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Abstract I 

This report is a summary of the results obtained from a large scale empirical comparison of seven iterative 
and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets 
of problem classes which are commonly explored in genetic algorithm literature, are exumined. The search 
spaces in these problems range from Z3Oo to 22040. The results indicate that using standard genetic algo- 
rithms for the optimization of staticfunctions does not yield a benefit, in terms of thefinal answer obtained, 
over simpler optimization heuristics. 

1. Introduction 

Genetic algorithms (GAS) and other evolutionary procedures are commonly used for static function 
optimization. Despite growing evidence that methods such as GAS are, in general, not well suited in this 
domain [De Jong, 19931, a large amount of research has been devoted to improving their effectiveness for 
function optimization. Hybrid mechanisms, such as specialized operators and representations which can 
intelligently use problem specific information, have achieved good results in specific applications. None- 
theless, relatively few of these techniques work well across a wide range of problems. 

This study aims at addressing only one question: “How effective are standard GAS for optimizing 
static functions, given a set number of function evaluations, in comparison to other, simpler, algorithms?” 
The algorithms to which GAS are compared are multiple-restart stochastic hillclimbing (MRSH) and pop- 
ulation-based incremental learning (PBIL). A total of three variants of MRSH, two variants of PBIL, and 
two GAS are compared. These optimization heuristics are compared on problems which are representative 
of those commonly attempted in GA literature. 

It is important to understand the scope of these results. All of the empirical comparisons are based 
upon static function optimization problems. The performance of each method is judged solely by the best 
solution found during the run, given a pre-specified number of total evaluations. In an attempt to minimize 
the effects of hand-coding/tuning of the algorithms and problem representations, the algorithms are used 
with as little problem-specific knowledge as possible. The only problem-specific knowledge used in these 
algorithms is the number of bits in the solution encoding for each of the problems. 

2. Algorithms Compared 

The parameters for all of the algorithms were chosen to work well on many of the problems, but are 
not biased to any single problem. Additionally, the GAS were selected to perform well on the task of opti- 



mization: they use me’chanisms such as elitist selection and scaling of fitness values (described below), 
which are often useful for the optimization of static functions [De Jong, 19931. 

2.1 Genetic Algorithms 

In the standard GA, candidate solutions are encoded as fixed length binary vectors. The initial group 
of potential solutions is chosen randomly. These candidate solutions, called “chromosomes,” evolve over a 
number of generations. At each generation, the fitness of each chromosome is calculated; this is a measure 
of how well the chromosome optimizes the objective function. The subsequent generation is created 
through a process of selection, recombination, and mutation. The chromosomes are probabilistically 
selected for recombination based upon their fitness. General recombination (crossover) operators merge 
the information contained within pairs of selected “parents” by placing random subsets of the information 
from both parents into thefr respective positions in a member of the subsequent generation. Although the 
chromosomes with high fitness values have a higher probability of selection for recombination than those 
with low fitness values, they are not guaranteed to appear in the next generation. Due to the random factors 
involved in producing “children” chromosomes, the children may, or may not, have higher fitness values 
than their parents. Nevertheless, because of the selective pressure applied through a number of genera- 
tions, the overall trend is towards higher fitness chromosomes. Mutations are used to help preserve diver- 
sity in the population by introducing random changes into the chromosomes. Detailed discussions of GAS 
can be found in [Goldberg, 19891 [De Jong, 19751 [Holland, 19753. 

Two variants of the standard GA are tested in this study. The first, SGA, has the following parameters: 
Two-Point crossover, with a crossover rate of 10096, mutation rate of 0.001, population size of 100, and 
elitist selection (the best chromosome in generation N replaces the worst chromosome in generation N+l). 
The second GA used, termed GA-Scale, uses the same parameters with the following exceptions: uniform 
crossover with a crossover rate of 80%, and the fitness of the worst member in a generation is subtracted 
from the fitnesses of each member of the generation before the probabilities of selection are determined. 
Both GAS are generational, and both employ the elitist selection mechanism described above. 

2.2 Multiple-Restart Stochastic Hillclimbing 

Three variants of Multiple-Restart Stochastic Hillclimbing (MRSH) are explored in this paper. In each 
of these variants, the initial point is chosen randomly, see Figure 1. The first version, MRSH- 1, maintains a 
list of the position of the bit flips which were attempted without improvement. These bit flips are not 
attempted again until a better solution is found. When a better solution is found, the list is emptied. If the 
list becomes as large as the solution encoding, MRSH-I is restarted at a random location with an empty 
list. MRSH-2 and MRSH-3 allow moves to regions of higher and equal evaluation. This is different than 
MRSH-1, which only allows moves to regions of higher evaluation. In MRSH-2, the number of evalua- 
tions before restart depends upon the length of the encoded solution. MRSH-2 allows lO*(length of solu- 
tion) evaluations without improvement before search is restarted. When a solution with a higher evaluation 
is found, the count is reset. In MRSH-3, after the total number of iterations is specified, restart is forced 5 
times during search, at equally spaced intervals. 

2.3 Population-Based Incremental Learning L 

Population-based incremental learning (PBIL) is a combination of evolutionary optimization and arti- 
ficial neural network learning [Baluja, 19941. The object of the algorithm is to create a real valued proba- 
bility vector which, when sampled, reveals high quality solution vectors with high probability. For 
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V t randomly generate solution vector 
Best t evaluate (V) 

loop # ITERATIONS 
N t Flip-Random-Bit (V) 
if (evaluate (N) > Best) 

r-- 
Best t evaluate(N) 
V c N  

Flip-Random-Bit is a function which returns a solution string with only one bit changed from its input solution string. 

Figure 1: General MRSH for binary solution vectors. The best vector and its evaluation can be saved. In 
practice, the algorithm can be restarted in random locations, and the best solution ever found returned. 

Initialize Probebility Vector ***** *... t. 
for i :=1 to LENGTH do P[i] = 0.5; 

while (NOT termination condition) 
***** Generate Samples ***** 

for i :=1 to SAMPLES do 
sample-vectors[i] := generate-sample-vector-according-togrobabilities (P); 
evaluations[i) := evaluate(sample_vectotorr[il); 

best-vector := find-vector-with-best-evaluation (sample-vectors, evaluations); 
worst-vector := find-vector-with-worst-evaluation (sample-vectors, evaluations); 

***** Update Probability Vector Towards Best Solution ***** 
fori :=1 to LENGTH do 

P[i] := P[i] (1.0 - LR) + best-vectofli] (LR); 

***** Update PnAxWty Vector Away trom Worst Soidon ..." 
for i :=l to LENGTH do 

I f  (best_vectoro f worst_-) then 
RiJ := (1 .O - NEGATIVE-LR) + be&- (NEGATIVE-LR); 

*****Mutate Probability Vector ***** 
for i :=1 to LENGTH do 

if (random (0,l) e MUT-PROBABILITY) then 
if (random (0,l) > 0.5) then mutate-direction := 1 
else mutate-direction := 0; 
P[i] := P[i] (1.0 - MUT-SHIFT) + mutate-direction (MUT-SHIFT); 

~~ 

PBIL: USER DEFINED CONSTANTS (Values Used in this Study): 
SAMPLES: the number of vectors generated before update of the probability vector (100). 
LR: the learning rate, how fast to exploit the search performed (0,l). 
NEGATIVE-LR: negative learning rate, how much to learn from negative examples (PBILl=O.O, PBIL2= 0.075). 
LENGTH: the number of bits in a generated vector (problem specific). 
MUT-PROBABILIP(: the probability for a mutation occurring in each position (0.02). 
MUT-SHIFT: the mount a mutation alters the value in the bR position (0.05). 

Figure 2: The PBILl/PBIL2 algorithm for a binary alphabet. Only PBIL2 includes shaded region. 

example, if a good solution can be encoded as a string of alternating 0's and l's, a suitable final probability 
vector would be 0.01,0.99,0.01,0.99, etc. The exact algorithm and parameters are shown in Figure 2. The 
relationship between PBIL and GAS is described in [Baluja and Caruana, 19951, see also [Juels, 19961. 



3. A LARGE-SCALE EMPIRICAL COMPARISON 

In this section, the algorithms described previously are applied to six classes of problems: Traveling 
Salesman, jobshop scheduling, knapsack, bin packing (cutting stock), neural network weight optimization, 
and numerical function optimization. The results obtained in this study should not be considered to be 
state-of-the-art. The problem encodings were chosen to be easily reproducible, and to allow easy and fair 
comparison with other studies. Alternate encodings may yield superior results. In addition, no problem- 
specific information was used for any of the algorithms. Problem-specific information, when available, 
could help all of the search algorithms examined in this study. 

In the problems presented in this paper, all of the variables were encoded either with Gray-code or 
standard base-2 representation, as indicated with the problem. The variables were represented in non-over- 
lapping, contiguous regions within the chromosome (solution encoding). The results reported are the best 
evaluations found througbthe search of each algorithm, averaged over at least 20 independent runs per 
algorithm per problem; the results for GA-SCALE and PBIL2 algorithms are the average of at least 75 
runs. In the problems in which random values are assigned to problem attributes (such as the location of 
cities in the Traveling Salesman Problems or sizes of elements in the bin packing problems), the values are 
consistent across all algorithms attempted and across all 20 trials for each algorithm. 

All algorithms were allowed 200,000 evaluations per run. In each run, the GA and PBIL algorithms 
were given 2000 generations, with 100 function evaluations per generation. In each run, the MRSH algo- 
rithms were restarted in random locations as many times as needed until 200,000 evaluations were per- 
formed. The best answer found in the 200,000 evaluations was returned as the answer found in the run. 

Unfortunately, due to space limitations, the encodings for each of the problems cannot be given here; 
they are described in detail in [Baluja, 19951. Brief notes about the encodings are given below, to help 
understand Table I, in which the reluiive results are provided. Exact results are provided in [Baluja, 19951. 

To measure the significance of the difference between the results obtained by PBIL2 and GA-SCALE, 
the Mann-Whitney test is used. This test is a non-parametric equivalent of the standard two-sample pooled 
t-test. Results are shown in the last column of Table I. 

TSP: 128, 200 & 255 city problems were tried. The “sort” encoding, described in [Syswerda, 19891, was used. In 
this encoding, each city is assigned log2 (#Cities) bits. The city with the smallest value is first in the tour, the city with 
the second smallest is second, etc. The last problem was tried with the encoding in binary and Gray-Code. 

Jobshop: Two problems were tried with two encodings, the standard 10x10 and 20x5 [Muth & Thompson, 19631. The 
first encoding is described in [Fang er. al, 19931. The second encoding is described in [Baluja, 19951. An additional, ran- 
domly generated, problem was also tried with the second encoding. 

Knapsack: In the first two problems, a unique element is represented by each bit. When a bit is set to 1, the corresponding 
element is included. In the third and fourth problems, there are 100 and 120 unique elements, respectively. However, 
there are 8 and 32 copies of each element. The number of elements of each type which are included in the solution is 
determined by interpreting an associated bit string, length 3 (log28) bits and 5 flog232) bits, into decimal, respectively. 

Bin-PackinglCutting Stock The solution is encoded in a bit string of length M * log2N (N bins, M elements). Each ele- 
ment to be packed is assigned a sequential substring of length log2N whose value indicates the bin to place the element. 

Neural-Network Weight Optimization: In the first two tests, the object was to identify the parity of 7 inputs. The inputs 
were either 0 (represented by -0.5) or 1 (represented by 0.5). The evaluation was the sum of squares error on the 128 
training examples. The network was fully connected between sequential layers. In the second two tests, eight real valued 
inputs were used. Two inputs represent the coordinates of a point within a square with upper left comer (ULC) of (-1.0, 
1 .O) and lower right comer (LRC) of (1 .O, -1 .O). The task was to determine whether the point fell into a square region 
between ULC(-O.75,0,75), and LRC (0.75,-0.75) and outside a smaller square with ULC (-0.35,0,35), and LRC (0.35.- 
0.35). 5 inputs contained random noise in the region [-1:+1]. 100 uniformly distributed examples were used. In total, 



both networks had 8 inputs (including bias unit), 5 hidden units, and 1 output; this created 46 connections. 

Numerical Function Optimization: In the first and second problems, the variables in the first portions of the solution 
string have a large influence on the quality of the rest of the solution; small changes in their values can cause large 
changes in the evaluation of the solution. In the third problem, each variable can be set independently. The second prob- 
lem has more solutions than the first. Again, the exact problems can be found in [Baluja, 19951. 

Table I: Summary of Empirical Results - Ranks (l=best, 7=worst). 

4. Summary 

This paper has presented results on many problems. From these, it is evident that algorithms which are 
simpler than standard GAS can perform comparably to GAS, on both small and large Woblems. Other stud- 
ies have also shown this for various sets of problems [Juels & Wattenberg, 1994][Forrest & Mitchell, 
1993][Mitchell et al., 19941, etc. In studies analyzing the performance of GAS on particular problems, 
these results suggest that analyses should include comparisons not only to other GAS, but also to other sim- 
pler methods of optimization before a benefit is claimed in favor of GAS. This study did not include tech- 

$ 



I 

niques such as Simulated Annealing or Tabu Search, which should be included in the future. 
It is interesting to note that the PBIL algorithm, which does not use the crossover operator, and rede- 

fines the role of the population to one which is very different than that of a GA, outperforms the GAS on 
the majority of the problems. PBIL and GAS both generate new trials based on statistics from a population 
of prior trials. The PBIL algorithm explicitly maintains these statistics, while the GA implicitly maintains 
them in its population. The GA extracts the statistics by the selection and crossover operators. Compari- 
sons between the two algorithms can be found in [Baluja & Caruana, 19951. 

A GA with different mechanisms, such as non-stationary mutation rates, local optimization heuristics, 
parallel subpopulations, specialized crossover, or larger operating alphabets, may perform better than the 
GAS explored here. It should be noted, however, that all of these extensions, with the exception of special- 
ized crossover operators, can be used with PBIL with few, if any, modifications. 

It is incorrect to say that one procedure will always perform better than another. It has been shown that 
the average expected perfchance of all black-box optimization procedures is the same when all possible 
problems are considered [Wolpert & Macready, 19941. Therefore, the results presented in this paper must 
be taken with caution. The results do not indicate that PBIL will always outperform a GA. Rather, the 
mults indicate that algorithms, like PBIL, which are much simpler than even the simplest GAS, can out- 
perform standard GAS on many problems of interest. 
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