperation between the sender and the receiver; the sender 
presented its data on the communication channel, and in the 
same clock cycle the receiver latched in the input. This design 
was obviously not adequate if flow control was supported at 
run time; in fact, we discovered that it was not adequate even 
if flow control was provided at compile time. The tight 
coupling between the sender and the receiver greatly increased 
the code size of the programs. The problem was corrected in 
subscquent implementations by adopting the design we cur- 
rently have, that is, the sender provides the signal to the 
receiver's queue to latch in the input data. 

In the above discussion of the example of Fig. 3. it was 
assumed that the control for the second cell to latch in input 
was sent with the output data by the first cell. If the second cell 
were to provide the input control signals, we would need to 
add an input operation in its microprogram for every output 
operation of the first cell, at exactly the cycle the operation 
takes place. Doing so, we obtain the following program for the 
second cell: 

-P * 
input (X) 9 

WP . 
dequeue (X); 
output (XI ; 

input (XI, dequeue (XI; 
compute ; 
compute ; 
output (XI ; 

Each line in the program is a microinstruction; the first column 
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Fig. 4. Merglng equal-length lap with an offset. (a) Original loops. (b) 
Execution trace. (c) Merged loop. 

contains the Input operations to match the Output operations 
of the first cell. and the second column contains the original 
program. 

Since the input sequence follows the control flow of the 
sender, each cell is logically executing two processes: the 
input process, and the original computation process of its own. 
These two processes must be merged into one since there is 
only one sequencer on each cell. If the programs on 
communicating cells are different, the input process and the 
cell's own computation process are different. Even if the cell 
programs are identical, the cell's computation process may 
need to be delayed with respect to the input process because of 
compile-time flow control as described above. As a result, we 
may need to merge control constructs from different parts of 
the program. Merging two equal-length loops, with an offset 
between their initiation times, requires loop unrolling and can 
result in a threefold increase in code length, Fig. 4 illustrates 
this increase in code length when merging two identical loops 
of n iterations. Numbers represent operations of the input 
process. and letters represent the computation process. If two 
iterative statements of different lengths are overlapped. then 
the resulting code size can be of the order of the least common 
multiple of their lengths. For example. in Fig. 5 .  a two- 
instruction loop of 3n iterations is merged with a three- 
instruction loop of 2n iterations. Since 6 is the minimum 
number of cycles before the combined sequence of operations 
repeats itself, the resulting merged program is a six-instruction 
loop of n iterations. 

4) Randomly Accessible Queues: The queues in all the 
prototype machines are implemented with RAM chips, with 
hardware queue pointers. Furthermore. there was a feedback 
path from the data crossbar back to the queues, because we 
intended to use the queues as.local storage elements as well 
I I I .  Since the pointers must be changed when the queue is 
accessed randomly. and there is only a single pair of queue 
pointers, it is impossiblc to multiplex the use of the buffer as a 
communication queue and its use as a local storage element. 
Therefore, the queues in the production machine are now 
implemented by a FIFO chip. This implementation allows us 

2n 1 3 n k  

(a) 

n 

- 
0.3 
1 b  

2 . 3  

O b  
l a  

2 h  - 

Fig. 5. Merging loops with different lengths. (at Original loop\ tb)  
Execution trace. (c) Merged Itmp. 

to increase the queue size from 128 to 512 words, with board 
space left over for other improvements as well. 

5) Queue Size: The size of the queues is an important factor 
in the efficiency of the array. Queues buffer the input for a cell 
and relax the coupling of execution in communicating cells. 
Although the average communication rate between two com- 
municating cells must balance, a larger buffer allows the cells 
to receive and send data in bursts at different times. 

The long queues allow the compiler to adopt a simple code 
optimization strategy (231. The throughput for a unidirectional 
array is maximized by simply optimizing the individual cell 
programs provided that sufficient buffering is available be- 
tween each pair of adjacent cells. In addition, some al- 
gorithms, such as two-dimensional convolution mentioned 
above, require large buffers between cells. If the queues are 
not large enough. a program must explicitly implement buffers 
in local memory. 

8. Control Path 
Each Warp cell has its own local program memory and 

sequencer. This is a good architectural design even if the cells 
all execute the same program, as in the case of the prototype 
Warp machine. The reason is that it is difficult to broadcast the 
microinstruction words to all the cells. or to propagate them 
from cell to cell, since the instructions contain a large number 
of bits. Moreover. even if the cells execute the same program. 
the computations of the cells are often skewed so that each cell 
is delayed with respect to its neighboring cell. This skewed 
computation model is easily implemented with local program 
control. The local sequencer also supports conditional branch- 
ing efficiently. In SIMD machines. branching is achieved by 
masking. The execution time is equivalent to the sum of the 
execution time of the thenclause and the else-clause of a 
branch. With local program control. different cells may follow 
different branches of a conditional statement depending on 
their individual data; the execution time IS the execution time 
of the c1au.s taken. 
The Warp cell is horizontally microcoded. Each component 

in the dau  path is controlled by a dedicated field; this 
orthogonal organization of the microinstruction word makes 
scheduling easier since there is no interference in the schedule 
of different components. 
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C. Data Path 4) Address Generation: As shown in Fig. 2, each cell 

/) F/oafing-Poin[ units: E;lch Warp cell has two floating- contains an integer unit (AGU) that is  used prcdominantly as a 
VJint units, one multiplier and one adder. implemented with local address generation unit. The AGU is a self-contained 
commercially available floating-point chips 1351. These float- integer ALU with 64 registcrs. I t  can compute up to two 

;ng-point dcpt.nd on  cxtcnsivc piplining [o achicvc high addrCsSCS pcr Cycle (OnC read addre55 and One WrIIL' addrCS5). 
perf,ornlancc, ~ , , t h  [he adder and nlultiplicr have tive-stagc The I c x ~ l  address generator on the cell IS one o f  the 
piplincs, General purpose computation is difficult t o  imple- enhancements that distinguish the PC Warp machine t'rom the 
men[ efficiently on deeply piplined machines because data- prototype. In the prototype, data indcpcndcnt acldrews were 
dependent branching is common. There is less data &pen- generated on the I U  and propagated down the cells. Data 
dency in numerical or computer vision programs, a d  we dependent addresses were computed locally on each cell using 
developed scheduling techniques that use the pipelining the floating-point units. The IU of the prototype had the 
efficiently. Performance results am in Section V ~ I .  additional task of generating the loop termination signals for 

2) c r o s b r :  Experience with the Programmable Systolic the cells. These signals were propagated along the Adr channel 
Chip showed that the internal data bandwidth is often the to the cells in the Warp a m y .  
bottleneck of a systolic cell [ I  11. In the Warp cell, the two There was not enough space on the wire-wrapped board to 
floating-point units can consume up to four data items and include local address generation capability on each Warp cell. 
generate two results per cycle. Several data storage blocks Including an AGU requires board space not only for the AGU 
interconnected with a crossbar support this high data process- itself, but also for its environment and the bits in the 
ing rate. There are six input and eight output porn connected instruction word for controlling it. An AGU was area 
to the crossbar switch; up to six data items can be transferred expensive at the time the prototype was designed, due to the 
in a single cycle, and an output port can receive any data item. lack of VLSI parts for the AGU functions. The address 
The use of the crossbar also makes compilation easier when generation unit in the prototype IU uses AMD2901 parts 
compared to a &-based system since conflicts on the use of which contain 16 registers. Since this number of registers is 
one or more shared buses can complicate scheduling tremen- too small to generate complicated addressing patterns quickly, 
dously . the ALU is backed up by a table that holds up to 16K 

Custom chip designs that combine the functionality of the PreCOmPrttd addresses. This table is too large to replicate on 
crossbar interconnection and data buffers have bccn proposed all the cells. The address generation unit on the PC Warp cells 
[16]. [28]. In the interconnection chip designed for polycyclic is a new V U 1  component (IDT-49C402). which combines the 
architectures [28]. a "queue" is associated with each cross @-word register file and ALU on a single chip. The large 
point of the crossbar. In these storage blocks, data are always number of registers makes the backup table unnecessary for 
written at the end of the queue; however, data can be read, or most addresing patterns, so that the AGU is much smaller and 
removed. from any location. The queues arc compacted can be nplkatcd on each cell of the production machine. 
automatically whenever data arc removed. The main advan- The protorype was designed for applications where all cells 
tage of this design is that an optimal c a k  schedule can be extCUtC the same program with data independent loop bounds. 
readily derived for a class of inner loops [27]. In the Warp cell However, not all such programs could be supported due to the 
architecture, we chose to use a conventional crossbar with data of the address queue. In the pipelining mode. where the 
buffers only for its outputs (the AReg and MReg register files Cells impiement different stages of a computation pipeline. a 
in Fig. 2). because of the lower hardware cat.  Near- id  cell does not StaR executing until the preceding cell is finished 
schedules can be found cheaply using heuristics [23]. with the first set of input data. The size of the address queue 

3) Data Sforage Blocks: As depicted by Fig. 2. the local must at least equal the number of addresses and control signals 
memory hierarchy includes a local data memory, a register file used in the computation of the data set. Therefore. the size of 
for the integer unit (AGU). two register files (one for each the address queues limits the number of addresses buffered. 
floating-point unit), and a backup data memory. Addresses for and thus the grain sue of parallelism. 
both data memories come from the address crossbar. The local For the production machine. each cell contains an AGU and 
data memory can store 32K words. and can be both read and can mrett addrsseS and loop control signals efficiently. 
written every (200 ns) cycle. The capacity of the register file This iIIIprOVement allows the compiler to support a much 
in the AGU unit is 64 words. The register files for the floating- l v g t r  Class Of @kathn. we have preserved the address 
point units each hold 31 usable words of data. ('I~Ic register geMatOr and address bank on tbe IU (and the associated Adr 
file is written to in every cycle so that one word is used as a chpnn~l, as shown in Fig. I). Therefore. the IU can still 
sink for those cycles without useful write operations.) They SUpQoct those homogeneous computations that demand a small 
are five-ported data buffers and each can accept two data items se( ofcomplicatcd addressing patterns that can be conveniently 
from the crossbar and deliver two operands to the functional stored in the addrcss bank. . 
units every cycle. The additional pons are used for connecting 

contains 2K words and is used to hold all scalars, floating- 
p i n t  constants. and small arrays. The addition of the backup 
memory increases memory bandwidth and improves through- 
put for thosc programs operating mainly on local &ta. 

the register tiles to the backup memory. This backup memory v. WARP CELL AND Iu IMPLEMENTATION 

The Warp array arcfiitarute operates on 32-bit data. All 
data channels in the W q  m y ,  including the internal data 
path of the cell. am implement& as 16-bit wide channels 
operating at 100 N. There arc two reasons for choosing a 16- 
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bit time-multiplexed implementation. First. a 32-bit wide 
hardware path would not allow implementing one cell per 
board. Second. the 200 ns cycle time dictated by the Weitek 
floating-point chips (at the time of design) allows the rest of 
the data path to be time multiplexed. This would not have been 
possible if  the cycle time of the floating-point chips were under 
160 ns. The microengine operates at 100 ns and supports high 
and low cycle operations of the data path separately. 

All cells in the array are driven from a global 20 MHz clock 
generated by the IU. To allow each cell to block individually, 
a cell must have control over the use of the global clock 
signals. Each cell monitors two concurrent processes: the 
input data flow (1 process) and the output data flow (0 
process). If the input data queue is empty. the I process flow 
must be suspended before the next read from the queue. 
Symmetrically, the 0 process is stopped before the next write 
whenever the input queue of the neighboring cell is full. 
Stopping the I or 0 process pauses all computation and output 
activity, but the cell continues to accept input. There is only a 
small amount of time available between detection of the queue 
full/empty status and blocking the d w r i t e  operation. Since 
the cycle time is only 100 ns, this tight timing led to race 
conditions in an early design. This problem has been solved by 
duplicating on each cell the status of the I/O processes of the 
neighboring cells. In this way, a cell can anticipate a queue 
full/empty condition and react within a clock cycle. 

A large portion of the internal cell hardware can be 
monitored and tested using built-in serial diagnostic chains 
under control of the IU. The serial chains are also used to 
download the Warp cell programs. Identical programs can be 
downloaded to all cells at a rate of 100 ps per instruction from 
the workstation and about 67 ps per instmction from the 
external host. Starting up a program takes about 5 ms. 

The Warp cell consists of six main blocks: input queues, 
crossbar, processing elements, data memory, address genera- 
tor, and microengine. Table I presents the contribution of 
these blocks to the implementation of the Warp cell. The 
microengine includes the program memory (8K instruction 
words of 272 bits. including parity). The Warp cell consumes 
94 W (typical) and 136 W (maximum). 

The IU handles data inpuVoutput between the host and the 
Warp array. The host-IU interfacc is streamlined by imple- 
menting a 32-bit wide interface. even though the Warp array 
has only 16-bit wide internal data paths. This arrangement is 
preferred because data transfers hctween the host and IU are 

TABLE I1 
IMPLEMENTATION METRIC3 FOH Iu 

Chip count Arca contrihurion t Percent I Blcrk in IU 

Data-convener 44 
Addre\\ generator -15 
Clwk and ho\t interlace IO1 
Micrwnginc 4') 
Other 25 
TotalJor IU 264 

UNIX 4.2 Workstation alPf3 
SUPPORT 
PROCESSOR LOCAL BUS "3 

P: processor 

S: switch 

0: graphics ourgut  
I :  graphics input 

Fig. 6. Host of the Warp machine. 

slower than the transfers between IU and the array. Data 
transfers between the host and 1U can be controlled by 
interrupts; in this case, the IU behaves like a slave device. The 
IU can also convert packed &bit integers transferred from the 
host into 32-bit floating-point numbers for the Warp array. and 
vice versa. 
The IU is controlled by a %-bit wide programmable 

microengine, which is similar to the Warp cell controller in 
programmability. The IU has several control registers that are 
mapped into the host address space; the host can control the IU 
and hence the Warp array by setting these registers. The IU 
has a power consumption of 82 W (typical) and 123 W 
(maximum). Table I1 presents implementation metrics for the 
IU. 

VI. HOST SYSTEM 

The Warp host controls the Warp array and other periph- 
erals. suppolts fast data transfer rates to and from the Warp 
array. and also runs application code that cannot easily be 
mapped on the array. An overview of the host is presented in 
Fig. 6. The host is partitioned into a standard workstation (the 
master) and an external host. The workstation provides a Unix 
programming environment to the user. and also coctrols the 
external host. The external host consists of two L-lusrer 
processors. a subsystem called support processor, and some 
graphics devices. 
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Control of the cxtcrnal host is strictly centralized: the 
workstation. thc master prcxcssor, issues commands to the 
cluster and support processors through mcs.mge buffers local 
t o  each ot these prtxessors. The two clusters work in parallel. 
each handling a unidirectional flow of' data t o  or  from the 
Warp processor through the IU. The two clusters can 
exchange their roles in sending or receiving data for different 
phases o f  a computation. in a ping-pong fashion. An arbitra- 
tion mechanism transparent to the user has been implemented 
to prohibit simultaneous writing or reading to the Warp array 
when the clusters switch roles. The support processor controls 
peripheral 110 devices and handles floating-point exceptions 
and other intempt signals from the Warp array. These 
interrupts are serviced by the support pmcessor, rather than by 
the master processor. to minimize interrupt response time. 
After servicing the interrupt, the suppon processor notifies the 
master processor. 

The external host is built around a VME bus. The two 
clusters and the support processor each consist of a standalone 
MC68020 microprocessor (P) and a dual-ported memory 
(M). which can be accessed either via a local bus or via the 
global VME bus. The local bus is a VSB bus in the production 
machine and a VMX32 bus for the prototype; the major 
improvements of VSB over VMX32 arc better support for 
arbitration and the addition of DMA-type accesses. Each 
cluster has a switch board ( S )  for sending and receiving data 
to and from the Warp array, through the IU. The switch also 
has a VME interface, used by the master processor to start, 
stop, and control the Warp array. The VME bus of the master 
processor inside the workstation is con@ to the VME bus 
of the external host via a buscoupler (bus m e r ) .  While the 
prototype Warp used a commercial bus-coupler, the PC Warp 
employs a customdesigned device. The difference between 
the two is that the customdesigned bus repeater dccouples the 
external host VME bus from the Sun-3 VME bus: intrabus 
transfers can occur concurrently on both buses. 

There are three memory banks inside each cluster processor 
to support concurrent memory accesses. For example, the first 
memory bank may be receiving a new set of data from an I/O 
device, while data in the second bank are transferred to the 
Warp array. and the third contains the cluster program code. 

Presently. the memory of the external host is built out of I 
Mbyte memory boards; including the 3 Mbytes of memory on 
the processor boards. the total memory capacity of the external 
host is I 1 Mybtes. An expansion of up to 59 Mbytes is possible 
by populating all the 14 available slots of the VME card cage 
with 4 Mbyte memory boards. Large data structures can be 
stomf in these memories where they will not be swapped out 
by the operating system. This is important for consistent 
performance in real-time applications. The external host can 
also support special devices such as framc buffers and high- 
speed disks. This allows the programmer to transfer data 
directly between Warp and other devices. 

Except for the switch, all boards in the external host arc off- 
the-shell' components. The industry standard boards allow us 
to take advantage of commercial processors. 110 boards. 
memory. and software. They also make the host an Open 
system to which it is relatively easy to add new devices and 

interfaces to other computers. Moreover. standard boards 
provide a growth path for future system improvements with a 
minimal investment of time and resources. During the 
transition from prototype t o  production machine. faster 
processor bourds (from 12 t o  16 MHz) and largcr mcmoric~ 
have been introduced, and they have been incorporated into 
the host with little effort. 

A. Host I/O Bmdwidrh 

The Warp array QD input a 32-bit word and output a 32-bit 
word every 200 RP. Carrspondingly, to sustain this peak rate, 
each cluster rrmst k abk to read or write a 32-bit data item 
every 200 IU. This pat YO bandwidth requirement can be 
satisfied if tht inpu rd output data are 8-bit or 16-bit integers 

In signal, image, pad low-level vision processing, the input 
and output data are d l y  16- or 8-bit integers. The data can 
be packed into 32-bic woccIs before being transferred to the IU. 
which unpacks the cbua into two or  four 32-bit floating-point 
numben before sending them to the Warp array. The reverse 
operation talres piace with the floating-point outputs of the 
Warp array. With this pecking and unpacking, the data 
bandwidth requbemca betwen the host and IU is reduced by 
a factor of two or krr. Image data can be packed on the 
digitizer boerds. rabrr incurring overhead on the host. 

TheYOkndr rd lL  o f t t ~ ~  FC Warp external host is greatly 
improved over rLr ai tLt pototype machine [5 ] .  The PC 
Warp supports DMA Pd uses faster processor and memory 
boards. If the drr trsrakr if sequential, DMA can be used to 
achieve the VplrSLcr riC of kss than 500 ns per word. With 
block tmnekr mtnk. cla -fer time is funher reduced to 
about 350 m. TLr spal for nonsequential data transfers 
depends 011 tbe c a q k x i ~  of the address computation. For 
simple address 32-bit word is transferred in 
about 900 m. 

There arc two cbscs  of applications: those whose input/ 
output dim are phcv vducs (e&, vision). and those whose 
input/outp* dam me --point quantities (e.g.. scientific 
computing). In v k h a  applications. data are often transferred 
in raster orda. By pPcking/unpacking the pixels and using 
DMA. the hosl U O  boAdwidth can sustain the maximum 
bandwidth of dl d p p m s .  Many of the applications that 
Reed fldng- irpr rd output data have nonsequential 
data access plum- The b e t  kcomes a bottleneck if the rate 
of data tnrrfir (d ;ddrrss generation if DMA cannot be 
used) is larar'lLCm tLc b are processed on the array. 
Fortunudy, h scindfic applications. the computation 
per dpa hcm b eypcally cpk large and the host I/O 
bandwidth is *de limiting factor in the performance of 

that can bc aCCCSSCd SeqUcntiaIIy. 

the army. 

B. H o s t S O / t w  

The WSrp bosl La a m i m e  software library that allows 
P%- lo qshrotlizc the support processor and two 

C h c n  ;md to  abeate memory in the external host. The run- 
time softworr rbo Bpdlts the communication and interrupts 
betwem tbt -Id rLt pmcessors in the external host. 
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The library o f  run-time routines includes utilities such as 
copying and moving data within the host system. subwindow 
selection of images. and peripheral device drivers. The 
compiler generates program-specific input and output routines 
for the clusters s o  that a uscr nccd not be conccrncd with 
progrmniiiing at this level; these routines arc linked at load 
timc to the two cluster prtxcssor libraries. 

The application program usually runs on thc Warp array 
under control of the master: however, it is possible to assign 
subtasks to any of the processors in the external host. This 
decreases the execution time for two reasons: there is more 
parallelism in the computation, and data transfers between the 
cluster and the array using the VSB bus are twice as fast as 
transfers between the master processor and the array through 
the VME bus repeater. The processors in the e x t e d  host 
have been extensively used in various applications, for 
example, obstacle avoidance for a robot vehicle and singular 
value decomposition. 

Memory allocation and processor synchronization inside the 
external host are handled by the application program through 
subroutine calls to the run-time software. Memory is allocated 
through the equivalent of a Unix rna//oc( ) system call, the 
only difference being that the memory bank has to be explicitly 
specified. This explicit control allows the user to fully exploit 
the parallelism of the system; for example, different proces- 
sors can be programmed to access different memory banks 
through different busses concurrently. 
Tasks are scheduled by the master processor. The applica- 

tion code can schedule a task to be nm on the completion of a 
different task. Once the master processor determines that one 
task has completed, it schedules another task requested by the 
application code. Overhead for this nm-time scheduling of 
tasks is minimal. 

VU. PROGRAMMING WARP 

As mentioned in the Introduction, Warp is programmed in a 
language called W2. Programs written in W2 are translated by 
an optimizing compiler into object code for the Warp machine. 
W2 hides the low-level details of the machine and allows the 
user to concentrate on the problem of mapping an application 
onto a processor array. In this section, we first describe the 
language and then some common computation partitioning 
techniques. 

A.  The W2 Language 
The W2 language provides an abstract programming model 

of the machine that allows the user to focus on parallelism at 
the array level. The user views the Warp system as a linear 
array of identical. conventional processors that can communi- 
cate asynchronously with their left and right neighbors. The 
semantics of the communication primitives is that a cell will 
block if it tries to receive from any empty queue or send to a 
full one. This semantics is enforced at compile time in the 
prototype and at run time in the PC Warp. as explaincd in 
Section IV-A-2. 
The user supplies the code to be executed on each cell. and 

the compiler handles the dctails of code generation and 
scheduling. This arrangement gives the user full control over 
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module UatrirP(ultip1y (A in, B in, C out) 
f loa t  Atlo, l o ] ,  B [ l O ,  lo ] ,  C[10,101,' 

cellprogram (cid : 0 : 9) 
w i n  

function nm 
begin 

f loa t  col[lO]; / *  stores  a column of the B matrix * /  
f loa t  row; I* accumulates the result of  a rov * f  
f loa t  elemsnt; 
f loa t  tonp; 
fat i. j; 

I* first load a column of 8 in each c e l l  * /  
for i := 0 t o  9 do win 

-1- (L, X, co l [ i l .  B t i , O l ) :  
for 3 :I 1 to  9 do win 

-i- (L. x. t g .  ncr. j l ) ;  
..ad (R. X .  t r p l :  

d; 
a d  (1, X, 0 . 0 ) :  

d; 

/* calculate a row of C kr each i t a ra t ion  * I  
for i := 0 to 9 do boqin 

/* 
row :I 0 . 0 ;  
f o r  3 :I 0 t o  9 do w i n  

uch cell coqut.8 r)u dot product 
bot- its col- .nd the  s u m  row of A * I  

-in (L. X, e lmant ,  A [ i , j l ) ;  
a d  (R, X, a l m a n t ) ;  
row := rou + elumnt c o l [ j ] :  

d; 

/* 8 d  Out thr m S U l t  of aach r o w  of C * /  
-2.. (1, 'I, trp, 0 . 0 ) ;  
fo r  j := 0 to  8 bo win 

-1- (1. 'I, t q ,  0 . 0 ) ;  
aood (1. 1. trp, C t i .  j l ) :  

.ad; 
Hld (1, Y ,  mr, C [ i . 9 1 ) :  

ad: 
.ad 
ea11 =; 

d 
Fig. 7. Example W2 program. 

computation partitioning and algorithm design. The language 
for describing the cell code is Algol-like. with iterative and 
conditional statements. In addition, the language provides 
receive and send primitives for specifying intercell communi- 
cation. The compiler handles the parallelism both at the system 
and cell levels. At the system level, the external host and the 
IU are hidden from the user. The compiler generates code for 
the host and the IU to transfer data between the host and the 
array. Moreover, for the prototype Warp. addresses and loop 
control signals are automatically extracted from the cell 
programs; they are generated on the IU and passed down the 
address queue. At the cell level. the pipelining and parallclism 
in the data path of the cells are hidden from the user. The 
compiler uses global data flow analysis and horizontal 
microcode scheduling techniques. software pipelining and 
hierarchical reduction to generate efficient microcode directly 
from high-level language constructs 1121. [23]. 

Fig. 7 is an example of a IO x IO matrix multiplication 
program. Each cell computes one column of the result. We 
first load each cell with a column of the second matrix 
operand, then we stream the first matrix in row by row. As 
each row passes through the array. we accumulate the result 
for a column in each cell. and send the entire row of results to 
the host. The loading and unloading of data are slightly 
complicated because all cells execute the same program. Send 
and m i v c  transfer data between adjacent cells; the first 
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The system is solved by repeatedly combining the current 
values of u on a two-dimensional grid using the following 
recurrence. 

parameter determines the direction, and the second parameter 
wlects the hardware channel to be used. The third parameter 
specitiies the source (.send) or the sink (receive). The fourth 
parameter, only applicable to those channels communicating 
with the host. binds the array input and output to the formal 
parlrnieters of the cell programs. This intormation is used by 
thc compilcr to gcnemtc ctwfc t i w  the host. 

B. Progruirr Purririoning 

As discussed in Section Ill. the architecture of the Warp 
army can support various kinds of algorithms: fine-grain or 
large-grain parallelism, local or global operations, homogene- 
ous or heterogeneous. There arc three general program 
partitioning methods [41, [221: input partitioning. output 
partitioning. and piplining. 

I )  fnput Purtifioning: In this model. the input data are 
partitioned among the Warp cells. Each cell computes on its 
portion of the input data to produce a corresponding portion of 
the output data. This model is useful in image processing 
where the result at each point of the output image depends only 
on a small neighborhood of the corresponding point of the 
input image. 

Input partitioning is a simple and powerful method for 
exploiting parallelism-most parallel machines support it in 
one form or another. Many of the algorithms on Warp make 
use of it. including most of the low-level vision programs. the 
discrete cosine transform (DCT). singular value decomposi- 
tion [2], connected component labeling [22]. border follow- 
ing, and the convex hull. The last three algorithms mentioned 
also transmit information in other ways; for example. con- 
nected components labeling first partitions the image by rows 
among the cells, labels each cell's portion separately. and then 
combines the labels from different portions to create a global 
labeling. 

2) Output Partitioning: In this model. each Warp cell 
processes the entire input data set or  a large part of it, but 
produces only part of the output. This model is used when the 
input to output mapping is not regular, or when any input can 
influence any output. Histogram and image warping act 
examples of such computations. This model usually requires a 
lot of memory because either the required input data set must 
be stored and then processed later, o r  the output must be stored 
in memory while the input is processed. and then output later. 
Each Warp cell has 32K words of local memory to support 
efficient use of this model. 

3) Piplining: In this model, typical of systolic computa- 
tion, the algorithm is partitioned among the cells in the army, 
and each cell performs ollc stage of the processing. The Warp 
array's high intercell communication bandwidth and effective- 
ness in handling fine-grain parallelism make it possible to use 
this model. For some algorithms. this is the only method of 
achieving parallelism. 

A simple example of the  u.se.of pipelining is the solution of 
elliptic partial differential equations using successive overre- 
laxation (361. Consider the following equation: 

a2u azu 
ax2 a y  + - =f(x. Y )- - 

wherc w I\ LI comtant parameter 

In the Warp implementation, each cell I\ re\p)nsible tor one 
relaxation; as expressed by the above equation. In raster order, 
each cell receives inputs from the preceding cell. performs its 
relaxation step. and anputs the results to the next cell. While a 
cell is performing the kth relaxation step on row i, the 
preceding d next d l s  perform the k - 1st and k + 1st 
relaxation steps OR rows i + 2 and i - 2, respectively. Thus. 
in one pass of the Y vdues through the ten-cell Warp array, the 
above recurrence is applied ten times. This process is 
repeated, under control of the external host, until convergence 
is achieved. 

VIII. EVALUATION 

Since the two copies of the wire-wrapped prototype Warp 
machine became operational at Carnegie Mellon in 1986. we 
have used the machina substantially in various applications 
[2]-[4], [IO]. [I3J. (221. The application effort has been 
increased s i n x  April 1987 when the first PC Warp machine 
was delivered to C- Mellon. 
The applkatitms area &at guided the development of Warp 

most strongly was colllputcr vision, particularly as applied to 
robot navigation. We studied a standard library of image 
processing algaduns 1301 and concluded that thc great 
majority of algoridmr could efficiently use the Warp ma- 
chine. Morrover. roba eavigatiOn is an area of active research 
at Carnegie Mellar ud has d - t i m e  requirements where 
Warp can mpke a si@fiC;m difference in overall performance 
1321, [33]. Since the rtguirrmcrHs of computer vision had a 
significant influence 011 dl aspects of the design of Warp. we 
contrast the Warp rmeLisy with other architectures directed 
towards computer vis ia~ in Seaion VIII-B. 

Our first effort was to dtvelop applications that used Warp 
for robot navigation. R s e n t l y  mounted inside of a robot 
vehicle, Warp has bem used to perform road following and 
obstacle avoidance. We have implemented road following 
using color classificrioa. obstacle avoidance using stereo 
vision, obstacle avoid;mrr using a laser range-finder. and path 
planning using dynrroic pmgmnming. We have also imple- 
mented a significor image processing library (over 100 
programs) on Worp 1301. lo mrt robot navigaion and 
vision m h  in pud. Some of the library routines are 
listed in Table IV. 

i using Warp in signal processing 
and scientifc compuiag. Wrp's high floating-point computa- 
tion rate and systolic stmc~ec mslre it especially attractive for 
these appiimtiocls. We have implemented singular value 
decomposition (SVD) fa adaptive beam forming. fast two- 
dimensional image cOm&iol using FFT. successive overre- 
laxation (SOR) for tlr SolutiOS of elliptic partial differential 
equations (PDE). ai weil P computational geometry ai- 

A second interest 
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TABLE IV 
PERFORMANCE OF SPECIFIC ALGORITHMS ON THE WIRE-WRAPPED 

PROTOTYPE WARP MACHINE 

MROPS 
(uppsband) 

la, 

94 

90 

u) 

62 

61 

60 

67 

n 
87 

66 

51 

52 

S8 

92 
94 

94 

50 

78 

75 

50 

n 
Y) 

71 

61 

66 

58 

MROPS 
(Achieved) 

79 

66 
59 

51 

49 

43 

36 

30 

30 
27 

25 

24 

23 

22 

21 

21 

20 

16 

Ih 

13 

12 

I I  

7 

7 

5 

4 

3 

gorithms such as convex hull and algorithms for finding the 
shortest paths in a graph. 

A. Performance Data 

Two figures of merit are used to evaluate the performance 
of Warp. One is overall system perfOI'InaWe. and the other is 
performance on specific algorithms. Table 111 p m t s  Warp's 

performance in several systems for robot navigation. signal 
processing. scientific computation. and geometric algorithms, 
while Table IV presents Warp's performance on a large 
number of specific algorithms. Both tables report the perfotm- 
ance for the wire-wrapped Warp prototype with a Sun-3/160 
as the master processor. The Pc warp will in general exceed 
the reported performance. because of its improved architec- 
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ture and increased host I/O speed as described earlier. Table 
I11 includes all system overheads except for initial program 
memory loading. We compare the performance of Warp to a 
VAX I11780 with floating-point accclentor because this 
computer is widely used and, therefore, familiar to most 

Statistics have been gathered for a collection of 72 W2 
programs in the application areas of vision, signal processing. 
and scientific computing [23]. Table IV presents the utilization 
of the Warp array for a sample of these programs. System 
overheads such as microcode loading and program initializa- 
tion are not counted. We assume that the host 110 can keep up 
with the Warp array; this assumption is realistic for most 
applications with the host of the production Warp machine. 
Fig. 8 shows the performance distribution of the 72 programs. 
The arithmetic mean is 28 MFLOPS, and the standard 
deviation is 18 MFLOPS. 

The Warp cell has several independent functional units. 
including separate floating-point units for addition and multi- 
plication. The achievable performance of a program is limited 
by the most used resource. For example. in a computation that 
contains only additions and no multiplications, the maximum 
achievable performance is only 50 MFLOPS. Table IV gives 
an upper bound on the achievable performance and the 
achieved performance. The upper bound is obtained by 
assuming that the floating-point unit that is used more often in 
the program is the most used resource. and that it can be kept 
busy all the time. That is, this upper bound cannot be met even 
with a perfect compiler if the most used reSOurce is some other 
functional unit. such as the memory, or if data dependencies in 
the computation prevent the most used resource from being 
used all the time. 

Many of the programs in Tables 111 and IV are coded 
without fine tuning the W2 code. Optimizations can often 
provide a significant speedup over the times given. First. the 
W2 code can be optimizd. using conventional programming 
techniques such as unrolling loops with few iterations, 
replacing array references by scalars. and so on. Second. in 
some cases in Tablc Ill the external host in the prototype Warp 

people. 

is a bottleneck, and it is possible to speed up this portion of the 
Warp machine by recoding the 110 transfer programs gener- 
ated by the W2 compiler in MC68020 Assembly language. 
Monover. the external host for the PC Warp is faster and 
supports DMA, so that even with the compiler generated code 
it will no longer be the bottleneck. Third, since restrictions on 
using the Warp cells in a pipeline are removed in PC Warp as 
explained in section IV-&4, it will be possible to implement 
many of the vision algorithm in a pipelining fashion. This can 
lead to a threefold speedup. since input. computation, and 
output will be done at the same time. Fourth. in a few cases we 
have discoverad a better algorithm for the Warp implementa- 
tion than what was originally programmed. 

In Table 111, the speedup ranges from 60 to 500. With the 
optimizations we discuss above, all systems listed should show 
at least a speedup of about 100 over the VAX I11780 with a 
floating-point accekrator. 

B. Architectural Alternatives 

We discuss the architectural decisions made in Warp by 
contrasting them with the decisions made in bit-serial proces- 
sor arrays. such as the Connection Machine [34] and MPP [7]. 
We chose these architectures because they have also been used 
extensively for computer vision and image processing, and 
because the design choices in these architectures were made 
significantly differently than in Warp. These differences help 
exhibit and clarify the design space for the Warp architecture. 

We attempt to Nke our comparison quantitative by using 
benchmark data 'from a DARPA Image Understanding 
("DARPA IU") workshop held in November 1986 to com- 
pare various computers for vision [29j. In this workshop. 
benchmark.. for low and midlevel computer vision were 
defined and programmed by researchers on a wide variety of 
computers. including Warp and the Connection Machine [3]. 

We briefly review salient features of the Connection 
Machine. called CM-I. used in these benchmarks. It is a 
SlMD machine, consisting of an a m y  of 64K bit-serial 
processing elements. each with 4K bits of memory. The 
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processors are connected by two networks: one connects each 
processor to four adjacent prcxcssors. and the other is a 12- 
dimensional hypercube, connecting groups of 16 processors. 
The array is controlled by a host. which is a Symbolics 3640 
Lisp machine. C M - I  is prograniiiicd in an cxtension to 
Conimon Lisp called *Lisp (24) .  in which references to data 
objects stored in the CM-I  array and objccts on  the host can be 
intermi xed. 

Although our intention is to illustrate architectural decisions 
made in Warp, not to compare it to the Connection Machine, 
we should not cite benchmark performance figures on two 
different computers without mentioning two critical factors, 
namely cost and size. CM-I is approximately one order of 
magnitude more expensive and larger than Warp. 

1) Programming Model: Bit-serial processor arrays imple- 
ment a data para/le/ programming model, in which different 
processors process different elements of the data set. In the 
Connection Machine, the programmer manipulates data ob- 
jects stored in the Connection Machine array by the use of 
primitives in which the effect of a Lisp operator is distributed 
over a data object. 

In systolic arrays; the processors individually manipulate 
words of data. In Warp, we have implemented data parallel 
programming models through the use of input and output 
partitioning. We have encapsulated input panitioning over 
images in a specialized language called Apply [ 141. In addition 
to these models, the high interprocessor bandwidth of the 
systolic array allows efficient implementation of pipelining. in 
which not the data, but the algorithm is partitioned. 

2) Processor I/O Bandwidth and Topology: Systolic 
arrays have high bandwidth between processors. which are 
organized in a simple topology. In the case of the Warp array, 
this is the simplest possible topology, namely a linear array. 
The interconnection networks in the Connection Machine 
allow flexible topology, but low bandwidth between communi- 
cating processors. 

Bit-serial processor arrays may suffer from a serious 
bottleneck in 110 with the external world because of the 
difficulty of feeding a large amaunt of data through a single 
simple processor. This bottleneck has been addressed in 
various ways. MPP uses a “staging memory” in which image 
data can be placed and distributed to the array along one 
dimension. The 110 bottleneck has been addressed by a new 
version of the Connection Machine. called CM-2 [3 I]. In this 
computer, a number of disk drives can feed data into various 
points in the array simultaneously. The CM-I benchmark 
figures do not include image WO: the processing is done on an 
image which has already been loeded into the array, and 
processing is completed with the image still in the array. 
Otherwise, image I/O would completely dominate processing 
time. In many cases it is necessary to process an image which 
is stored in a frame buffer or host memory, which is easier in 
Warp because of the high bandwidth between the Warp array 
and the Warp host. All the Warp benchmarks in this section 
include I/O time from the host. 

The high bandwidth connection between processors in the 
Warp array makes it possible for all processors to see all data 
in an imagc. while achieving useful image processing time. (In 

fact, because of the linear topology, there is no time advantage 
to limit the passage of an image through less than all 
processors.) This is important in global image computations 
such as Hough transform, where any input can influence any 
output. For example. the transform o f  a 5 I2 x 5 I2 image into 
a 180 x 512 Hough space takes I . 7  s o n  Warp. o n l y  2 .5  times 
as long as on  CM- I , The ratio here is far less than for  a hirnplc 
local computation on a large image, such as Laplacian and 
zero crossing. 

In some global operations, processing is done separately on 
different cells, then combined in a series of pairwise merge 
operations using a “divide and conquer” approach. This type 
of computation can be difficult to implement using limited 
topology communications as in Warp. For example, in the 
Warp border following algorithm for a 512 x 512 image, 
individual cells trace the borders of different portions of the 
image, then those borders are combined in a series of merge 
operations in the Warp array. The time for border following 
on Warp is 1100 ms, significantly more than the 100 ms the 
algorithm takes on CM- 1.  

3) Processor Number and Power: Warp has only ten 
parallel processing elements in its array, each of which is a 
powerful 10 MFLOPS processor. CM-1, on the other hand, 
has 64K processing elements, each of which is a simple bit- 
serial processor. Thus, the two machines stand at opposite 
ends of the spectrum of processor number and power. 

We find-that the small number of processing elements in 
Warp makes it easier to get good use of the Warp array in 
problems where a complex global computation is performed 
on amoderate-sized data set. In these problems, not much data 
parallelism is “available.” For example, the DARPA IU 
benchmarks included the computation of the two-dimensional 
convex hull [26] of a set of IO00 points. The CM-I algorithm 
used a brush-fire expansion algorithm, which led to an 
execution time of 200 ms for the complete computation. The 
samc algorithm was implemented on Warp, and gave the 18 
ms figure reported in Table 111. Similar ratios are found in the 
times for the minimal spanning tree of IO00 points ( 160 ms on 
Warp versus 2.2 s on CM-I) and a triangle visibility problem 
for IO00 three-dimensional triangles (400 ms on Warp versus 
1 s on CM-I). 

Simple algorithms at the lowest level of vision, such as edge 
detection computations, run much faster on large arrays of 
processors such as the Connection Machine than Warp. This is 
because no communication is required between distant ele- 
ments of the array. and the large array of processors can be 
d i l Y  mapped Onto the large image array. For example. the 
computation of an 11 x I1 Laplacian [I51 on a 512 x 512 
image. followed by the detection of zero crossings, takes only 
3 m~ on CM-I. 
The floating-point processors in Warp aid the programmer 

in eliminating the wed for low-level algorithmic analysis. For 
exafnple, the Connection Machine used discrete fixed-point 
WroXimatiOn to several algorithms. including Voronoi dia- 
gram d convex hull. The usc of floating-point made it 
unnecessary for the Warp programmer to make assumptions 
about the data range and distribution. 

In conclusion. we see that bit-serial processor arrays excel 

opposed to 400 ms on Warp. 
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in the lowest level o f  vision, such as edge detection. The CM- 
1's performance at this level exceeded Warp's by two orders 
of magnitude. However. specialized hardware must be used to 
climinate a severe IIO bottleneck to  actually observe this 
performance. The use of the router in the Connection Machine 
allows i t  t o  do wcll ;dso at higher levels o f  vision,  such as 
border following. Wc also see that the more general class ot' 
programming tiicdels and use o f  tloating-point hardware in 
Warp give i t  g ~ ~ d  actual performance in a wide range of 
algorithms. especially including complex global computations 
on moderately sized data sets. 

IX . CONCLUSIONS 

The Warp computer has achieved high performance in a 
variety of application areas. including low-level vision, signal 
processing. and scientific computation. Currently produced by 
our industrial partner (GE). Warp is much more powerful and 
programmable than many other machines of comparable cost. 
The effectiveness of the Warp computer results from a 

balanced effort in architecture. software. and applications. 
The simple. linear topology of the Warp array naturally 
supports several useful program partitioning models; the Warp 
cells' high degree of programmability and large local memory 
make up for the lack of higher dimensional connectivity. The 
highcomputation rate on each cell is matched by an equally 
high inter- and intracell bandwidth. The host system provides 
the Warp array with high I/O bandwidth. The optimizing W2 
compiler maps programs from a high-level language to 
efficient microcode for the Warp array. Integration of the 
Warp array into Unix as an attached processor makes the 
Warp machine easily accessible to users. A sizable application 
library has been implemented to support development of 
research systems in vision. 

The development of a compiler is essential in designing the 
architecture of a machine. Designing and implementing a 
compiler require a thorough study of the functionality of the 
machine; the systematic analysis of the machine allows us to 
uncover problems that may otherwise be undetected by writing 
sample programs. The compiler is also an excellent tool for 
evaluating different architectural alternatives. The develop- 
ment of the W2 compiler has significantly influenced the 
evolution of the architecture of Warp. 

An early identification of an application area is essential for 
the development of an experimental machine such as Warp 
whose architecturr is radically different from conventional 
ones. Including the application users in the early phase of the 
project-the vision research group at Carnegie Mellon in our 
case-helped us focus on the architectural requirements and 
provided early feedback. 

Prototyping is important for architecture development. An 
early prototype system gives the designers realistic feedback 
about the constraints of the hardware implementation and 
provides a base for the software and application developers to 
test out their ideas. TO speed up implementation of the 
prototype. we used off-the-shelf parts. To concentrate our 
efforts on the architecture of the Warp a m y .  we developed the 
host from industry \tandard boards. 
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The Warp machine has demonstrated the feasibility of 
programmable, high-performance systolic array computers. 
The programmability of Warp has substantially extended the 
machine's application domain. The cost o f  Programmability is 
limited t o  an incrcase in the physical cize o f  the machine; i t  

d(ws not incur il loss in performance. given appropriate 
architectural support. This is shown by Warp, as it can be 
programmed to execute many well-known systolic algorithms 
as fast as special-purpose arrays built using similar technol- 
ogy. 
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