
Chapter 1

SUPER-RESOLUTION: LIMITS AND BEYOND

Simon Baker
and Takeo Kanade

Abstract
A variety of super-resolution algorithms have been described in this book.

Most of them are based on the same source of information however; that the
super-resolution image should generate the lower resolution input images when
appropriately warped and down-sampled to model image formation. (This in-
formation is usually incorporated into super-resolution algorithms in the form
of reconstruction constraints which are frequently combined with a smoothness
prior to regularize their solution.) In this final chapter, we first investigate how
much extra information is actually added by having more than one image for
super-resolution. In particular, we derive a sequence of analytical results which
show that the reconstruction constraints provide far less useful information as the
decimation ratio increases. We validate these results empirically and show that
for large enough decimation ratios any smoothness prior leads to overly smooth
results with very little high-frequency content however many (noiseless) low res-
olution input images are used. In the second half of this chapter, we propose a
super-resolution algorithm which uses a completely different source of informa-
tion, in addition to the reconstruction constraints. The algorithm recognizes local
“features” in the low resolution images and then enhances their resolution in an
appropriate manner, based on a collection of high and low-resolution training
samples. We call such an algorithm ahallucinationalgorithm.

Keywords: Super-resolution, analysis of limits, learning, faces, text, hallucination.

1. INTRODUCTION

A large number of super-resolution algorithms have been described in this
book. Most of them, however, are based on the same source of information;
specifically, that the super-resolution image, when appropriately warped and
down-sampled to model the image formation process, should yield the low res-
olution images. This information is typically embedded in a set of reconstruc-
tion constraints, first introduced by (Peleg et al., 1987; Irani and Peleg, 1991).
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These reconstruction constraints can be embedded in a Bayesian framework
incorporating a prior on the super-resolution image (Schultz and Stevenson,
1996; Hardie et al., 1997; Elad and Feuer, 1997). Their solution can also be
estimated either in batch mode or recursively using a Kalman filter (Elad and
Feuer, 1999; Dellaert et al., 1998). Several other refinements have been pro-
posed, including simultaneously computing 3D structure (Cheeseman et al.,
1994; Shekarforoush et al., 1996; Smelyanskiy et al., 2000) and removing other
degrading artifacts such as motion blur (Bascle et al., 1996).

In the first part of this chapter, we analyze the super-resolution reconstruc-
tion constraints. We derive three analytical results which show that the amount
of information provided by having more than one image available for super-
resolution becomes very much less as the decimation ratioq increases. Super-
resolution therefore becomes inherently much more difficult asq increases.
This reduction in the amount of information provided by the reconstruction
constraints is traced to the fact that the pixel intensities in the input images
take discrete values (typically 8-bit integers in the range 0–255). This causes a
loss of information and imposes inherent limits on how well super-resolution
can be performed from the reconstruction constraints (and other equivalent for-
mulations based on the same underlying source of information.)

How, then, can high-decimation ratio super-resolution be performed? Our
analytical results hold for an arbitrary number of images so using more low res-
olution images does not help. Suppose, however, that the input images contain
printed text. Moreover, suppose that it is possible to perform optical character
recognition (OCR) and recognize the text. If the font can also be determined,
it would then be easy to perform super-resolution forany decimation ratio.
The text could be reproduced at any resolution by simply rendering it from
the script of the text and the definition of the font. In the second half of this
chapter, we describe a super-resolution algorithm based on this idea which we
call hallucination(Baker and Kanade, 1999; Baker and Kanade, 2000a). Our
super-resolution hallucination algorithm is based, however, on the recognition
of generic local “features” (rather than the characters detected by OCR). It can
therefore be applied to other phenomena such as images of human faces.

2. THE RECONSTRUCTION CONSTRAINTS

Denote the low resolution input images byx(k)L (i; j) wherek = 1; : : : ; K.
The starting point in the derivation of the reconstruction constraints is then the
continuous image formation equation (Horn, 1996):

x
(k)
L (i; j) =

�
I
(k)
� h

(k)
�
(i; j) =

Z
x
(k)
L

I
(k)(x; y) � h(k)(x� i; y � j) dx dy

(1.1)
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Figure 1.1 The low resolution input imagesx(k)
L

are formed by the convolution of the irradi-
anceI(k) with the camera point spread functionh(k). We model the point spread function itself
as the convolution of two terms: (1)!(k) models the optical effects caused by the lens and the
finite aperture, and (2)a(k) models the spatial integration performed by the CCD sensor.

whereI(k)(x; y) is the continuous irradiance function that would have reached
the image plane of thekth camera under the pinhole model, andh(k) is point
spread function of thekth camera. The (double) integration is performed over
the image plane ofx(k)L . See Figure 1.1 for an illustration.

2.1 MODELING THE POINT SPREAD FUNCTION

We decompose the point spread function into two parts (see Figure 1.1):

h
(k)(x; y) =

�
!
(k)
� a

(k)
�
(x; y) (1.2)

where!(k)(x; y) models the blurring caused by the optics anda
(k)(x; y) mod-

els the spatial integration performed by the CCD sensor (Baker et al., 1998).
The optical blurring!(k) is typically further split into a defocus factor that can
be approximated by a pill-box function and a diffraction-limited optical trans-
fer function that can be modeled by the square of the first-order Bessel function
of the first kind (Born and Wolf, 1965). We aim to be as general as possible and
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so avoid making any assumptions about!
(k). Instead, (most of) our analysis

is performed for arbitrary optical blurring functions. We do, however, assume
a parametric form fora(k). We assume that the the photo-sensitive areas of
the CCD pixels are square and uniformly sensitive to light, as in (Baker et al.,
1998; Barbe, 1980). If the length of the side of the square photosensitive area
is S(k), the spatial integration function is then:

a
(k)(x; y) =

(
1

S(k)�S(k)
if jxj � S(k)

2 and jyj � S(k)

2

0 otherwise:
(1.3)

In general the photosensitive area is not the entire pixel since space is needed
for the circuitry to read out the charge. Therefore the only assumption we make
aboutS(k) is that it lies in[0; 1]. Our analysis is then in terms ofS(k) (rather
than the inter-pixel distance which is assumed to define the unit distance.)

2.2 WHAT IS SUPER-RESOLUTION ANYWAY?
We wish to estimate a super-resolution imagexH(i

0
; j
0). Precisely what

does this mean? Let us begin with the coordinate frame ofxH . The coordinate
frame of a super-resolution image is typically defined relative to that of the
corresponding low resolution input image. If the decimation ratio isq, the
pixels inxH will be q times closer to each other than those in the corresponding

low resolution image,x(k
0)

L say. The coordinate frame ofxH can therefore be

defined in terms of that forx(k
0)

L via:

(i0; j0) =

�
i

q
;
j

q

�
: (1.4)

In this chapter we assume that the input images have already been registered
with each other and therefore with the coordinate frame ofxH . Then, denote
the point in imagex(k)L (wherek may or may not equalk0) that corresponds to
(x; y) in xH by r(k)(x; y). From now on we assume thatr(k) is known.

The integration in Equation (1.1) is performed over the low resolution image
plane. Transforming to the super-resolution image plane ofxH gives:

x
(k)
L (i; j) =

Z
xH

I
(k)(r(k)(x; y)) � h(k)(r(k)(x; y)� (i; j)) �

�����@r
(k)

@x; y

����� dx dy
(1.5)

where
���@r(k)
@x;y

��� is the determinant of the Jacobian of the registrationr
(k).

Now, I(k)(r(k)(x; y)) is the irradiance that would have reached the image
plane of thekth camera under the pinhole model, transformed onto the super-
resolution image plane. Assuming that the registration is correct, and that the
radiance of every point in the scene does change acrossk (a Lambertian-like
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assumption),I(k)(r(k)(x; y)) should be the same for allk. Moreover, it equals
the irradiance that would have reached the super-resolution image plane ofxH

under the pinhole model. Denoting this function byI(x; y), we have:

x
(k)
L (i; j) =

Z
xH

I(x; y) � h(k)(r(k)(x; y)� (i; j)) �

�����@r
(k)

@x; y

����� dx dy: (1.6)

The goal of super-resolution is then to recover (a representation of)I(x; y).
Doing this requires both increasing the resolution and “deblurring” the image;
i.e. removing the effects of the convolution with the point spread functionh

(k).
In order to proceed we need to specify which continuous functionI(x; y)

is represented by the discrete imagexH(i0; j0). For simplicity, we assume that
xH(i

0
; j
0) represents the piecewise constant function:

I(x; y) = xH(i
0
; j
0) (1.7)

for all x 2 (i0�0:5; j 0+0:5] andy 2 (j 0�0:5; j0+0:5]. Then, Equation (1.6)
can be rearranged to give the super-resolution reconstruction constraints:

x
(k)
L (i; j) =

X
i0;j0

W
(k) �

i; j; i
0
; j
0�
� xH(i

0
; j
0) (1.8)

wherek = 1; : : : ; K and:

W
(k) �

i; j; i
0
; j
0� = Z i0+0:5;j0+0:5

i0�0:5;j0�0:5
h
(k)(r(k)(x; y)� (i; j)) �

�����@r
(k)

@x; y

����� dx dy:
(1.9)

The super-resolution reconstruction constraints are therefore a set of linear
constraints on the unknown super-resolution pixelsxH(i0; j0) in terms of the

known low resolution pixelsx(k)L (i; j) and the coefficientsW (k)(i; j; i0; j0).

3. ANALYSIS OF THE CONSTRAINTS

The constant coefficientsW (k)(i; j; i0; j0) in the reconstruction constraints
depend on both the point spread functionh

(k) and the registrationr(k). Without
some assumptions about these functions any analysis would be meaningless.
If the point spread function is arbitrary, it can be chosen to simulate the “small
pixels” of the super-resolution image. Similarly, if the registration is arbitrary,
it can be chosen (in effect) to move the camera towards the scene and thereby
directly capture the super-resolution image. We therefore have to make some
(reasonable) assumptions about the imaging conditions.

Assumptions Made About the Point Spread Function
As mentioned above, we assume that the point spread function takes the

form of Equation (1.3). Moreover, we assume that the width of the photosen-
sitive areaS(k) is the same for all of the images (and equalsS.) In the first part
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of our analysis, we also assume that!
(k)(x; y) = �(x) � �(y), where� is the

Dirac delta function. Afterwards, in the second and third parts of our analysis,
we allow!(k) to be arbitrary; i.e. our analysis holds foranyoptical blurring.

Assumptions Made About the Registration
To outlaw motions which (effectively) allow the camera to be moved to-

wards the scene, we assume that each registration takes the form:

r
(k)(x; y) =

1

q
(x; y) + (c(k); d(k)) (1.10)

where(c(k); d(k)) is a constant translation (which in general may be different
for each low resolution imagek) and the1

q
accounts for the change of coordi-

nate frame from high to low resolution images. See also Equation (1.4).
Even given these assumptions, the performance of any super-resolution al-

gorithm will depend upon the exact number of input imagesK, the values of
(c(k); d(k)), and, moreover, how well the algorithm can register the low res-
olution images to estimate the(c(k); d(k)). Our goal is to show that super-
resolution becomes fundamentally more difficult as the decimation ratioq in-
creases. We therefore assume that the conditions are as favorable as possible
and perform the analysis for an arbitrary number of input imagesK, with arbi-
trary translations(c(k); d(k)). We also assume that the algorithm has estimated
these values perfectly. Any results derived under these conditions will only be
stronger in practice, where the registrations may be degenerate or inaccurate.

3.1 INVERTIBILITY ANALYSIS

We first analyze when the reconstruction constraints are invertible, and what
the rank of the null space is when they are not. In order to get an easily inter-
pretable result, the analysis in this section is performed under the scenario that
the optical blurring can be ignored; i.e.!(k)(x; y) = �(x) � �(y). (This as-
sumption will be removed in the following two sections.) The expression for
W

(k) (i; j; i0; j 0) in Equation (1.9) then simplifies to:

1

q2

Z i0+0:5

i0�0:5

Z j0+0:5

j0�0:5
a
(k)

�
1

q
(x; y) + (c(k); d(k))� (i; j)

�
dx dy: (1.11)

Using the definition ofa(k) it can be seen thatW (k) (i; j; i0; j0) is equal to
1=(q � S)2 times the area of the intersection of the two squares in Figure 1.2
(the high resolution pixel[i0� 0:5; i0+0:5]� [j0� 0:5; j0+0:5] and the region
wherea(k) non-zero and equals1

S2
.) We then have:

Theorem 1 If q �S is an integer greater than 1, then for all(c(k); d(k)) the re-
construction constraints (Equations (1.8) and (1.11)) are not invertible. More-
over, the dimension of the null space is at least(q � S � 1)2. If q � S is not an
integer,c(k) andd(k) always exist such that the constraints are invertible.
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1D Proof

Area A

(i’-0.5,j’-0.5)

(i’+0.5,j’+0.5)

(c  , d   )(k)(k)q((i,j) - + S (0.5,0.5))

(c  , d   )(k)(k) - S (0.5,0.5))q((i,j) - 

Figure 1.2 The high-resolution pixel(i0; j0) over which the integration is performed in Equa-
tion (1.11) is indicated by the small square at the upper middle left of the figure. The larger
square towards the bottom right is the region in whicha(k) is non-zero. Sincea(k) takes the
value1=S2 in this region, the integral in Equation (1.11) equalsA=S2, whereA is the area of
the intersection of the two squares. This figure is used to illustrate the 1D proof of Theorem 1.

Proof: We provide a proof for 1D images. (See Figure 1.2.) The extension to
2D is conceptually no more difficult and so is omitted for reasons of brevity.

The null space is defined by
P

i0;j0 W
(k)

(i; j; i0; j0) � x
(k)
H (i0; j0) = 0 where

W
(k)

(i; j; i0; j 0) = (q �S)2 �W (k)(i; j; i0; j0) is the area of intersection of the 2
squares in Figure 1.2. Any element of the null space therefore corresponds to
an assignment of values to the small squares such that their weighted sum (over
the large square) equals zero, where the weights are the areas of intersection.

In 1D we just consider one row of the figure. Changingc
(k) (andd(k))

to slide the large square along the row by a small amount, we get a similar
constraint on the elements in the null space. The only difference is in the left-
most and right-most small squares. Subtracting these two constraints shows
that the left-most square and the right-most square must have the same value.

If q � S is not an integer (or is 1), this proves that neighboring values ofx
(k)
H

must be equal and hence0. (Sinceq � S is not an integer, the big square slides
out of one small square before the other and the result then follows by transitiv-
ity of equality.) Therefore, there exist values for the translationsc

(k) (andd(k))
such that the null space only contains the zero vector; i.e. the reconstruction
constraints are invertible in general ifq � S is not an integer (or is 1).

If q � S is an integer greater than1, this same constraint places an upper
bound ofq �S�1 on the maximum dimension of the null space computed over
all possible translationsc(k) (andd(k)). The space of all assignments tox(k)H
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(a) q = 2:0 (b) q = 1:5 (c) q = 2:0, with Prior

Figure 1.3 Validation of Theorem 1: The results of solving the reconstruction constraints using
gradient descent for a square point spread function withS = 1:0. (a) Whenq � S is an integer,
the equations are not invertible and so a random periodic image in the null space is added to
the original image. (b) Whenq � S is not an integer, the reconstruction constraints are invertible
(in general) and so a smooth solution is found, even without a prior. (The result forq = 1:5
was interpolated to make it the same size as that forq = 2:0.) (c) When a smoothness prior is
added to the reconstruction constraints the difficulties seen in (a) disappear. (For larger values
of q simply adding a smoothness prior does not solve this problem, as will be seen.)

that are periodic with periodq � S and which have a zero mean can also easily
be seen to always lie in the null space and so this value is also a lower bound
on the dimension of the null space for any translationsc

(k) (andd(k)). 2

To validate this theorem, we solved the reconstruction constraints using gra-
dient descent for the two casesq = 2:0 andq = 1:5, (whereS = 1:0.) The
results are presented in Figure 1.3. In this experiment, no smoothness prior is
used and gradient descent is run for a sufficiently long time that the (smooth)
initial image does not bias the results. The input in both cases consisted of mul-
tiple down-sampled images of the face. Specifically,1024 randomly translated
images were used as input. Exactly the same inputs are used for the two exper-
iments. The only difference is the decimation ratio. (The output forq = 1:5 is
actually smaller than that forq = 2:0 and was interpolated to be the same size
for display purposes. This is the reason it appears slightly smoother than (c).)

As can be seen in Figure 1.3, forq = 2:0 the (additive) error is approxi-
mately a periodic image with period2 pixels. Forq = 1:5 the equations are
invertible and so a smooth solution is found, even though no smoothness prior
was used. Forq = 2:0, the fact that the problem is not invertible does not
have any practical significance. Adequate solutions can be obtained by simply
adding a smoothness prior to the reconstruction constraints, as shown in Fig-
ure 1.3(c). Forq � 2 the situation is different, however. The rapid rate of
increase of the dimension of null space (quadratic inq � S) is the root cause of
the problems, as will be seen in the next two sections.
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3.2 CONDITIONING ANALYSIS

Most linear systems that are close to being not invertible are usually ill-
conditioned. It is no surprise then that changing from a square point spread
function to an arbitrary blurring functionh(k) = !

(k) � a(k) results in an ill-
conditioned system, as we now show in the second part of our analysis:

Theorem 2 If !(k)(x; y) is a function for which!(k)(x; y) � 0 for all (x; y)
and

R R
!
(k)(x; y) dx dy = 1, then the condition number of the reconstruction

constraints (Equations (1.8) and (1.9)) grows at least as fast as(q � S)2.

Proof: We first prove the theorem for the square point spread functionh
(k) =

a
(k) (i.e. for Equations (1.8) and (1.11)) and then generalize. The condition

number of a linear operatorA can be written as:

Cond(A) =
supkxk1=1 kAxk1

infkxk1=1 kAxk1
: (1.12)

It follows from Equations (1.8) and (1.11) that ifxH(i0; j0) = 1 for all (i0; j0),

thenx(k)L (i; j) = 1 for all (i; j). Hence the numerator in Equation (1.12) is at
least1. SettingxH(i0; j0) to be the checkerboard pattern (1 ifi0 + j

0 is even,

-1 if odd) we find thatjx(k)L (i; j)j � 1=(q � S)2 since the integration of the
checkerboard over any square in the real plane lies in the range[�1; 1]. (Proof
omitted.) Hence the denominator is at most1=(q � S)2. The desired result for
h
(k) = a

(k) follows immediately.
For arbitrary point spread functions, note that Equations (1.8) and (1.9) can

be combined and then rewritten as:

x
(k)
L (i; j) =

Z
xH

xH(x; y)

q2
� h

(k)
�
1

q
(x; y) + (c(k); d(k))� (i; j)

�
dx dy

=
�
h
(k)
� xH

�
((c(k); d(k))� (i; j))

=
h
!
(k)
�

�
a
(k)
� xH

�i
((c(k); d(k))� (i; j)) (1.13)

where we have setxH(x; y) = xH(�qx;�qy) and changed variables(x; y))

�
1
q
(x; y). Both of the properties ofx(k)L that we used to prove the result for

square point spread functions therefore also hold witha
(k) replaced byh(k) =

!
(k) � a(k) using standard properties of the convolution operator. Hence, the

desired, more general, result follows immediately from Equation (1.13).2
This theorem is more general than the previous one because it applies to

arbitrary optical blurring functions. On the other hand, it is a weaker result (in
some situations)because it only predicts that super-resolution isill-conditioned
(rather than not invertible.) This theorem on its own, therefore, does not en-
tirely explain the poor performance of super-resolution. As we showed in Fig-
ure 1.3, problems that are ill-conditioned (or even not invertible, where the
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condition number is infinite) can often be solved by simply adding a smooth-
ness prior. (The not invertible super-resolution problem in Figure 1.3(a) is
solved in Figure 1.3(c) in this way.) Several researchers have performed con-
ditioning analysis of various forms of super-resolution, including (Elad and
Feuer, 1997; Shekarforoush, 1999; Qi and Snyder, 2000). Although useful,
none of these results fully explain the drop-off in performance with the deci-
mation ratioq. The weakness of conditioninganalysis is that an ill-conditioned
system may be ill-conditioned because of a single “almost singular value.” As
indicated by the rapid growth in the dimension of the null space in Theorem 1,
super-resolution has a large number of “almost singular values” for largeq.
This is the real cause of the difficulties seen in Figure 1.4, as we now show.

3.3 ANALYSIS OF THE VOLUME OF SOLUTIONS

If we could work with noiseless, real-valued quantities and perform arbitrary
precision arithmetic then the fact that the reconstruction constraints are ill-
conditioned might not be a problem. In reality, however, images are always
intensity discretized (typically to 8-bit values in the range 0–255 grey levels.)
There will therefore always be noise in the measurements, even if it is only
plus-or-minus half a grey-level. Suppose thatint[�] denotes the operator which
takes a real-valued irradiance measurement and turns it into an integer-valued
intensity. If we incorporate this quantization into our image formation model,
the reconstruction constraints in Equation (1.13) become:

x
(k)
L (i; j) = int

�Z
xH

xH(x; y)

q2
h
(k)

�
1

q
(x; y) + (c(k); d(k))� (i; j)

�
dx dy

�
:

(1.14)
Suppose also thatxH is a finite size image withn pixels. We then have:

Theorem 3 The volume of solutions of the intensity discretized reconstruction
constraints in Equation (1.14) grows asymptoticallyat least as fast as(q�S)2�n.

Proof: First note that the space of solutions is convex since integration is linear.
Next note that one solution of Equation (1.14) is the solution of:

x
(k)
L (i; j)� 0:5 =

Z
xH

xH(x; y)

q2
h
(k)

�
1

q
(x; y) + (c(k); d(k))� (i; j)

�
dx dy:

(1.15)
The definition of the point spread function ash(k) = !

(k) � a(k) and the prop-
erties of the convolution give0 � h

(k) � 1=S2. Therefore, adding(q � S)2 to
any pixel inxH is still a solution since the right hand side of Equation (1.15)
increases by at most 1. (The integrand is increased by less than1 grey-level in
the pixel, which only has an area of1 unit.) The volume of solutions of Equa-
tion (1.14) therefore contains ann-dimensional simplex, where the angles at
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No. Inputs 4 16 64 256

Decimationq 2 4 8 16

Figure 1.4 Results of the reconstruction-based super-resolution algorithm (Hardie et al., 1997)
for various decimation ratios. A high high-resolution image of a face is translated multiple times
by random sub-pixel amounts, blurred with a Gaussian, and then down-sampled. (The algorithm
is provided with exact knowledge of the point spread function and the sub-pixel translations.)
Comparing the images in the right-most column, we see that the algorithm does quite well given
the very low resolution of the input. The degradation in performance as the decimation ratio
increases from left to right is very dramatic, however.

one vertex are all right-angles, and the sides are all(q � S)2 units long. The
volume of such a simplex grows asymptotically like(q � S)2n (treatingn as a
constant andM andS as variables). The desired result follows. 2

In Figures 1.4 and 1.5 we present results to illustrate Theorems 2 and 3. We
took a high resolution image of a face and translated it by random sub-pixel
amounts, blurred it with a Gaussian, and then down-sampled it. We repeated
this procedure for several decimation ratios;q = 2, 4, 8, and 16. In each case,
we generated multiple down-sampled images,each with a different translation.
We generated enough images so that there were as many low resolution pixels
in total as pixels in the original high resolution image. For example, we gener-
ated 4 half size images, 16 quarter size images, and so on. We then applied the
algorithms of (Hardie et al., 1997) and (Schultz and Stevenson, 1996).

The results for (Hardie et al., 1997) are shown in the figure. The results
for (Schultz and Stevenson, 1996) were very similar and are omitted. We pro-
vided the algorithms with exact knowledge of both the point spread function
used in the down-sampling and the random sub-pixel translations. Restricting
attention to the right-most column of Figure 1.4, the results look very good.
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Figure 1.5 An illustration of Theorems 2 and 3 using the same inputs as in Figure 1.4. The
reconstruction error is much higher than the residual, as would be expected for an ill-conditioned
system. For low decimation ratios, the prior is unnecessary and so the results are worse than
predicted. For high decimation ratios, the prior does help, but at the price of smooth results.
(See Figure 1.4.) An estimate of the amount of information provided by the reconstruction
constraints is given by the improvement of the reconstruction error over the interpolation error.
Similarly, the improvement from the predicted error to the reconstruction error is an estimate of
the amount of information provided by the smoothness prior. By this measure, the smoothness
prior provides more information than the reconstruction constraints forq = 16.

The algorithm is able to do a decent job of reconstructing the face from input
images which barely resemble faces. On the other hand, the performance gets
much worse as the decimation ratio increases (from left to right.)

Our third and final theorem provides the best explanation of these results.
For large decimation ratiosq = 8 and16, there is a huge volume of solutions to
the discretized reconstruction constraints in Equation (1.14). The smoothness
prior which is added to resolve this ambiguity simply ensures that it is one of
the overly smooth solutions that is chosen. (Of course, without the prior any
solution might be chosen which would generally be even worse.)

Using the same inputs as Figure 1.4, we plot the reconstruction error against
the decimation ratio in Figure 1.5; i.e. the difference between the reconstructed
high resolution image and the original. We compare this error with the resid-
ual error; i.e. the difference between the low resolution inputs and their pre-
dictions from the reconstructed high resolution image. As expected for an ill-
conditioned system, the reconstruction error is much higher than the residual.
We also compare with a rough prediction of the reconstruction error obtained
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by multiplying the lower bound on the condition number(q � S)2 by an es-
timate of the expected residual assuming that the grey-levels are discretized
from a uniform distribution. For low decimation ratios, this estimate is an
under-estimate because the prior is unnecessary for noise free data; i.e. better
results would be obtained without the prior. For high decimation ratios the
prediction is an over-estimate because the local smoothness assumption does
help the reconstruction (albeit at the expense of overly smooth results.)

We also plot interpolation results in Figure 1.5; i.e. just using the recon-
struction constraints for one image (as was proposed, for example, in (Schultz
and Stevenson, 1994).) The difference between this curve and the reconstruc-
tion error curve is a measure of how much information the reconstruction con-
straints provide. Similarly, the difference between the predicted error and the
reconstruction error is a measure of how much information the smoothness
prior provides. For a decimation ratio of16, we see that the prior provides
more information than the super-resolution reconstruction constraints.

4. SUPER-RESOLUTION BY HALLUCINATION
How then is it possible to perform super-resolution with a high decimation

ratio without the results looking overly smooth? As we have just shown, the re-
quired high-frequency information was lost from the reconstruction constraints
when the input images were discretized to 8-bit values. Smoothness priors may
help regularize the problem, but cannot replace the missing information.

Our goal in this section is to develop a super-resolution algorithm which
uses the information contained in a collection of recognition decisions (in ad-
dition to the reconstruction constraints.) Our approach (which we callhallu-
cination) is to embed the results of the recognition decisions in arecognition-
based prioron the solution of the reconstruction constraints, thereby hopefully
resolving the inherent ambiguity in their solution.

Our approach is somewhat related to that of (Freeman and Pasztor, 1999)
who recently, and independently, proposed a learning framework for low-level
vision, one application of which is image interpolation. Besides being ap-
plicable to an arbitrary number of images, the other major advantage of our
approach is that it uses a prior which is specific to the class of object (in the
“class-based” sense of (Riklin-Raviv and Shashua, 1999)) and a set of local
recognition decisions. Our algorithm is also related to (Edwards et al., 1998),
in which active-appearance model are used for model-based super-resolution.

4.1 BAYESIAN MAP FORMULATION

We use a Bayesian formulation of super-resolution (Cheeseman et al., 1994;
Schultz and Stevenson, 1996; Hardie et al., 1997; Elad and Feuer, 1997). In
this approach, super-resolution is posed as finding the maximuma posteriori
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(or MAP) super-resolution imagexH : i.e. estimatingargmaxxH P [xH j x
(k)
L ].

Bayes law for this estimation problem is:

P [xH j x
(k)
L ] =

P [x
(k)
L j xH] � P [xH ]

P [x
(k)
L ]

: (1.16)

SinceP [x(k)L ] is a constant because the imagesx
(k)
L are (known) inputs, and

since the logarithm function is a monotonically increasing function, we have:

argmax
xH

P [xH j x
(k)
L ] = argmin

xH

�
� lnP [x

(k)
L j xH]� lnP [xH ]

�
: (1.17)

The first term in this expression� ln P [x
(k)
L j xH ] is the (negative log) prob-

ability of reconstructing the low resolution imagesx(k)L given that the super-
resolution image isxH . It is therefore normally set to be a quadratic (i.e. en-
ergy) function of the error in the reconstruction constraints:

� ln P [x
(k)
L j xH ] =

1

2�2�

X
i;j;k

2
4x(k)L (i; j)�

X
i0;j0

W
(k) �

i; j; i
0
; j
0�
� xH(i

0
; j
0)

3
5
2

(1.18)
whereW (k)(i; j; i0; j 0) is defined in Equation (1.9). In this expression, we are
implicitly assuming that the noise is independently and identically distributed
(across both the images and the pixels) and is Gaussian with covariance�

2
�.

4.2 RECOGNITION-BASED PRIORS
The second term on the right-hand side of Equation (1.17) is (the nega-

tive logarithm of) the prior� lnP [xH ]. Usually the prior is chosen to be
a simple smoothness prior (Cheeseman et al., 1994; Schultz and Stevenson,
1996; Hardie et al., 1997; Elad and Feuer, 1997). Instead, we would like it to
depend upon the results of a set of recognition decisions. Suppose the outputs
of the recognition decisions partition the inputs (i.e. the low resolution input
imagesx(k)L ) into a set of subclassesfCk;l j l = 1; 2; : : :g: We then define a
recognition-based prioras one that can be written in the following form:

P [xH ] =
X
l

P [xH j x
(k)
L 2 Ck;l] � P [x

(k)
L 2 Ck;l]: (1.19)

Essentially there is a separate priorP [xH j x
(k)
L 2 Ck;l] for each possible par-

tition Ck;l of the input space. Once the low resolution input imagesx
(k)
L are

available, the various recognition algorithms can be applied, and it can be de-
termined which partition the inputs lie in. The recognition-based priorP [xH ]

then reduces to the more specific priorP [xH j x
(k)
L 2 Ck;l]. This prior can be

made more powerful than the overall prior because it can be tailored toCk;l.
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Figure 1.6 The Gaussian, Laplacian, and first derivative pyramids of an image of a face. (We
also use two second derivatives but omit them from the figure.) We combine these pyramids
into a single multi-valued pyramid, where we store a vector of the Laplacian and the derivatives
at each pixel. The Parent Structure vectorPSl(i; j) of a pixel (i; j) in the lth level of the
pyramid consists of the vector of values for that pixel, the vector for its parent in thel + 1th

level, the vector for its parent’s parent, etc (De Bonet, 1997). The Parent Structure vector is
therefore a high-dimensionalvector of derivatives computed at various scales. In our algorithms,
recognition means finding the training sample with the most similar Parent Structure vector.

4.3 MULTI-SCALE DERIVATIVE FEATURES

We decided to try to recognize generic local image features (rather than
higher level concepts such as ASCII characters) because we want to apply our
algorithm to a variety of phenomena. Motivated by (De Bonet, 1997), we also
decided to use multi-scale features. In particular, given an imagex, we first
form its Gaussian pyramidG0(x); : : : ; GN(x) (Burt, 1980). Afterwards, we
also form its Laplacian pyramidL0(x); : : : ; LN(x) (Burt and Adelson, 1983),
the horizontalH0(x); : : : ; HN(x) and verticalV0(x); : : : ; VN(x) first deriva-
tives of the Gaussian pyramid, and the horizontalH

2
0(x); : : : ; H

2
N(x) and ver-

ticalV 2
0 (x); : : : ; V

2
N(x) second derivatives of the Gaussian pyramid. (See Fig-

ure 1.6 for examples of these pyramids.) Finally, we form a feature pyramid:

Fj(x) =
�
Ll(x); Hl(x); Vl(x); H

2
l (x); V

2
l (x)

�
for l = 0; : : : ; N: (1.20)

The pyramidF0(x); : : : ;FN(x) is a pyramid where there are 5 values stored
at each pixel, the Laplacian and the 4 derivatives.

Then, given a pixel in the low resolution image that we are performing
super-resolution on, we want to find (i.e. recognize) a pixel in a collection
of training data that is locally “similar.” By similar, we mean that both the
Laplacian and the image derivatives are approximately the same, at all scales.
To capture this notion, we define the Parent Structure vector (De Bonet, 1997)
of a pixel(i; j) in thelth level of the feature pyramidF0(x); : : : ;FN(x) to be:
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Figure 1.7 We compute the feature pyramidsF0(x
(m)
T

); : : : ;FN (x
(m)
T

) for the training im-

agesx(m)
T

and the feature pyramidsFl(x
(k)
L

); : : : ;FN(x
(k)
L

) for the low resolution input images

x
(k)
L

. For each pixel in the low resolution images, we find (i.e. recognize) the closest matching
Parent Structure in the high resolution data. We record and output the best matching image
BI(k) and the pixel location of the best matching Parent StructureBP

(k). Note that these data
structures are both defined independently for each pixel(i; j) in each imagex(k)

L
.

PSl(x)(i; j) =�
Fl(x)(i; j);Fl+1(x)(

�
i

2

�
;

�
j

2

�
); : : : ;FN(x)(

�
i

2N�l

�
;

�
j

2N�l

�
):

�
(1.21)

As illustrated in Figure 1.6, the Parent Structure vector at a pixel in the pyramid
consists of the feature vector at that pixel, the feature vector of the parent of
that pixel, the feature vector of its parent, and so on. Exactly as in (De Bonet,
1997), our notion of two pixels being similar is then that their Parent Structure
vectors are approximately the same (measured by some norm.)

4.4 FINDING THE CLOSEST PARENT STRUCTURE

Suppose we have a set of high resolution training imagesx
(m)
T wherem =

1; 2; : : : ;M . We first form the feature pyramidsF0(x
(m)
T ); : : : ;FN(x

(m)
T ).

Also suppose that the input imagex(k)L is at a resolution that isq = 2l times
smaller than the training samples. (The image may have to be interpolated to
make this ratio exactly a power of 2.) We can then compute the feature pyra-
mid for the input image from levell and upwardsFk(x

(k)
L ); : : : ;FN(x

(k)
L ).

Figure 1.7 shows an illustration of this scenario forl = 2.
Independently for each pixel(i; j) in the inputx(k)L , we compare its Parent

Structure vectorPSl(x
(k)
L )(i; j)against all of the training Parent Structure vec-

tors at the same levell; i.e. we compare againstPSl(x
(m)
T )(i0; j0) for all m and

for all (i0; j 0). The best matching imageBI(k)(i; j) = m and the best matching
pixel BP(k)(i; j) = (i0; j0) are stored as the output of the recognition deci-
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sion, independently for each pixel(i; j) in x
(k)
L . (We found the performance

to be largely independent of the distance function used to determine the best
matching Parent Structure vector. We actually used a weightedL2-norm, giv-
ing the derivative components half as much weight as the Laplacian values and
reducing the weight by a factor of2 for each increase in the pyramid level.)

Recognition in our hallucination algorithm therefore means finding the clos-
est matching pixel in the training data in the sense that the Parent Structure
vectors of the the two pixels are the most similar. This search is, in general,
performed over all pixels in all of the images in the training data. If we have
frontal images of faces, however, we restrict this search to consider only the
corresponding pixels in the training data. In this way, we treat each pixel in
the input image differently, depending on its spatial location, similarly to the
“class-based” approach of (Riklin-Raviv and Shashua, 1999).

4.5 THE RECOGNITION-BASED GRADIENT PRIOR
For each pixel(i; j) in the input imagex(k)L , we have recognized the pixel

that is the most similar in the training data, specifically, the pixelBP
(k)(i; j)

in the lth level of the pyramid for training imagex(BI
(k)(i;j))

T . These recogni-
tion decisions partition the inputs into a collection of subclasses, as required
by the recognition-based prior described in Section 4.2. If we denote the sub-
classes byC

k;BP(k);BI(k) (i.e. using a multi-dimensional index rather thanl)
Equation (1.19) can be rewritten as:

P [xH ] =
X

BP
(k);BI(k)

P [xH j x
(k)
L 2 C

k;BP(k);BI(k) ] � P [x
(k)
L 2 C

k;BP(k);BI(k) ]

(1.22)
whereP [xH j x

(k)
L 2 C

k;BP(k);BI(k) ] is the probability that the super-resolution

image isxH , given that the inputsx(k)L lie in the subclass that will be recog-

nized to haveBP(k) as the best matching pixel in training imagex(BI
(k)(i;j))

T .

We now need to defineP [xH j x
(k)
L 2 C

k;BP(k);BI(k) ]. We decided to make
this recognition-based prior a function of the gradient because the base, or aver-
age, intensities in the super-resolution image are defined by the reconstruction
constraints. It is the high-frequency gradient information that is missing. So,
we want to define the prior to encourage the gradient of the super-resolution
image to be close to the gradient of the closest matching training samples.

Each low resolution input imagex(k)L has a (different) closest matching (Par-
ent Structure) training sample for each pixel. Moreover, each such Parent
Structure corresponds to a number of different pixels in the0th level of the
pyramid, (2l of them to be precise. See also Figure 1.7.) We therefore impose
a separate gradient constraint for each pixel(i; j) in the0th level of the pyra-
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mid (and for each input imagex(k)L .) The best matching pixelBP(k) is only
defined on thelth level of the pyramid. For notational convenience, therefore,
given a pixel(i; j) on the0th level of the pyramid, define the best matching
pixel on the0th level of the pyramid to be:

BP
(k)

(i; j) � 2l �BP(k)(

�
i

2l

�
;

�
j

2l

�
) + (i; j)� 2l � (

�
i

2l

�
;

�
j

2l

�
): (1.23)

Also define the best matching image asBI
(k)

(i; j)� BI(k)(
j
i
2l

k
;

j
j

2l

k
).

If (i; j) is a pixel in the0th level of the pyramid for imagex(k)L , the cor-

responding pixel in the super-resolution imagexH is
�
r
(k)
��1

( i
2l
;
j

2l
). We

therefore want to impose the constraint that the first derivatives ofxH at this
point should equal the derivatives of the closest matching pixel (Parent Struc-
ture) in the training data. Parametric expressions forH0(xH) andV0(xH) at�
r
(k)
��1

( i
2l
;
j

2l
) can easily be derived as linear functions of the unknown pix-

els in the high resolution imagexH . We assume that the errors in the gradient
values between the recognized training samples and the super-resolution im-
age are independently and identically distributed and moreover that they are
Gaussian with covariance�2r. Therefore:P [xH j x

(k)
L 2 C

k;BP(k);BI(k) ] =

1

2�2r

0
@X
i;j;k

�
H0(xH)(

�
r
(k)
��1

(
i

2l
;
j

2l
))�H0(x

BI
(k)

(i;j)
T )(BP

(k)
(i; j))

�2

X
i;j;k

�
V0(xH)(

�
r
(k)
��1

(
i

2l
;
j

2l
))� V0(x

BI
(k)

(i;j)
T )(BP

(k)
(i; j))

�21A :

(1.24)

This prior enforces the constraints that the gradient of the super-resolution im-
agexH should equal to the gradient of the best matching training image.

4.6 ALGORITHM PRACTICALITIES

Equations (1.17), (1.18), (1.22), and (1.24) form a high-dimensional lin-
ear least squares problem. The constraints in Equation (1.18) are the standard
super-resolution reconstruction constraints. Those in Equation (1.24) are the
recognition-based prior. The relative weights of these constraints are defined
by the noise covariances�2� and�2r. We assume that the reconstruction con-
straints are the more reliable ones and so set�

2
� � �

2
r.

The number of unknowns is equal to the number of pixels inxH . Inverting a
linear system of such a size can prove problematic. We therefore implemented
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a gradient descent algorithm using the standard diagonal approximation to the
Hessian (Press et al., 1992) to set the step size in a similar way to (Szeliski and
Golland, 1998). Since the error function is quadratic, the algorithm converges
to the (single) global minimum without any problem.

4.7 EXPERIMENTAL RESULTS ON HUMAN FACES

Our experiments for human face images were conducted with a subset of
the FERET dataset (Philips et al., 1997) consisting of 596 images of 278 indi-
viduals (92 women and 186 men). Most people appear twice, with the images
taken on the same day under similar illumination conditions, but with differ-
ent expressions (one expression is neutral, the other typically a smile.) A small
number of people appear 4 times, with the images separated by several months.

The images in the FERET dataset are256 � 384 pixels, however the area
occupied by the face varies considerably, but most of the faces are around96�

128 pixels or larger. In the class-based approach (Riklin-Raviv and Shashua,
1999), the input images (which are all frontal) need to be aligned so that we
can assume that the same part of the face appears in roughly the same part
of the image every time. This alignment was performed by hand marking the
location of 3 points, the centers of the two eyes and the lower tip of the nose.
These 3 points define an affine warp (Bergen et al., 1992), which was used to
warp the images into a canonical form. These canonical96�128 pixel images
were then used as the training samplesx

(m)
T wherem = 1; : : :596.

We used a “leave-one-out” methodology to test our algorithm. To test on
any particular person, we removed all occurrences of that individual from the
training set. We then trained the algorithm on the reduced training set, and
tested on the images of the individual that had been removed. Because this
process is quite time consuming, we used a test set of 100 randomly selected
images of 100 different individuals rather than the entire training set.

Comparison with Existing Super-Resolution Algorithms
We initially restrict attention to the case of enhancing24� 32 pixel images

four times to give96� 128 pixel images. Later we will consider the variation
in performance with the decimation ratio. We simulate the multiple slightly
translated images required for super-resolution using the FERET database by
randomly translating the original FERET images multiple times by sub-pixel
amounts before down-sampling them to form the low resolution input images.

In our first set of experiments we compare our algorithm with those of
(Hardie et al., 1997) and (Schultz and Stevenson, 1996). In Figure 1.8(a) we
plot the RMS pixel error against the number of low resolution inputs, computed
over the 100 image test set. (We compute the RMS error using the original high
resolution image used to synthesize the inputs from.) We also plot results for
cubic B-spline interpolation (which only uses one image) for comparison.
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Figure 1.8 A comparison of our hallucination algorithm with the reconstruction-based super-
resolution algorithms of (Schultz and Stevenson, 1996) and (Hardie et al., 1997). In (a) we
plot the RMS pixel intensity error computed across the 100 image test set against the number
of low resolution input images. Our algorithm outperforms the the traditional super-resolution
algorithms across the entire range. In (b) we vary the amount of additive noise. Again we find
that our algorithm does better than the traditional super-resolution algorithms.

(a) Input24� 32 (b) Hallucinated (c) Hardieet al. (d) Original

(d) Input24� 32 (e) Hallucinated (f) Hardieet al. (g) Original

Figure 1.9 The best and worst results in Figure 1.8(a) in terms of the RMS error of the hallu-
cination algorithm for 9 input images. In (a)–(d) we display the results for the best performing
image in the 100 image test set. The results for the worst image are presented in (e)–(g). (The
results for Schultz and Stevenson are similar to those for Hardieet al. and are omitted.) There
is little difference in image quality between the best and worst hallucinated results.
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(a) Std. Dev. 2.0 (b) Std. Dev. 4.0 (c) Std. Dev. 8.0 (d) Std. Dev. 16.0

Figure 1.10 An example from Figure 1.8(b) of the variation in the performance of the halluci-
nation algorithm with additive zero-mean, white Gaussian noise. As can be seen, the output is
hardly affected until around 4-bits of intensity noise have been added to the inputs. The reason
the hallucination algorithm is so robust to noise it that it uses the strong recognition-based face
prior to generate smooth, face-like images however noisy the inputs are.

In Figure 1.8(a) we see that our hallucination algorithm does outperform
the reconstruction-based super-resolution algorithms, from one input image to
25. The improvement is consistent across the number of input images and is
around 20%. The improvement is also largely independent of the actual input.
In particular, Figure 1.9 contains the best and worst results obtained across the
entire test set in terms of the RMS error of the hallucination algorithm for 9
low resolution inputs. As can be seen, there is little difference between the best
results in Figure 1.9(a)–(d) and the worst ones in (e)–(g). Notice, also, how the
hallucinated results are a dramatic improvement over the low resolution input,
and moreover are visibly sharper than the results for Hardieet al..

Robustness to Additive Intensity Noise
Figure 1.8(b) contains the results of an experiment investigating the robust-

ness of the 3 super-resolution algorithms to additive noise. In this experiment,
we added zero-mean, white Gaussian noise to the low resolution images be-
fore passing them as inputs to the algorithms. In the figure, the RMS pixel
intensity error is plotted against the standard deviation of the additive noise.
The results shown are for 4 low resolution input images, and again, the re-
sults are an average over the 100 image test set. As might be expected, the
performance of all 4 algorithms gets much worse as the standard deviation
of the noise increases. The hallucination algorithm and cubic B-spline inter-
polation, however, seem somewhat more robust than the reconstruction-based
super-resolution algorithms. The reason for this increased robustness is proba-
bly that the hallucination algorithm always tends to generate smooth, face-like
images (because of the strong recognition-based prior) however noisy the in-
puts are. One example of how the hallucination algorithm degrades with the
amount of additive noise is presented in Figure 1.10.
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Input 48� 64 24� 32 12� 16

Output �2 �4 �8

Reduction in 77% 56% 57%

RMS error vs.

cubic B-spline (9.2 vs. 11.9) (12.4 vs. 22.2) (19.5 vs. 33.9)

Figure 1.11 The variation in the performance of our hallucination algorithm with the input
image size. We see that the algorithm works well down to12 � 16 pixel images. It begins to
break down for6� 8 pixel images. See (Baker and Kanade, 1999) for examples.

Variation in Performance with the Input Image Size
We do not expect our hallucination algorithm to work for all sizes of input.

Once the input gets too small, the recognition decisions will be based on es-
sentially no information. In the limit that the input image is just a single pixel,
the algorithm will always generate the same face (for a single input image),
but with different average grey levels. We therefore investigated the lowest
resolution at which our hallucination algorithm works reasonable well.

In Figure 1.11 we show example results for one face in the test set for 3
different input sizes. (All of the results use just 4 input images.) We see that
the algorithm works reasonably well down to12� 16 pixels. (For6� 8 pixel
images it produces a face that appears to be a pieced-together combination of
a variety of faces. See (Baker and Kanade, 1999) for examples.)

In the last row of Figure 1.11, we give numerical results of the average
improvement in the RMS error over cubic B-spline interpolation (computed



Super-resolution: Limits and Beyond 23

(a) Input12� 16 (b) Hallucinated (d) Original (e) Cubic B-spline

Figure 1.12 Selected results for12 � 16 pixel images, the smallest input size for which our
hallucination algorithm works reliably. (The input consists of only 4 low resolution input im-
ages.) Notice how sharp the hallucinated results are. See (Baker and Kanade, 1999) for the
results of (Hardie et al., 1997) which are omitted due to lack of space.
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Cropped Cubic B-spline Hallucinated

Figure 1.13 Example results on a face not in the FERET dataset. The facial features, such as
eyes, nose, and mouth, which are blurred and unclear in the original cropped face, are enhanced
and appear much sharper in the hallucinated image. The cubic B-spline result is overly smooth.

over the 100 image test set.) We see that for24� 32 and12� 16 pixel images,
the reduction in the error is very dramatic. It is roughly halved. For48 � 64

pixel images, the RMS is only cut by about 25% because cubic B-spline does
so well it is hard to do much better.

The results for the12�16 pixel image are excellent, however. (Also see Fig-
ure 1.12 which contains several more examples.) The input images are barely
recognizable as faces and the facial features such as the eyes, eye-brows, and
mouths only consist of a handful of pixels. The outputs, albeit slightly noisy,
are clearly recognizable to the human eye. The facial features are also clearly
discernible. The hallucinated results are also a huge improvement over (Hardie
et al., 1997) and (Schultz and Stevenson, 1996). See (Baker and Kanade, 1999)
for these results which are omitted due to a lack of space.

Results on Non-FERET Test Images
In our final experiment for human faces, we tried our algorithm on an image

not in the FERET dataset. The results in Figure 1.13 give a big improvement
over the cubic B-spline interpolation algorithm. The facial features, such as
the eyes, nose, and mouth are all enhanced and appear much sharper in the
hallucinated result that either in the input or in the interpolated image.
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(a) Miscellaneous (b) Hallucinated (c) Constant (d) Hallucinated

Figure 1.14 The results of applying our algorithm to images not containing faces. (We have
omitted the low resolution input and just display the high resolution one.) A face is hallucinated
by our algorithm even when none is present, hence the term “hallucination.”

Results on Images Not Containing Faces
In Figure 1.14 we briefly present a few results on images that do not contain

faces, even though the algorithm has been trained on the FERET dataset. (Fig-
ure 1.14(a) is a miscellaneous image and Figure 1.14(c) is a constant image.)
As might be expected, our algorithm hallucinates an outline of a face in both
cases, even though there is no face in the input. This is the reason we called
our algorithm a “hallucination algorithm.”

4.8 EXPERIMENTAL RESULTS ON TEXT DATA
We also applied our algorithm to text data. In particular, we grabbed an

image of an window displaying one page of a letter and used the bit-map as the
input. The image was split into disjoint training and test samples. The results
are presented in Figures 1.15. The input in Figure 1.15(a) is half the resolution
of the original in Figure 1.15(f). The hallucinated result in Figure 1.15(c) is the
best reconstruction of the text, both visually and in terms of the RMS intensity
error. For example, compare the appearance of the word “was” in the second
sentence in Figures 1.15(b)–(f). The hallucination algorithm also has an RMS
error of only 24.5 grey levels, compared to over 48.0 for the other algorithms.

5. SUMMARY

In the first half of this chapter we showed that the super-resolution recon-
struction constraints provide less and less useful information as the decimation
ratio increases. The major cause of this phenomenon is the spatial averaging
over the photosensitive area; i.e. the fact thatS is non-zero. The underlying
reason that there are limits on reconstruction-based super-resolution is there-
fore the simple fact that CCD sensors must have a non-zero photosensitive area
in order to be able to capture a non-zero number of light photons.
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(a) Input Image. (Just one image is used.)

(b) Cubic B-spline, RMS Error 51.3

(c) Hallucinated, RMS Error 24.5x

(d) Schultz and Stevenson, RMS Error 48.4

(e) Hardieet al., RMS Error 48.5

(f) Original High Resolution Image

Figure 1.15 The results of enhancing the resolution of a piece of text by a factor of 2. Our
hallucination algorithm produces a clear, crisp image using no explicit knowledge that the input
contains text. In particular, look at the word “was” in the second sentence. The RMS pixel
intensity error is also almost a factor of 2 improvement over the other algorithms.
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Our analysis assumes quantized noiseless images; i.e. the intensities are
8-bit values, created by rounding noiseless real-valued numbers. (It is this
quantization that causes the loss of information, which when combined with
spatial averaging, means that high decimation ratio super-resolution is not pos-
sible from the reconstruction constraints.) Without this assumption, however,
it might be possible to increase the number of bits per pixel by averaging a col-
lection of quantized noisy images (in an intelligent way). In practice, taking
advantage of such information is very difficult. This point also does not affect
another outcome of our analysis which was to show that reconstruction-based
super-resolution inherently trades-off intensity resolution for spatial resolution.

In the second half of this chapter we showed that recognition processes may
provide an additional source of information for super-resolution algorithms.
In particular, we developed a “hallucination” algorithm and demonstrated that
this algorithm can obtain far better results than existing reconstruction-based
super-resolution algorithms, both visually and quantitatively.

6. DISCUSSION

In the past 10-15 years or so much of the research on super-resolution has
focused on the reconstruction constraints, and various way of incorporating
simple smoothness priors to allow the constraints to be solved. It is a major
accomplishment that most of this area is now fairly well understood. This does
not mean that super-resolution is now a “solved” problem. As we have shown
in this chapter, simply writing down the reconstruction constraints, adding a
smoothness prior, and solving the resulting linear system does not necessarily
mean that a good solution will be found. There are therefore a number of wide
open areas for future super-resolution research:

One such area involves conducting detailed analysis of the reconstruc-
tion constraints, when they provide additional information, how much
additional information they provide, and how sensitive the information
is to the signal to noise ratio of the input images. Some preliminary work
has been done in this area, including (Elad and Feuer, 1997; Shekar-
foroush, 1999; Qi and Snyder, 2000; Baker and Kanade, 2000b). How-
ever, many issues are still a long way from being fully understood.

Much of the work on super-resolution assumes a fairly simple image
formation model. For example, there is almost no modeling of the effect
of non-Lambertian surfaces and varyingillumination. As a result, many
algorithms (including the one described in this chapter) are very sensitive
to illumination effects such as shadowing. Although some illumination
invariant super-resolution algorithms have been proposed (Chiang and
Boult, 1997), much more work remains to be done.
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In the second half of this chapter we proposed a hallucination algorithm.
This algorithm is an instance of a model-based algorithm. Other exam-
ples include (Edwards et al., 1998; Freeman and Pasztor, 1999; Baker
and Kanade, 2000a). These approaches appear very promising, however
the area of model-based super-resolution is in its infancy and a great deal
of work remains to be done for completely exploit the idea.

Other areas which have been largely overlooked include the investiga-
tion of applications of super-resolution and the evaluation of the util-
ity of super-resolution algorithms for those applications. There are two
types of applications: (1) those where the enhanced image will be shown
to a human, and (2) those where the enhanced image will be further pro-
cessed by a machine. The evaluation of these two types of applications
will be very different. The first will need to be done using rigorous
subjective studies of how humans can make use of the super-resolution
images. The second use of super-resolution is best evaluated in terms
of the performance of the algorithms that will actually use the enhanced
images. Both of these areas have barely been touched, even though they
are vital for proving the utility of super-resolution as a whole.
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