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Abstract 

Computer vision systems for recognition include both the extraction of features and the matching of those features 
with a known model. Traditionally, the most time consuming step has been feature extraction, but new parallel 
architectures are removing the bottleneck at this level. Once features have been exuacted from an image 
considerable geometric search is still necessary to form relationships between the extracted features and to match 
those features and feature aggregates with a model. One can take advantage of certain constraints about the 
appearance of an object, but with complex images or multiple models intensive processing is still required. We have 
developed some algorithms for doing these geometric search operations in parallel on iWarp, a long linear array of 
VLSI processing elements currently being designed by Carnegie Mellon and Intel Corporation. We have simulated 
a system which uses these algorithms to do an object recognition task (after low-level vision) almost completely on 
a 72 processor iWarp array. An analysis of this system indicates a speedup by a factor of roughly 100 to 250 over a 
sequential version running on a VAX 8650. 
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1. Introduction 
A common paradigm for computer vision recognition systems, which was originally used by Roberts [lo] is: 

1. Extract features from an image. 

2. Use partial feature matches to constrain possible model matches. 

3. Match image features with model features, and report most likely matches. 

Because of the size of images, traditionally most of the processing time is spent in the first step. However, 
because of the independence of the feature extraction process across the image, it is relatively easy to use fast 
parallel computers to speed up this step [7]. Once this is done, the second and third steps dominate the processing 
time. The characteristics of this part of the vision problem which make it slow are that it involves forming and 
testing combinations of image features as well as requiring geometric processing on these features. If we can use 
parallelism to speed up these steps, we can afford to do more of this type of processing, and build more robust vision 
systems, or we can develop vision systems that are as reliable as those we have now, but much faster. 

We are studying the use of systolic processors at this level. We believe the pipelining effect of systolic arrays 
provides a powerful and ~tura l  programming model for these steps. In this paper we will focus on a particular 
computer vision algorithm, used for a bin-picking task in which a single object model is matched with an image to 
determine the orientation of an object in a bin of identical objects. This algorithm exhibits the characteristics of 
object recognition algorithms we discussed above. Our study of this task helps give insight into this level of vision 
in general. We mapped this algorithm onto a long systolic array, consisting of 72 iWarp cells. iWarp is a VLSI 
implementation of Warp, a systolic a m y  developed at Camegie Mellon and General Electric [l, 2,3], where each 
cell of Warp is implemented by a single iWaxp chip. Our simulation results give speedup estimates of a factor of 
roughly 100 to 250 over the VAX 8650 implementation of the algorithm. 

2. An object recognition system 
Although it is not the primary focus of this paper, we describe in some detail the sequential object recognition 

system we studied. Tetsuo Koezuka and Take0 Kanade developed this system [8] while Koezuka was visiting 
Camegie Mellon in 1986. The task is to find the most likely match (Viewing position) of a single known polyhedral 
object model in an image which may contain several instances of the object. Koezuka and Kanade's system uses a 
pre-compilation technique [6] that greatly reduces the amount of work required when a potential match is compared 
between the object and the model. A CAD model of the object is constructed, and 2D shape data for many different 
views (distributed regularly over a sphere) are generated. In each view, the visible line segments are stored, and are 
used in the matching step. ("here is no attempt to choose just those views that show different collections of image 
lines.) The system was tested using an Lshaped block model and real images. In this system relationships between 
lines, such as angles and distances, are pre-compiled and are used to narrow down the search of the possible viewing 
directions. By drastically reducing the total number of matching trials, this technique gives good performance: in 
the VAX 8650 implementation, a complete match of an image took only 5 seconds. Figure 2-1 shows the model 
tested, and an example image and corresponding output from the system. 

Like many systems of this sort, the matching between the image and the model is done on the basis of a feature 
that has already been extracted fiom the image. Koezuka and Kana& used lines because they assumed their objects 
were industrial parts which include a great'many flat surfaces and straight edges. Additional assumptions made in 
this system are that the distance between the camera and the object is known @resumably because the object is lying 
on a known surface) and the camera is distant enough &om the object that scaled orthographic projection can be 
assumed. 

In Koezuka and Kanade's system impossible matches of lines in the image with lines in the model are discarded 
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Figure 2-1: General flow-chart for Koczuka and Kanade's recognition system [8] 

as soon as possible. This is a common technique, and it is important to be able to take advantage of it in a parallel 
implementation. Table 2-1 shows results for a number of images. It gives the major result of Koezuka and 
Kanade's work, which is the enormous reduction in the number of matches with filtering; the ratio is from IO8 to 
10". No conceivable parallel machine could make up for this large a factor reduction in the number of matches; 
therefore, it is very important that we structure the parallel implementation so as to take advantage of this reduction. 
We cannot simply propose to build a machine which does the recognition by considering every possible match in 
parallel 151. 
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Matching proceeds in several steps: 
1. Parallel lines. Parallel lines are found in the image. 

2. Distance-length condition. Parallel image lines are matched with the model. Under scaled 
orthographic projection, given the distance between the object and the camera, it is known that the 
image lines must appear to be no farther apart than the matching lines. Similarly, the length of the 
image lines must be less than or equal to the matching model lines. These constraints are used to fdter 
the match. 

3. Orientation condition. Two pairs of parallel image lines are matched with two pairs of parallel 
model lines. Constraints on the angles between the pairs are used to filter the match. 

4. Verify. Given the match from parallel pairs match, we compute the possible viewing directions of the 
model. If there are no possible viewing directions, the match is rejected. 

5. Matching. AU the line segments in the pre-compiled 2D shape data from the determined viewing 
direction are matched with corresponding line segments in the image. The 2D shape with the largest 
matching degree is selected as the result. 

We have shown the flow of data via these steps because we will be elaborating on them later in the paper. In the 
actual Koezuka and Kanade implementation, which was optimized for speed, the different steps are merged and 
structured as follows: 

for each image line A 
for each image line B 

if A and B are parallel 
for each model line pair (C,D) which 

can appear to be parallel in the scene 
if (A,B) and (C,D) can match 

This is a natural programming style in a language such as C. In our parallel implementation the series of nested 
for and if statements are replaced by a series of stages, most of which generate combinations of data objects and 
filter them. These different steps can be done in parallel by mapping them onto different groups of processors. As 
background for understanding the mapping, in the next section we describe the hardware we are using. 

3. A VLSI Systolic Array Machine 

Camegie Mellon and Intel Corporation. It differs in several ways from the Warp machine: 
The iWarp machine is a reimplementation of the Warp machine in VLSI. The machine is being designed by 

0 More total computing power: a 72 cell iWarp machine (the baseline machine) will have 1.1 to 1.4 
GFLOPS power, versus 100 MFLOPS for Warp. 

More general computational model: the floating point units on the cells have no pipeline delays. There 
is also a general purpose ALU for address computation. These two changes will make it possible to 
write complicated algorithms that use complex data structures. 

0 Larger array: the iWaxp baseline machine has 72 cells, versus 10 for Warp. This implies the need for 
software tools to aid the programmer in distributing his program. 

0 More memory: each cell has 64K words of memory in the baseline machine, four times the amount in 
Warp. This enables us to store larger images than in the past on one cell for applications where the 
whole image is needed locally. 

Flexible I/O model: there is hardware support for communication in parallel with computation. While 
the baseline iWarp machine is st i l l  a linear array, this hardware support allows distant cells to 
communicate without the intervention of intermediate cell’s computational units. 

The size, power, and cost of the iWarp machine are expected to be within a factor of two of the Warp machine. 
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The most significant change in programming model between Warp and iWarp is the flexible I/O model. In this 
model, different cells communicate via “messages” which pass through intermediate cell’s communication units, 
but a~ not seen by the computation units. Once a message is created, it defines a point-to-point communication 
pathway through which “blocks” of data may be sent. These blocks may be read and processed a word at a time, or 
they may be stored into memory by a background process for later processing. 

An extension to this model allows multiple cells to communicate using the same message. A cell may open a 
connection in a message in which it is not a termination point, but rather an intermediate stop. Once this is done, a 
cell can read blocks of data hom the message, write blocks of data, and redirect blocks on to other cells sharing the 
same message. This extension is important because it reduces the number of point-to-point communications which 
are necessary; by time-multiplexing a message, the hardware cost of suppoa for messages can be reduced. 

The general communication between arbitrary cells is important to effectively use the large iWarp array, and will 
be used extensively in our mapping of the object recognition system onto the array. Now that we have described 
communication mechanisms at the hardware level, we will explain communications usage at the software level. 

3.1. Models of computation on iWarp 
There are several models of computation in use on iWarp, which we discuss in this paper. These models are 

useful guidelines for a programmer using the machine, as well as for building programming tools which incorporate 
the models automatically. Some of these models have been defined previously [9]. We will be using all  but the fmt 
model in our mapping of Koezuka and Kanade’s algorithm. Refer to Figures 3-1 and 3-2. 

1. In pipelined computation, the classic systolic array model, the algorithm is broken down into neariy 
identical stages, each cell doing one stage of the Computation. Each cell communicates with its 
immediate neighbor, passing intermediate results along the way, with h a l  results emerging h m  the 
rightmost cell. This model is used for regular computations such as convolution, fast Fourier 
transform, and dynamic programming. 

2. In output partitioning each cell computes p d a l  results on all the input data, but in this case the partial 
results are independent, i.e. each cell computes part of the set of outputs, but needs to see all of the 
inputs. This model is used for global operations in which each output can depend on any input, such 
as image warping and Hough transform. 

3. In input partitioning the input is divided up among the cells; input sent to a particular cell is processed 
only at that cell. This model is used for non-regular local operations, such as edge detection and 
smoothing, and has been implemented as the Apply programming model [7]. It has been used 
extensively on Warp for image processing. 

4. Addressed input computation is a special form of input partitioning where the cell to which a data item 
is sent is determined at run time. One can think of the destination of the datum as its address. This 
model is supported only on iWarp, not Warp, and is used to partition a problem among cells without 
the overhead of having the receiving cells do the partitioning themselves. 

5 .  In multi-function pipelined computation there are two or more blocks of cells computing with one of 
the models above, and the output of one block is used as the input to the next. This model has been 
used in Warp, for example, to compute the histogram of an image in one stage, and apply a translation 
table in a later stage. This model will be more important in iWarp, where the long linear array forces 
the use of multiple functions to utilize the array efficiently. 

4. Intermediate-Level Vision on a Systolic Array 
Intermediate-level vision differs in important ways from low-level vision: 

0 All operations are global, any input can affect any output. In contrast, in low-level image processing, 
such as edge detection, the result of an edge detection at a pixel depends only on a corresponding 
window around the input. 
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Figure 3-1: Some computation models on i W q  

The data size grows and shrinks during the processing, as combinations are generated and discarded. 
Moreover, this growing and shrinking is data dependent, and may be impossible to predict in advance. 

We therefore had to consider very different mappings for intermediate-level vision from low-level vision, and had 
to make use of iWarp's flexibility to efficiently implement this level of vision. We considered several mappings of 
this problem onto the iWarp array. Let us examine each of these in turn: 

1. Dividing computation among cells by dividing the input data, and running the complete algorithm on 
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Figure 3-2: The multi-function pipeline model as used on Koezuka and Kanade’s algorithm 

each portion of the data on a single cell. 

2. Multiple passes through the array, by spreading each step in the algorithm across the complete array. 

3. A multi-function pipeline, using either input or output partitioning as appropriate for each step in the 
algorithm. 

In the first scheme, all of the decisions about some data are made local to a cell. However, in Koezuka and 
Kanade’s algorithm many operations are made that combine different data items-to create pairs of items, pairs of 
pairs, etc. -so that, either cells must duplicate work of other cells, or a complex communications pattern must be 
used to communicate results between cells. Implementing such a communications pattern on a linear array like 
iWaq is extremely difficult, and there are even possibilities of deadlock. This mapping does not take advantage of 
locality within the m y ;  distant cells would have to communicate as often as adjacent cells. Also, this method 
requires the duplication of large data structures, which could not fit in the 64K word memory of an i W q  cell. 

In the second scheme all cells would be working on the same step of Koezuka and Kanade’s algorithm at the 
same time, but on different sets of data. The algorithm would proceed as multiple passes through the array, one pass 
per step. each cell is running the same program, and the 
communication could proceed in a forward direction between the cells. In addition, this system is modular: it would 
be easy to put together arbitrary modules of this type to do more complex processing or if the task requirements 
changed. However, this scheme is not feasible for three reasons. First, the steps are determined based on their 

This method has the advantage of simplicity: 
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feasibility for doing Uniform operations, but the computation requirements of each step varies widely. This means 
that for some quick steps most of the array is wasted &e., we could do it just as quickly on one cell as 72). Second, 
there is a botZleneck between the host and the iWarp cell which slows down the whole computation: all the output 
for one step must be sent to the host before the next computation may begin. Third, the programs are duplicated 
across all cells, so that the complete algorithm may not fit in a cell’s program memory. Therefore, it may be the 
case. that we would have to reload the program memory during the computation, which could significantly degrade 
perfOl-IIlance. 

The mapping we finally chose is the third, where the same stages mentioned in the second mapping are used 
together on different sections of the array at the same time. A diagram illustrating this approach is shown in Figure 
3-2. Each step can statically be given the number of processors necessary based on the amount of computation to be 
done. The steps are all chained together using the multi-function pipeline abstraction mentioned in the last section. 
In contrast to the second scheme, all the steps are pipelined, so they can execute concurrently. This mapping will be 
described in more detail in Section 5. 

Given the above justification for mapping feature search operations as a series of steps in a heterogeneous array, 
we see that there are several different sorts of search operations which must be mapped. In this system much of the 
processing consists of forming pairs of image features, of forming pairs consisting of model features and image 
features, and of filtering out objects that do not satisfy some criteria. In the next section we discuss ways to perform 
these types of operations efficiently on a systolic array. 

4.1. Techniques for performing joins and selections on a systolic array 
We are interested in general techniques for pairwise operations, which may not be as efficient as the best-known 

specialized techniques for the same operations. For example, we find the set of p a d e l  lines by an 0 (n2) operation 
in which each line is compared with each line, as opposed to a technique based on sorting by angle, which would 
take only 0 (n log (n)) operations. The reason for this is that developing such specialized code for each set operation 
is difficult and would make the goal of an general system for such operations very hard to realize. For example, if at 
some point we wanted to change the operation from “parallel” to ‘‘nearly parallel and nearly same length” finding 
an 0 (n log (n)) algorithm is difficult, but replacing the comparison operation in an 0 (n2) algorithm is trivial. 

4.1.1. Finding values in A x A  

computing some value associated with the relation. (Thu is a join operation on A and A [4].) 
Given objects from domain A, we consider how to find all objects in A x A  which satisfy some condition, possibly 

For instance, the domain could be line segments, and the condition could be that the pairs satisfy the parallelism 
relationship, i.e., that they have the same slope. An additional value that might be computed is the distance between 
the parallel lines. The input to the array is a set of line segments. Each line segment structure input will include a 
line segment identification number which uniquely identifies it on the host processor. The output will be a set of 
pairs of line segment id’s. These id’s eliminate the need for the array to guarantee any ordering of the output. 

The input can be presented in any oder. Each new object is compared with all the objects that preceded it. This 
requires m x (m-1)/2 comparisons for m objects. To do this on n cells, each cell eventually stores l/n of the objects. 
Each object visits all the cells and is compared to all the objects previously stored at each cell. Each cell stores only 
every nth object it receives (starting with the i* one for cell i)  but compares every object it receives with all the ones 
stored there so far. 

This technique is an example of the output partitioning model, where each cell generates up to l l n  of the output. 
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Here is the algorithm for cell i: 
(LIST is the list of objects to compare with other objects.) 
ignore first i-1 inputs 
input the iqh object. 
store the i* object in LIST. 

repeat until end-of-data 

input an object 
compare this input with all othem in UST and output 

a message for each pair that satisfies the condition. 

for j = 1 to i do 

end for 
store the last object processed in LIST. 

end repeat. 

Number of operations required: 
k = number of operations per comparison 
rn = number of input objects 
i = how many words per input object 
n = number of cells involved in query 

Time in operations fiom first input from host, to last output to host: 

krnnf(2n)+3km/2+irnfn operations 

4.1.2. Finding values in A x B 
Given two sets of objects A and B ,  we find all objects in A x B  which satisfy some condition. (Thu is a join 

operation on A and B.) For instance, A could be line segments extracted from an image, and B could be line 
segments in a two-dimensional model of an object, and the condition could be that the image hi: “matches” the 
model line. 

The input will be the sets of objects of type A and B. The output will be a set of pairs of objects, one from A and 
the other from B. 

We consider three methods. The first is general, and works for any comparison operation. The second is used in 
those cases where a smcturing relationship is known on the values to be compared (for example, for finding line 
matching, we only need to compare with lines of the roughly the same angle). In the third method, it is assumed that 
such an ordering relationship exists, but that the index structure used may be too big to fit in a cell, and we can 
afford the t h e  to pre-stoxe the first set into the cells. This last method is best used when the A dataset is relatively 
static. 

Method 1. Broadcast input; A’s are resident on cells 

First, send the objects in A to the cells, so that there are lln of them on each cell. Second, broadcast each B object 
to all the participating cells. At each cell, a B object will get compared to all the A objects stored at that cell. An 
output message will be produced for every pair from A x B  which passes the test. This is another example of the 
output partitioning model. 

Number of operations required: 
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k,n,i same as before 
1 = number of A objects 
m = number of B objects 

Time in operations from first host input, to last host output: 

il+kml/n+ikl( 1-l/n) operations 

The first term is for loading the A objects, the second for sending the B objects, and the third term is the time for 
the last object to be processed from start to finish (i.e., clearing the pipeline). 

Method 2. Broadcast input; A’s are in buckets on cells 

In certain situations we can avoid some comparisons by coarsely sorting the objects into some data structure with 
a fixed number of buckets. Each B object needs to be compared only with the A objects in the appropriate bucket@). 
This data structure is indexed by the value to be compared, the orientation and distance from origin of the line in the 
case of matching lines. 

We can build this structure on the iWarp array by allocating a part of each bucket onto each cell. In the first step 
of the algorithm the objects from domainA are stored on the cells into the bucket structure. We can build the data 
structure on the cells as the objects arrive by sending l/n of the data to each cell, and storing them in the appropiate 
bucket as they arrive (assuming a random input order, the objects for each bucket are evenly distributed among the 
cells). Each cell contains the whole index for the bucket structure, but only l/n of the objects from each bucket. 

The set of B objects now get broadcast to the cells, at each cell a B object is cornpared with all the A objects which 
are relevant using the data structure (e.g., all the objects in the same orientation bucket). The satisfying pairs are 
output as individual messages. In this scheme the load is balanced by giving every B object a little work to do at 
each cell. 

Number of operations required: 
k,n,i,l,m same as before 
b = number of buckets 

Time in operations from first host input, to last host output: 

il+kml/(bn)+kl( 1-l/n)/b operations 

Method 3. Addressed input 

Another way to use an indexed data structure is to store only one part of the index structure, and all the associated 
buckets full of objects, on each cell. Each of the new objects that comes in is only processed at one cell. 

We can construct the index structure on the host, and then send the appropriate pam of the index to the correct 
cells. 

The processor (it can be the host or another cell) which sends the a B object will address the input message to the 
appropriate cell. On i W q  this is done using addressed blocks in a multi-drop channel. 

Addressed input works best if we know that the incoming objects will be going to a different cell each time. If the 
input comes from one processor, then this is easier to arrange; but otherwise it is difficult to predict the frequency of 
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outputs destined for a particular cell. 

The operation count for this method can be estimated by the one given for method 2. 

4.13. Finding values in A 
Given a single set of features, we may want to report those that satisfy some particular condition, such as 

satisfying a length or angle constraint. (This is.a selection operation on A.) In this case, we use a straightforward 
data partitioning method; the dataset is distributed across the cells, and each cell calculates the condition on its 
portion of the dataset. This method is better than a sequential implementation only if the computation time is larger 
than the time to send the datum to the cell. 

Number of operations required: 
k,n,i,l,m same as before 

Time in operations from first host input, to last host output: 

klln+in operations 

Now we will describe how these methods were used in the multi-function pipeline mapping of Koezuka and 
Kanade’s algorithm. 

5. Mapping Koezuka and Kanade’s Algorithm onto iWarp 
The 72 processor array is split up into a multi-function pipeline of sections of consecutive cells which work 

together on the same step of the task, as was shown in Figure 3-2. AU cells in a given section run copies of the same 
program, and operate using the same communication model. The output messages of one section of the array m 
used as the input messages for the next section of the array. These different subprograms could be combined in 
arbitrary ways based on the task to be completed. 

It is assumed that all the data structures corresponding to the static object model are already resident on the array. 
This includes the 3D object model data structures, as well as the 2D views of the object model. This requires a 
pre-processing step to load the array with those data structures. Exactly how they are stored on the array will be 
described with the individual steps of the program. 

The image data were fairly small, as shown in Table 2-1. There were approximately 40 lines in an image, and 
about 25 parallel line pairs. We do not consider in this mapping the computation of the line segment data or the 
computation of the parallel line pairs. With this size data set this is a small fraction of the total computation time. 
Important factors in the mapping were: 

0 Computational needs. The part of the computation that is the most time consuming on a sequential 
processor is the testing of all the possible 2D match directions (the step called “Pre-match”)-this is 
even user we have reduced the number of directions to consider using the distance and angle 
constraints. Therefore this step is split over several cells. 

Memory needs. The data structure that takes up the most space is the table with the 2D appearance of 
the 3D object at all attitudes from a tesselation of the unit sphere. Because this data structure was too 
big to fit in one cell’s memory, it is split over a group of cells. 

Simplicity of communication. As we discussed in Section 4, we want a single input data type and output 
data type flowing in a forward direction between steps. Communication between steps follows the 
general pattern of one message per current match hypothesis. 
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The following is a detailed description of the mapping of the algorithm: 
1. ParaUel line pairs: Find all pairs of parallel lines from the image such that the distance between the 

lines in a pair are within a certain range. 

This was such a small percentage of the computation time for the images we tested that we assume that 
these values are computed on the fiust cell and broadcast to all the later cells before the rest of the 
computation starts. This way they can be referenced by a common identification in any subsequent 
messages. The attributes of the image line segments are also broadcast in this manner. 

2. Distance-length condition: Find all pairs consisting of a parallel line pair in the image and a parallel 
Line pair in the 3D model which satisfy the following conditions: (1) the distance between the image 
parallel line pair is less than the distance between the model parallel line p&, (2) the lengths of the 
lines in the image line pair is less than the lengths of the lines in the model line pair. This stage of the 
computation uses the broadcast input method (method 1 fmm Section 4.1) for computing all pairs in 
A x B. In this mapping all parallel line pairs from the object model are the A’s already resident on the 
cells; they were divided evenly between all the participating cells for this stage during the p m  
processing step. The parallel line pairs h m  the image are the B’s broadcast over the cells. 

The output messages are image-model pairs, i.e., pairs of parallel line pairs which satisfied the 
condition from the preceding paragraph. In an image-model pair one member of the pair is an image 
pair and the other is a model pair. 

As will be seen in the next section, this step is run on only one cell of the array. A one-cell version of 
this parallel algorithm is used in that case. 

3. Orientation condition: Find all pairs of image-model pairs such that their component lines have 
different orientations in the image. A second constraint applied here is that the distance between the 
2D image pairs must be smaller than the 3D model pairs. This is an example of the broadcast input 
model for testing all pairs from A x  A. 

4. Verify: Based on the angle between pairs and distance between them look up valid viewing directions. 
For each image-model pair in the input message (which contains two of them), (a) compute the valid 
viewing directions based on the distance in image coonlinates between the two parallel pairs in the 
image, and on the hypothesized corresponding model lines; (b) compute the valid viewing directions 
based on the angle in image coordinates between the two parallel pairs in the image, and on the 
hypothesized corresponding model lines. This is actually done by a table-lookup, since it was part of 
the information about the model that we pre-compiled. The valid viewing directions are the 
intersection between those fiom constraints (a) and (b). 

This is an example of the input data partitioned model of cornputation Each cell has an identical 
program and data structures stored on it. We would like the current input message to go to the next 
free cell (it only needs to be processed at one of the ones in this section). This could be accomplished 
by sending the data to each of the cells in a group, until one accepts it. Alternatively, sending it to one 
of the cells at random might give a good enough distribution of the computation. It is difficult to 
predict how well this will behave dynamically, since the input messages for this step come from 
multiple cells from the last step. 

One message is output for each valid viewing direction within each pair of image-model pairs 
hypothesized. These are the only ones that we will attempt to do further matching on, 

5. Pre-match: Now we have a hypothesized viewing direction, and model to image correspondence for 
four lines. Based on this viewing direction, we look up the appearance of the other lines in the model. 
This is the addressed input model of computation: we send the input message only to the cell which 
has the correct p m  of the table stored there. We can do this with an arbitrary number of cells by using 
a hash function which maps fmm the array indices of the table to the possible cell id’s. This table of 
the 2D shape data for the model is one of the ones that were computed and stored on the array in the 
pre-processing step. In this step the translation and rotation within the image plane are computed. The 
match test is applied between a line in the image and a line in the projected and transformed model at 
this viewing direction for each of the four corresponding line pairs we have been using from the image 
and the model. Only the ones that pass this test will be sent on to the next group of cells. 

For the data that satisfy the test the output message will consist of the pair of image-model pairs from 
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the input message, plus the 2D projections of the other lines in the model at this viewing direction (this 
is what we looked up before). 

In this step the other image lines that match are found, given this hypothesized 
correspondence and transformation of the model. The match test is applied between each 2D model 
line in the input message and all image lines at the same orientation. This step uses the “broadcast 
input, with the A’s in buckets” (method 2) model for testing pairs in A x B. In this case the A objects 
are the image line segments that were stored here in step one. The data is split among the cells, but an 
index into it by (rho,theta) is kept at each step. The B objects are the model line segments. 

The output of this step is one output message for each input message. All hypothesized matches are 
output at this point, for a final decision at the host. Alternatively we could make some threshold (on 
the number of model lines with corresponding image lines) on what constitutes a plausible match; and 
only output those above the threshold. 

6. Match: 

6. Simulation Results 
We did some simulation experiments to test the performance of Koezuka and Kanade’s algorithm on an iWarp 

array. We estimated the number of iWarp instructions that would be required for the straight-line C code from the 
system running on the VAX. We then ran the C pmgram on several segmented images to gather statistics on the 
dynamic behavior. For each xun we determined the number of operations required for each of the steps described in 
the preceding section. We used the averages over all these runs to determine how many cells to allocate to each step 
for an iWarp implementation. The i W q  times were then computed from these operation counts, assuming this 
static allocation of cells. 

For this analysis we made the following assumptions about the i W q  cell: 
0 125 ns cycle time for floating point operations. 

0 64K words of memory per cell. 

0 Delays due to cache misses were ignored. 

0 Adds and multiplies on the cell were not overlapped, even though the processor has both units. The 
pardel utilization of these units depends on compiler optimizations. 

0 Code size was ignored in determining memory requirements. This mapping doesn’t come close to the 
boundaries of memory, so there would be more than enough room for the application code, and any 
system routines. 

The following cycle times were assumed for each of these unary operations: sine, cosine: 50 cycles 
each; inverse: 10 cycles each; square root: 30 cycles each. 

The following assumptions were made about the array overall: 
*The overhead to process a message is ignored. The iWarp m y  has special hardware to handle 

messages. 

0 Message conflicts on the pathway are ignored. There is only limited bandwidth on the pathways, and 
the messages come out at arbitrary times from multiple cells, so there is the possibility of delays from 
conflicts. Actual simulations of the array will be necessary to test this. 

0 It is assumed that the pipeline is always moving smoothly. Since the different sections of the array are 
consuming and producing messages asynchronously this could cause some delays in an actual run. That 
is, messages destined for a particular cell might sit around in buffers, and even block previous cells, 
because the destination cell is swamped with earlier data to process. Although we attempted to even out 
the average data-rates between sections in the mapping, it is difficult to predict this type of delay 
without doing array simulations. 

The results are presented in tables 6-1 and 6-2. In table 6-1 the first two columns-number of cells, and memory 
requirements -are the same for all the runs, because we used static load balancing and static data structures. The 
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Stage 
in computation 

other columns show information pertaining to one particular run. The consume rate refers to how often on the 
average (in cycles) an input message will be requested by a section of the array; and the produce rate is how often 
(in cycles) an output message is produced from a section of the array. 

#total operations 
memory reqts (thousands 

# cells (words per cell) per cell) consume rate produce rate 

Table 6-2 shows the comparison times between the C program running on a VAX 8650 and the estimated run 
times for the same images on the i W q  array. These results are for the same set of images of Lshaped blocks that 
were used in table 2-1. The speedup varies from a factor of 100 to 256 over these runs. The wide range in speedup 
comes from using static load-balancing on varying data set sizes. Dynamic load balancing is quite difficult on a 
linear array. The overhead involved in re-allocating cells, including completely copying memory fiom one cell to 
another, is too big. But for domains where the complexity of images is well known or where the user is willing to 
accept widely varying processing rates, static allocation seems adequate. 

Distance-length 
condition 

Angle-condition 

Verify 

1 200 19 N/A 25 

7 2700 1060 1429 73 

7 9100 1247 86 21 

Time on VAX 8650 

34000 

5300 

4300 

3600 

Pre-match 1 47 13400 I1038 I 18 11182 

Estimated time 
on iWarp m y  Speedup 

157 217 X 

36 147 X 

22 195 X 

36 100 x 

Match 110 I1500 11046 I 1192 I 24 

4700 

15100 

400 

Table 6-2: Recognition times for several images (in milliseconds) 

45 104 x 
59 256 X 

4 100 x 

7. Conclusions 

presented the following: 
In this work we show one can successfully do object recognition in parallel on a systolic array. We have 

We demonstrated the ability to map multiple steps of a task with varying data-sets to make a coarse- 
grained pipeline on a systolic array. This type of mapping is a good match between this type of 
problem, with successive generation, and filtering of combinations of objects for the search, and the 
large linear array, which is best utilized in a heterogeneous manner. 
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0 We described some general models of computation on the iWarp array. Some of these are currently in 
use on the Warp array, working on fixed-sized data sets such as images. The flexible communication 
mechanisms of the iWarp array enable us to use the models in a more general way. In particular, we 
use the dynamic determination of destination in the adchssed input style of computation, and the ability 
to communicate with non-neighboring cells in the multi-function pipeline. 

0 We presented some techniques for doing general join and select operations on the array. We used these 
models 3s components in mapping an object recognition system to the array. These models are general 
components which we hope to be able to compose in novel ways in the future for various image 
understanding search tasks. 

We showed results of an analysis of our mapping based on runs of the sequential program on real 
images. The speed of this system indicates an increased ability to routinely use relationships between 
image features from which to start a search. As we saw, relationships are a good way to initially 
constrain the search. They also are more stable than other features in the face of imperfect 
segmentations. 

Although our results directly pertain to a single, fairly simple object recognition system, this type of parallel 
architecture - non-shared memory, a relatively small number of high-powered processors, linear array -looks 
promising for intermediate-level vision processing. We did not have to resort to a brute-force search to use 
parallelism. We were able to take a fast sequential algorithm running on a fast processor, and show considerable 
speedup on the iWaq array. 

In futuE work, this system could be scaled up by storing mgtiple object models in iWarp memory. The search 
could involve multiple passes through the array, one per object model. Another way to extend this system would be 
to construct it such that it could utilize other types of image features such as curves, regions, or color. 

The ability to replace one module with another in the multi-function pipeline is important for the generality of this 
method. We would like to use the general feature searching methods presented as a basis for a language and 
compiler for a system that could take a high level description of the search operations required for the task, and 
would generate the parallel program to run on all or part of the array. 
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