A Numberless, Tensed Language for
Action Oriented Tasks

David Alan Bourne

CMU-RI-TR-82-12

The Robotics Institute
Carncgic-Mcllon University
Pittsburgh, Pennsylvania 15213

13 October 1982

Copyright © 1982 Carncgic-Mcllon University

This rescarch was sponsored by the Robotics Institute, Carncgic-Mcllon University, and, in part, by the
Westinghouse Corporation.

Table of Contents
1. Introduction
1.1. New Applications Breed New [Languages
1.2. Language Review
2. Syntax: Combining Atomic Terms
3. Words: The Atomic Terms
3.1. Functions/Verbs
3.2. Conncctives and Logical Completeness
3.3. Arguments/Nouns
3.4. Adjectives and Adverbs
3.5. Rounding Out The Language with An Adverb
3.6. The Language Tightrope
4. Where the Numbers Belong
5. The Runtime System and 'The Scparation of Power
6. Pretty Printing
7. Some Notes On Implementation
8. Summary
9. Futurc Interests
10. Acknowledgment

3

3'l‘he language description is informal here, however. the formal details are available clsewhere [Bourne 82b].

NN

oo ON On

10
11
1
12
14
16
16
16
17

List of Figures

Figure 1-1: ML Joint Level Control [Ardayfio 82, page 62] 2
Figure 1-2: RAIL. program for cleaning torch [Franklin 82, page 404] 3
Figure 1-3: AUTOPASS program for support bracket assembly [Licberman 77, page 329] 4
Figure 1-4: Initial Assembly Description [l.ozano-Perez 79, page 255} S5
Figure 1-5: A partial rule sct to reach high objects [Forgy 79, pp. 11-12] 5
Figure 4-1: Two relational tables that describe details of the furnace. 11
Figure 4-2: The resulting table after database operations. 12

Figure 5-1; Three layers of control internal to the supervisor: top to bottom 13

Abstract

Action oriented languages are number intensive. Graphics languages arc centered around where to draw
something rather than what to draw. ‘T'he “"where” involves a tedious numeric description of vertices.
Robotics languages are also dominated by a "where” description, but now the "where” specifics a robot
motion. The result is an array of numbers that obscures the meaning of the program to its reader.

This paper shows how a number of linguistic devices can be used to eradicate the plethora of numbers from
action oriented descriptions. Functions or verbs can be tensed (e.g., past tense) to modify their meaning
without duplicating the root function. ‘The result is an English-like description of a control structure.
Arguments or nouns can be modified in name, like the use of a GENSYM function in lLisp which gencrates a
unique variable name from a character string, and in number (c.g., singular vs. plural). The result is an
English-like description of bound and quantificd variables. The remaining quantitative description of action
tasks can be relegated to a databasc whose management system is specialized for number management.

The resulting language is a formal variant of a natural language with a Lisp-like syntax (i.c., lists with
functions in the first position). The programs approach the readability of a natural language without the cost
of ambiguity that is inhcrent in natural descriptions. Finally, the programs can be casily pretty printed in
Iinglish so that they can be rcad by non-programmers.

1. Introduction

Educated people and computing machinery both communicate with languages and yet there remains a gap
between people and machines. The natural languages used by people seem not to be suited for
communicating with machines and the existing computer languages scem not to be suited for communicating
with people. The verbosity and ambiguity in English sentences can obscure the simple and yet precise ideas
that arc required for man machinc communication. On the other hand, computer languages tend toward
obscurity. Each language comes with a set of programming tricks that arc foreign to a non-programmer. ‘This
project is an attempt to formalize a sct of language tricks that arce familiar to any English spcaker while
avoiding the weaknesses inherent to natural language. A byproduct of choosing English tricks is the ability to
casily paraphrasc programs into English text.

Programming is inherently difficult for many reasons. People arc not used to specifying a solution in every
detail. In personal communication this is usually not necessary since the listener ofien has the information to
fill in the gaps. If he is missing information, it can be systematically obtained from a sequence of questions
and answers. Similarly, programming would be greatly simplified if the machinc was alrcady an expert in the
arca of discourse. ‘That is, the system would alrcady have all of the details of how to cxccute its basic
functions. 'The remaining task left to the programmer is to describe what operations need to be performed to
accomplish his goals.

Most present day computer languages are designed for sequential data manipulations and are not amcnable
to coordinating simultancous operations. Action tasks can involve manipulating scveral objects
simultancously to the satisfaction of a programmer’s goal; these tasks are characteristic in manufacturing,.
Raw parts arc formed and assembled into final products by machine manipulations that proceed in parallel.
For example, onc application is the control and coordination of nine machine tools, two of which are
industrial robots. Each of thesc machine tools is operated by its own controller and they are linked together
into a star configuration with a supervisor at the centcr. A program implicitly describes what machine
functions can be performed and when they can be applied.

Control functions must be decoupled to such a degree that they can be scheduled for exccution parallel to
other operations. Unfortunately, the machine tools cannot be relicd upon to operate in harmony, so
asynchronous activitics have to be accepted as the standard mode of operation. 'The description of these tasks
could casily become miired in details, specifying such things as communication line numbecrs, line specds,
protocol types, hexadecimal addresses and every other imaginable and obscure computerism.

Numbers are abundant in most programs and yet they have little or no meaning when they arc taken out of
context. In fact, programs would be much casier to understand if there were no cexplicit numbers present in
the text. Unfortunately, they are a necessary cvil. Numbers describe exactly where something is or exactly
how much something should be done; these details must be present at some level. Thercfore, for the sake of
the programmer and the completencss of the task description, the numbers remain, but they are condemned
to a scparate system which knows how to manage this database of godless creatures. The numbers are boxed
up into relational tables and can be indirectly referenced from within a program.

To satisfy these constraints, the resulting language and operating system isolate the description of the task
from the description of the equipment. The task description is numberless and uses word constructions which
arc alrcady familiar to non-programmers. The statements in a program arc decoupled into independent rules
that can be scheduled for execution over a distributed architecture.

1.1. New Applications Breed New Languages

Each new arca of computation brings with it a wave of new programming languages and robotics is no
different. Al. [Mujtaba 79.82], VAL. [Unimatc 80}, RAPT [Popplestone 78], AML. [Grossman 82a,82b] and
RAIL. |Automatix 81] arc but a few. For the most part, cach language is a spin-off of another well known
computer language: A1.GOL., BASIC, APT, P1./1 and PASCAL. respectively. ‘I'he robotics languages arc new
by virtue of including special task oriented features. These features facilitate solutions to robotic problems
and remain couched in a stylistic framework that is alrcady familiar to an experienced programmer. Some
features include built-in subroutines (c.g., homogeneous transformations, 'Draw,’ and 'Grasp’) that are
specialized for a particular problem arca (see Paul’'s work in robotics {Paul 77.81] and the proposal for a
graphic’s standard [SIGGRAPHT79]). Other features include new data structures for organizing information
like the aggregates (i.c. nested sets of arbitrary types) found in AMI.. Thesc languages arc designed for an
alrcady cxpert programmer to quickly assimilate.

The cffect a new language provides is an organizational view that simplifics a class of task descriptions. Of
course, this class of descriptions determines how interesting any particular language is to a consumer. [.ike
other products, the language designer often wants to generalize his system of notation until it can be sold to a
large market. ‘This amounts to cxtending the language's applicability to many different kinds of
computational problems; thus there arc often premature claims to universality. As long as there are new
kinds of problems, there will be new ways to express their solutions,

1.2. Language Review

Every good language reflects a familiar structure. Low-level languages reflect low-level structure. For
cxample, assembly language is a representation of hardware that performs computational instructions.
Similarly, low-lcvel robot programs represent the functions that the machine can perform at its lowest level
such as joint movements. ‘The MIL. program segment in Figure 1-1 is an example of a typical operator,
operand program. In this case, an operator is the name for a device function and the operands arc used as its
input.

100 Sensor 7100 500

110 Sensor 14 -200 300

120 Move 0 2000 0 0 -4000 650
130 Motor 34000

140 Dmotor 2-100

Figure 1-1: M1. Joint Level Control [Ardayfio 82, page 62]

A programmer who is familiar with a robot and its devices can preciscly control them with a language like
ML, Another example of a low-level language is APT which is also an operator operand language for
controlling machine tools. 1t has become deeply entrenched in industry partly because it allows for the direct
control of the low-level machinery. Apparently, this control is emotionally difficult to relinquish in the face
of a computer program. With the advent of new technologies in Robotics, new opportunitics are becoming
available for younger generations. They arc not yet committed to antiquated systems because they have not
yet committed their cgos to their machines. This is the time to introduce high-level languages into
manufacturing.

A high-level language dircctly represents the algorithm at its level. Therefore, programs that manipulate

algebraic expressions have statements which perform algebraic operations. A robot’s work is done with its
end effector and so sensibly, a high-level language allows a programmer to direct its control. 'The RAIL
program in Figure 1-2 is an example of how a PASCAL -like programming language can describe the clcaning
of a welding torch. By embedding the robot primitives in a familiar computer language, programmers will
find it comfortable to program these new machines.

Programming robots in a high-level language is essentially programming by side cffect. For cxample, the
statement ‘Brush=0On" in Figurc 1-2 is a variablc assignment that also turns on a brush as its side cffect.

Function Clean—"Torch
Begin

; Brush out the torch nozzle, then spray it.

Approach 2.0 From Cleaner — Brush
Brush=0n

Move Cleaner — Brush

Depart 2.0

Brush=0ff

Move Cleaner— Spray
Spray=0On
Wait 2 Sec
Spray=0If
Depart 2.0
End
Figure 1-2: RAIL program for clcaning torch [Franklin 82, pagc 404]

This language and others like it (e.g., VAL, AML., AL) are very effective if the pecople using them are
familiar with the language in which they are embedded and want to control the process at this opcrational
level.

AUTOPASS is a very high-level language for describing asscmbly operations [l.icberman 77]. The English-
like description in Figure 1-3 is an AUTOPASS program that describes the assembly of a support bracket.
From a distancc this project looks like it addresses many of the questions involved in this paper. However on
closer inspection the AUTOPASS system offers many features not discussed in this paper (¢.g., gecometrical
modcling, grasp calculations and path planning) and vice versa. This paper addresses the following issucs
which are restrictions in AUTOPASS.

1. The English-like sentences in AUTOPASS are made up of a fixed set of verbs and qualifiers (in
bold) which opcrate on their subjects (in italics). Unfortunatcly, diffcrent applications require
different action words to cffectively describe a task.

2. The AUTOPASS statcments arc translated into motion commands one at a time. As the
statements are being compiled, they arc used to update the state of a geometrical database which
illuminates some semantic errors. Unfortunately, variations in the environment are not detected
and uscd to update the state of the database. '

3. Parallel computations which arc prevalent in action oriented tasks with multiple machines are
difficult to describe. ‘This problem is cnhanced by the way the statements are compiled one at a
time.

4, The level of English-like description is still very low. The descriptions degrade into quantitative
measurcments and the structure of the statements is limited to declarations. '

5. AUTOPASS programs are embedded in a pseudo PI./1 language so that the PL/1 control
structures can be fully utilized. The same philosophy of English-like description is not employed
for both control and statcment definition.

1. Opecrate nutfeeder With car-ret-tab-nut At fixture. nest

2. Place bracket In fixture Such That bracket.bottom
Contacts car-ret-tab-nut.top
And bracket. hole Is Aligned With fixture. nest

3. Place interlock On bracket Such That
interlock.hole Is Aligned With bracket. hole
And interlock. hole Contacts bracket.top

4. Drive In car-ret-intlk-stud Into car-ret-tab-nut
At interlock.hole
Such 'That Torque Is Kq 1.20 In-Lbs Using air-driver
Attaching bracket And interiock

5. Name bracket interlock car-retOintlk-stud car-ret-tab-nut
Assembly support-bracket

Figure 1-3: AUTOPASS program for support bracket assembly [Licberman 77, page 329]

Despite the many drawbacks of AUTOPASS it is probably still the most impressive system for describing
an assembly of parts,

There are scveral other research systems which use complex modecls of the system to plan actions. LAMA a
system at MI'l' is LISP bascd and has many of the features found in AUTOPASS. In particular, manipulator
programs are generated automatically from assembly plans. The task description which assembles a piston
sub-assembly usecs English-like words that arc also LISP function names. The initial asscmbly plan in Figure
1-4 must be translated by hand to a morce cxplicit assembly plan of the same form. A strategy is then chosen
to make the final translation to a manipulator program while considering the gcometrical constraints of the
working world.

The next program segment (Figure 1-5) is an example of production system rules that arc written in OPS2
[Forgy 79]. A production system is an interpreter and a set of rules cach with left and right hand sides. The
left side of every rule is cvaluated as TRUE or FALSE and every rule that is satisfied is gathered together into
a conflict set. Onc rule is finally chosen for execution by heuristically resolving the conflict.

A few cxplanations are required before these rules can be understood. The Icft hand sides are esscentially

(Insert Obj1: [Piston-Pin]
Obj2: [Piston Pin-Holc}
Such-That: (Partly (Fits-In Obj1 Obj2))
(Insert Obj1: [Piston-Pin]
Obj2: [Rod Small-End-Hole])
(Push-Into Objl: [Piston-Pin]
Obj2: (And [Piston Pin-Hole]
[Piston-Rod Small-End}))
Figure 1-4: Initial Asscmbly Description [l.ozano-Perez 79, page 255]

patterns which are being matched to a database. ‘'The symbol *=" marks a variable which becomes bound to
an object during the matching process. If *=Object’ is bound to 'Banana’ when the first rule is satisficd then
the "= Object’ in (High =Object) is also bound to "Banana.” Finally, the "=" that stands alonc in thc last rule
can be bound to anything.

((Want (Monkey Holds =Object)) — (Want (Ladder Near =Place)))
(High = Obhject) (=Object Near =Place)

((Want (Monkey Holds =Object)) — (Want (Monkey On Ladder)))
(High = Object) (=Object Near = Place)
(L.adder Near =Place)

((Want (Monkcy Holds = Object)) -> (Want (EmptyHanded Monkey)))
(High =Object) (=Ohject Near =Place) ‘
(Ladder Near =Place) (Monkey On Ladder)

((Want (Monkey Holds =Object)) — (<Write> "The Monkey Grabs The * =Object)
(High =Ohbject) (=Object Near =Place) {(Monkey Holds =Object)

(Ladder Near =Place) (Monkey On Ladder) (<Delcte> (Want (Monkey Holds =Object))))
(Not (Holds Monkey =))

Figure 1-5: A partial rule set to reach high objects [Forgy 79, pp. 11-12]

A production system can be used to schedule computations on a star computer network simply by passing
along the satisfied rules to the correct processors. Unfortunately, there are a few dangerous pitfalls, For
cxample, if two rules are executed which move two robots then the robots may collide. This problem results
from a hidden dependence in the rules which must be cither climinated or onc of the rules must be discarded
during conflict resolution [Bournc 82].

Onc of the main rcasons for developing a very high-level language is to make the system accessible to those
who have never programmed. On appearance alone, both OPS and . AMA would scare off the uninitiated.

‘The language in this paper is a very high-level language that is specialized for action oriented tasks. These
tasks arc cxccuted on a star computer network with machine tools (c.g., robot arms, vision systems, machining
centers ...) at the points of the star. The people programming are familiar with their cquipment but not with
any particular programming mecthodology. Therefore, this language uses many features of English rather than
features which are typical to computer programming languages.

2. Syntax: Combining Atomic Terms!'
The syntax is very similar to LISP and several production systems [Watcrman 78]. Complex terms are
composed of functions followed by their arguments where cach of the arguments in turn can be another

complex term.

(Function Arguments) 1)

Rules are constructed from these terms by pairing boolean functions with command functions.

(Boolean Arguments) — (Command Arguments) (2)

The resulting rule’s right hand side is executed whenever the left hand side is TRUE. A program is a set of
rules which can be executed asynchronously. However, to limit the size of the rule sct, the right hand side can
also be another sct of rules (i.c., predicate - action pairs).

(Boolean Arguments) — {Rule-Set})

Nested rules reduce the amount of computation required to find the sct of satisfied ones, since the embedded
rules are cssentially invisible. Once an outer rule is satisfied, the inner rules become accessible and their left
hand sides must then and only then be continually checked. In addition, rule nesting is a programming
device which can be used to logically structure the rule set, thus making the program casicr to understand.

{Name Rule-Set})

Finally, a program is any named rule set. This resolves many problems in formatting large programs that are
deeply nested because any named rule sct can be invoked on the right hand side of any rule, thus making the
program ecasicr to read.

3. Words: The Atomic Terms

The readability of a program is directly related to the atomic terms or words in a language and the order in
which they occur. The more closely aligned these words are with already familiar words the less there is to
Icarn, thus making it casicr to assimilate. The more concisc the notation the less that has to be read, thus
making it casicr to absorb in a glance. ‘The fewer ambiguities in expression the less context has to be analyzed,
thus making it casier to understand. These arc the design goals and the reasons for choosing English words.

3.1. Functions/Verbs

English has a very rich underlying structure. For example, functions are deeply embedded in sentences and
usually manifest themselves as cither modifiers (e.g., adjectives and adverbs) or verbs. A unary function is
hidden in a simple sentence usually in the form of an adjective.

]The language description is informal here, however, the formal details arc available elscwhere [Bourne 82b].

The first robot on the assembly line is broken. (5)

(Broken First-Robot) 6)

Whereas, there are many occurrences of more complicated functions with many arguments.

The red-rohot presented to the blue-robot a turbine-blade.)

(Presented Red-robot Blue-robot Turbine-blade) (8)

Functional representations of English have been studied cxtensively by logicians [Quine59] and linguists
[Montague74]. However, the structure of English is not the point of this paper other than to appreciate what
would be commonly familiar to non-programmers. Rather, words and a few linguistic devices are borrowed
from English and arc used unambiguously to describe the acrion oriented tasks.

Typical tasks have at least three components. For example, suppose you are hungry and undertake the
process of satisfying your hunger. You must first of all purchasc the ingredients that arc needed to prepare
the meal and locate yourself in an appropriate place, such as a kitchen. Thesc arc at least somc of the task’s
pre-conditions, because the conditions must be TRUEFE before the process can begin. In addition, you must
have cooked and caten the meal in order to have resolved the hunger. 'The mcal having been cooked and
caten are some of the task’s post-conditions, because those conditions are TRUE after the task is complete.
And finally, the whole process should be enjoyable. This is one of the task’s while-conditions, because you
continue to cat only as long as you arc cnjoying the meal. Restated, there is a test to see whether the meal is
possible and if it is possible, the meal is consumed as long as it remains enjoyable. These condition classes are
pervasive throughout task oriented computations and therefore nced to be represented in a concise and
clegant way.

The conditions are paramount to functions and the condition class can be conveniently indicated by special
function markers. Again, English-like devices can be casily employed as function markers.

The past tense of a verb indicates that some action has alrcady taken place and is uscd to mark the function
as a boolean (i.c., it returns TRUE or FALSE). In other words,a function in the past tense is a natural way to
express a pre-condition.

(Grasped Turbine-blade) 9

The present tense of a verb naturally reads as an imperative and is used to command the systcm to make the
verb’s past tense TRUE. The result is a convenient way of representing commands which double as post-
conditions.

(Grasp Turbine-blade) (10)

The active tense of a verb describes an action which is in process and is also used to mark a boolcan function.
Active tense descriptions accurately describe the while-conditions of a task,

(Grasping Turbine-blade) aan

‘The active tense is distinguished from the past tense by the duration of its truth value. Once something has
been "grasped” it continues to have been "grasped” within the context that is defined by the nesting of rules.
On the other hand, a robot is only "grasping” something during the actual operation. This distinction is
valuable for describing a program’s control structure and can be uscd much as the IF and WHILE statcments
are uscd in a typical structured programming language.

Regular verbs are decomposed into their appropriate parts, root and ending, by a very simple procedure
[Winograd 71] which is augmented with a dictionary to manage the common irregular verbs. In 1971 this was
considered an application of Artificial Intelligence because Winograd was developing these routines within
the context of natural language understanding. However, here the routines are just used to provide
supplemental information to the lexical analysis phase of compiling within the scope of a formal
programming language.

3.2. Connectives and Logical Completeness ,

A programming language should encompass more than simple concatenations of function calls. Boolean
conncctives (i.c., "And’, 'Or’ and 'Not’) are cssential for representing complex conditions, such as: “A robot
should move to the furnace, only if it is ready and there arc nor any obstructions.” Furthermore, notions of
variables and quantificrs arc necessary to provide the complete mechanisin of reference. As an example, there
must be a mechanism for referencing the subject in a previous clause. This logical completeness is available in
the first order predicate calculus though many lay-people find it overly technocratic. In addition, there is no
widely accepted means of representing anything other than declarative sentences in the first order predicate
calculus which dismisses imperative and intcrrogative sentences.

3.3. Arguments/Nouns

A previous scction discussed linguistic devices for modifying functions, so that the resulting clauses are casy
to rcad. 'This scction shows how a function’s arguments can be modified in number, so that the expressive
power of quantification is captured without the loss of rcadability. The examples illustrate how an English
scntence is translated to the predicate calculus and then how that sentence is translated to our new language.
The purpose of these translations is to unambiguously rclate the meanings of these sentences to an alrcady
familiar language.

The first cxample shows an English sentence (12) with a hidden universal quantifier (13). The intended
mcaning of this sentence is that "all of the billets have been moved to the furnace.” and this interpretation is
triggered by the usc of the plural noun ‘billets.” ‘The first order predicate calculus expresses a plural noun
somewhat differently. Rather, than modifying the arguments themsclves the predicate calculus represents a
plural noun (c.g., ‘billets’ in (12)) as a quantificr, variable and predicate (13). This clarifics many issucs
including the scope of the quantifier, which in turn simplifies problems concerning reference (e.g., "What
object(s) arc referred to by the word ’it” in (18)7"). The conditional in (13) is used in place of a conjunction so
that the resulting sentence is true even if there were no billets to be moved. The sentence undergoes its final
translation to 14 and uscs the plural noun form to explicitly signal the quantifier’s presence. (14).

The billets have been moved to the furnace. 12)
vx (Billet (x) = Moved (x,Furnace)) (13)
(Moved Billets Furnace) (14)

The sccond example shows an English sentence (15) with a hidden existential quantifier (16). The singular
form of ‘billet’ is a general term that in this sentence indicates that at least one billet has been moved to the
furnace. It doesn't matter which billet has been moved or if many of them have been moved. Again in (17)
the quantifier has been redisguised as a singular noun. So far, the notation in (14) and (17) is relatively simple
compared to the predicate calculus without any apparent loss of representational power.

A hillet has been moved to the furnace. 15)
3Ix (Billet (x) A Moved (x,Furnace)) (16)
(Moved Billet Furnace) (17

‘The beauty of the predicate calculus is only apparent in the third example (18) where the reference of a
pronoun must be resolved to understand the sentence. This example is easily understood by a person because
only the billets are likely to be moved in the context of this sentence. Unfortunately, knowledge of this sort is
not always so useful.? The predicate calculus cleanly resolves this problem with the quantifier since it binds
the variable "x” and the scope of the quantifier is unambiguously determined by the parentheses (19). That is,
there is an 'x” that is referred to by 'it,” and that same 'x’ is a billet, has been found and has been moved to the
furnace. It is tempting at this point to throw up your hands and say that the predicate calculus solvcs all of the
problems and that no improvements can be made. However, the fact remains that sentences in the predicate
calculus are difficult for the layman to understand for the very rcasons that make it unambiguous: the
additional unfamiliar symbols and their structure are confounding to the uninitiated. Again, we can use a
familiar linguistic trick and provide names for the subjects. What was a gencral term “billet’ in (17) now
becomes a singular term "Billet1” (20) which denotes a specific object. "Billet]” refers to the same billet within
the samc, or lower levels of parenthetical structure; this is the scope of its binding. Numbers arc used as
suffixes because they are casy to generate and casy to compare. The hope is that this naming convention
doesn’t take on a technical appcarance subjecting it to the same disapproval encountered by the predicate
calculus. However, there are other alternatives. For example, unique descriptions can replace the names (21)
which makes the functional analysis more complicated and increases the level of parenthesis. Both of these
devices arc included for the sake of completeness.

?’lhc sentence The businessman bought a company with his friend because he was rich.” is quite ambiguous. Who was rich?

10

A billet has been found in the rack and it has been moved to the furnace (18)
3x (Billet (x) A Found (x,Rack) A Moved (x,Furnace)) (19)
(And (Found Billet1 Rack) (Moved Billetl Furnace)) (20)
(And (Found (Closest Billet) Rack) (Moved (Closest Billet) Furnace)) 21

Plural nouns are filling in for universal quantifiers and their linguistic machinery. And now, numerals have
been added to singular terms to mark that variables with the same numcral refer to the same object.
Unfortunately, the thought of using these two ideas together is somewhat repugnant. ‘Fhere is nothing natural
about saying cither "Billets]” or "Billetls.” In fact this lcads us to realize that the plurals do not indicate a
genceral notion of universal quantification because there is no notion of a variable. The analysis in (12-14) is
still correct but it fails when it is extended to a compound clause, because the variables are not really
represented at all. ‘The sentence (22) is not represented equivalently by (23) and (24). Equation (23) correctly
asserts that the same billet has been moved to the furnace and has been heated. While equation (24) asserts
that all of the billets have been moved and heated without regard to their individual identity. The named
nouns opcratc as an cxistential quantifier and its variables. Steps must be taken to assure that these
mechanisms can be used to fill in for the universal form.

The billets have been moved to the furnace and they were heated. (22)
Vx (Billets (x) = Moved (x,Furnace) A Heated (x)) (23)
(And (Moved Billets Furnace) (Heated Billets)) (24)

3.4, Adjectives and Adverbs

Adjcctives and adverbs can also be used as functions, however in practice, they arc used sparingly. An
adjective takes as its argument a single noun and it returns as a result a single noun. Similarly, an adverb takes
as its argument a single verb and it returns a single verb. The cffect of executing cither an adjective or an
adverb is to modify the target function’s definition in the database. This function’s modification is only active
within the scope of the rule which initiated it. Before the action clause (25) can be exccuted, the adverb
'Quickly’ and the adjective "Hot' must be cvaluated and the updated function names returned (26). The
details of what happens in the databasc are reserved for the next section.

((Quickly Move) (Hot Billet) Swage) (25)

(Move-quickly Billet-hot Swage) (26)

3.5. Rounding Out The Language with An Adverb

Onc last problem remains: completing the power of the language with respect to the first order predicate
calculus. It is well known that universal and cxistential quantificrs can be freely inter-translated. For
example, (27) and (28) arc cquivalent sentences. 1t has already been determinced that the universal quantificr
is only partially rcpresented and so it becomes necessary to fully utilize the power of the cxistential
mechanisms. The "Not,” introduced ecarlicr, only opcrates outside of the quantifier’s scope. Therefore,

11

another form of "Not' must be introduced to modify a function’s mecaning within the quantifier’s scope. A
"Not' used as an adverb fills this obligation and completes the translation between (29) and (30), and
completes the language with respect to the first order predicate calculus.

vx (Billet(x) = Moved(x,Furnace)) 27
= 3x (Billet(x) A “Moved(x,Furnace)) (28)
(Moved Billets Furnace) (29)
(Not ((Not Moved) Billetl Furnace)) (30)

3.6. The Language Tightrope

The appeal for using linguistic tricks in a formal language is very seductive and even begins to take on airs
of being trivial and obvious. It is ncither. The problem of completing the language illustrates how the
objective is a tightrope of peril. Onc slip to the left and the language slips into mountains of ambiguity that is
inherent to natural language, and one slip to the right and the language loscs its expressive power. However,
the advantages of crossing the tightrope seem to outwceigh the perils.

4. Where the Numbers Belong

Numbers have names just like people have names. These names are called numerals when they look like
"3 But there is nothing special about these particular names other than their conventional use and their
one-to-one correspondence with their distant cousins, the numbers. Other names for the numbers might be
Furnace-tempcrature, Age and Four-bytes. These names don’t have to be used in context, but it would be
confusing if Four-bytcs referred to the number "3.” In addition to referring to numbers, these names can refer
to arbitrary scts of values, numcric or otherwisc. For example, a sct of values to represent the furnace
temperature is shown in Figurc 4-1. Fortunately, we can talk about 'Furnace T'emperature” without speaking
directly of *(2200,2300,2258,3,177506).”

Furnace Min Max|{ Current | Line# | Address
Temperature | 2200| 2300 2258 3 177506
Temperature Min Max
Steel 2200 | 2300
Titanium 2350 | 2400
Idle 1000 | 1100

Figure 4-1: Two relational tables that describe details of the furnace.

12

The values that are needed to describe the Tow level details of action oriented tasks are stored in relational
tables. ‘These tables arc accessed and manipulated with a relational algebra and the result of these
manipulations is always another table. 'The rows and columns of the tables all have symbolic names that
correspond with the words in a rule sct. When a rule is executed, it triggers a sct of relational operations that
make the appropriate changes in the database. The relational operators make up a majority of the database
management system. Suppose the following clause were executed.

(Adjust Furnace Temperature Idle)

This clause would update the minimum and maximum furnace temperature by sclecting the “ldle’ row in
the table "I'emperature’ and overwriting the appropriate slots in the table "Furnace’; they are determined by
the row ("I'emperaturc’) and column ("Min’ and 'Max’) names. ‘The result of these operations is shown in
Figurc 4-2.

Line# | Address

Max| Current

Furnace | Min

Temperature {1000 {1100 2258 3 177506

Figure 4-2: 'T'he resulting table after database opcrations.

Databasc updates trigger consistency checks that verify the correctness of related information. Simply, the
minimum and maximum furnacc temperaturcs are directly rclated with the current temperature by a
procedurc’s definition. If the current temperature remains within the bounds, then nothing happens; but if it
lies outside of the bounds, a message is constructed which is sent to the furnace driver. ‘The furnace driver in
turn packages the message in the appropriate protocol and sends it off to the furnace controller. The furnace
controller receives the request and adjusts the level of electiric current to the heating clements which directly
changes the furnace temperature. Currently, the data relations are built into the system but rescarch is
actively underway to gencerate them automatically [Bourne 80).

Names appear in the text of a program; they talk about numbers and other objects held in a database. This
separation of descriptive machinery is a powerful linguistic device which is used both by pcople in natural
contexts (i.c.. 'Do what 1 mean and not what | say.’) and logicians in formal contexts (i.c., logic vs. model
theory). Traditionally, computer languages mix syntactic and scmantic mechanisms and this lack of
scparation fosters confusion (e.g., error detection in compiling theory).

5. The Runtime System and The Separation of Power

The runtime system is stratificd into three layers and is shown in Figure 5-1. The top layer interprets the
rules and is responsible for planning what actions should be undertaken to accomplish the system’s goals, The
core of the system is a dynamic database that reflects the state of the task and its constituent machinery. The
integrity of the database is maintained by its management system. In cffect, the database management system
is dircctly responsible for maintaining a consistent and up to datec model of the task. Often, the state of the

13

task degrades independently from any actions within the scope of control. For example, consider the task of
taking a shower and maintaining the temperature of the water. Without touching the hot and cold water
knobs, the temperature can change drastically due to the thoughtless behavior of an occupant in the adjacent
bathroom. The maintenance of the water temperature is the direct responsibility of the databasec management
system which prepares a request to turn down the hot water. Finally, the bottom layer is responsible for
communicating with the external task functions. That is, it sends the commands to the water valve controller

in the appropriate format.
Language
Interpreter
Device
Driver

Database
Management |——

Device
Driver o o0
Internal Functions
External Functions
Device Device
Controller o 00 Controller

@ o oo Device

Figure §5-1: Three layers of control internal to the supervisor: top to bottom

The following two rules show how this could be accomplished. Rule-1 can be exccuted repeatedly after the
shower paraphernalia is in place. If the water is not the right temperature then the database management
system builds a request that is passed along to the hot water valve driver, The driver packages the message
into the appropriate protocol and sends it out to the controller with direct access to the valve actuator. Once
the water is warm, Rule-2 can be cxccuted. Again, the advantage of a non-procedural language is illustrated
by the fact that Rule-1 may be exccuted whenever the temperature of the water is unsatisfactory.

14

(And (Moved Soap ToShower) — {(Adjust Water Warm)} Rule-1
(Moved Shampoo ToShower))

(Adjusted Water Warm) — {(Get InShower)} Rule-2

A simple graphics cxample shows how a model of an airplane can be animated under the control of a
joystick. Of course, the datapoints that define the airplane are kept in the database. This example also shows
how an adverb can be used to define the new plane position "Relatively’ to its current position,

(Moved Joystick) — {(Frase Plane) Rule-3
((Relatively Move) Plane Joystick)
{(Draw Plane)}

Rule-4 and Rule-S demonstrates how a clamp can be loaded when its precise position is not known in
advance. The move to "T'oClamp’ is initiated in Rule-4. Now the active tensc of "Move’ is truc in Rule-5 and
so the rules internal to it arc accessible. When a strain gauge mounted on the robot wrist has encountered a
significant load, the internal rule becomes true and its consequent stops the robot from moving further. At
this point the entire context of Rule-5 is left and Rule-6 is ripe for execution.

{Gripped Billet1) — (Move Robot ToClamp) Rule-4
{(Moving Robot ToClamp) — {(Strained Gauge) — (Stop Robot)} Rule-5§
(Moved Robot 'ToClamp) — (Release Billet) Rule-6

Rule scts can be invoked by using once of the few built-in keywords. "Perform’ is a function which activates
a rule set such as "Preventive Maintenance” in Rule-7. Other forms of the verb are also legal. 'Performed’ and
'Performing’ and are useful for controlling recursive rule sets and for testing whether a rule set is active.

(Not (Performing Manufacturing)) — (Perform Preventive Maintenance) Rule-7

{Preventive Maintenance
(Fouled Robot Filter) — (Schedule Maintenance Robot Filter) Rule-8

(Drifted Robot Positions) — (Calibrate Robot Scrvos)} Rule-9

6. Pretty Printing

After a sct of rules has been written, it is straightforward to pretty print the programs as English text. By
removing the parentheses and adding the appropriate syntactic sugar to the clauses, very readable text can be
genecrated. It can then be further improved by applying a few simple syntactic transformations which
compress redundant text into single compound clauses. For example, the two shower rules (Rule-1 and
Rule-2) can be pretty printed as the following pair of sentences. "When' is used to flag the consequent part of
the rules. Hclper verbs have been added to the verbs and prepositions and articles have been added to the
nouns. Programs arc not written in this form because it would illusively appear as if any English sentence
could be interpreted correctly; they are not natural sentences but rather sentences in a very simple formal
grammar.

15

When the soap and the shampoo have been moved to the shower
adjust the water to be warm.
When the water has been adjusted to be warm

get in the shower.

Pretty printing simple rules is a matter of printing isolated sentences. This becomes much more difficult
when there arc active terms, nested rules and named objects. All of these constructions require intersentential
relationships. For example, a nested rule like Rule-5 could casily become prohibitively complex. 'Therefore,

the phrase 'consider the following case(s)’ stands for the right hand side of the rule and the nested rules can be
translated in the standard way.

While the robot is moving to the clamp
consider the following case.
When the gauge has been strained

stop the robot.

Named rule sets are convenient logical segments that can be used to break up text into sections. For

example, the rules Rule-8 and Rule-9 make up a program that can be paraphrased as a text segment with its
own title,

When the cell is not performing manufacturing tasks
it is time to perform preventive maintenance checks.
PREVENTIVE MAINTENANCE -
Preventive maintenance checks are defined as the following conditional operations.
When the robot’s filter has fouled
schedule maintenance for changing it.
When the robot positions have drifted

calibrate the robot servos.

Natural language understanding (c.g., English understanding) may not progress to the point where it is
practical to communicate with machines for many ycars. However, there is no rcason why our programs can’t
be read in English today. The whole programming industry has developed into a write only socicty. When
was the last time you took home a program just to rcad? It may turn out that a new generation of
programmers that rcad may be more thoughtful about what programs they write.

16

7. Some Notes On Implementation
There are two pressing goals in this implementation: rcadability and cxecution spced. Task oriented
descriptions are specialized for human consumption and are translated into a form that is appropriate for fast

execution speeds.

Task descriptions are developed on a VAX 11/780 and compiled into machine recadable symbolic
cxpressions which are then downloaded to a DEC PDP 11/23. The compiler and runtime system arc written
in OMSI PASCAI. and many low level Lisp-like primitives make up their basic programming tools. The
result are PASCAL. programs that read more like LISP than PASCAL.

The Databasc is also developed on a VAX, and it is also compiled into a machine rcadable memory
structure. ‘The English words which are defined by the database are input to the rule’s compiler so that they
can be replaced by machine pointers before they are passed along to the 11/23.

Finally, the task descriptions arc being used to control a complex manufacturing cell in a Westinghouse
factory [Wright 82]. 'The cell manufactures turbine blade pre-forms from cylindrical bar stock using nine
machine tools, a supervisory computer and ten machine controllers.

8. Summary

An application program has two basic parts. A sct of rclational tables that describe the physical system and
a sct of rules that update its state. This scparation of power simplifics both the management of information
that is needed to model a physical system and the description of its task. ‘The numbers and other dctails that
can makc a program so difficult to rcad arc not present in the final task description. "This simplification,
together with a language that utilizes familiar linguistic devices results in a program which is rcadable to the
uninitiated.

It is usually time consuming to gather together this database of facts but its structurc is very simple and
automated tools have been built to further aid in the database’s construction. Once the database has been
built, writing the nccessary rules is fairly casy. Many of the details can be left out of the description and the
description that is necessary parallels the information that would have to be given to an human apprentice.
"Under these conditions, perform those actions.” Finally, a novice programmer can look at an existing sct of
rules and understand the primitive words since they are based on English. He can then mimic the syntactic
forms and write new rules to extend the functionality of his application program. Not only can a novice
programmcr update the rule set, but now his boss can read his pretty printed work without having to learn
anything about programming. This unlocks the door to the intelligence of a whole group of bright people
who have never been traimed as programmers and yet can make valuable contributions to the logic of
programs. For the first time programs arc readable.

9. Future Interests

This project has a wealth of future paths which are being actively pursued. The programs in this language
arc cxtremely casy to construct because of its simple syntax. However, a valid criticism is that the available
functions and arguments must be known to the programmer at the time of writing. Therefore, this burden
should be removed from the programmer by giving him access to the database while his program is being
written. For example, the programmer should be able to make the following request during a session with the
cditor.

17

Show me all of the functions and arguments related to robots.

'This request would result in a list of robot functions (c.g., Move, Grip and Emergency Stop) and their
parameters.

The day to day operation of a manufacturing cell is a problem not usually considered as part of
CALY/CAM. However, many of the technigues employed in production should be found useful in product
development (CAD) and process development (CAM). An cxpert system should be able to gencrate a family
of designs that satisfy a set of uscer design constraints. The resulting shapes and knowledge of machining
technologics should produce a series of part programs capable of producing the final product. 'This proccess
can be viewed as a series of language translations: product constraints to part gecometries to machine tool
opcerations to the final production of parts. Concise languages that help describe cach phasc of development
will make the final translation from design constraints to production a tractable problem. 'T'his research and
others like it arc just the beginning.

10. Acknowledgment

I would like to thank my student Paul Fussell for helping me sound out many of these idcas and Peter
Angcline for programming support. In addition, | would like to thank Paul Wright and the members of
Waestinghouse Turbine Components Plant for providing the moral and monctary support nceded to complete
a project of this magnitude.

18

References

[Ardayfio 82] Ardayfio, D. ID. and Pottinger, H. J.
On The Computcer Control of Robotic Manipulators,
In G. D. Gupta (editor), Computer In Engineering 1982, pages 59-64. ASMF August, 1982.

[Automatix 81] Automatix.
RAIIL Reference Manual.
Automatix Inc., Burlington MA 01803, (617)-273-4340, 1981.

[Bournc 80] Bourne, D.A.
On Automatically Generating Programs for Real 'Time Computer Vision,
Proceedings of the Sth International Conference onPattern Recognition 1:759-764,
December, 1980.

[Bourne 82a) Bourne, D.A. and Fusscl], P.S.
Designing 1.anguages for Programming Manufacturing Cells.
In Proceedings of Electro/82. 1EEE, Boston, MA, May, 1982,

[Bournc 82b] Bourne, D. A. and Mashburn, H.
Cell Programming: A User’s Guide.
‘Technical Report, Robotic’s Institute, Carncgiec Mellon University, 1982.

[Forgy 79] Forgy, C. L.
On The FEfficient Implementation of Production Systems.
PhD thesis, Carncgic-Mellon University, February, 1979.

[Franklin 82] Franklin, J. W. and Vanderbrug, G. J.
Programming Vision and Robotics Systems with RAIL.
In Robuts VI, pages 392-406. Robotics International of SME, March, 1982,

[Grossman 82a] Grossman, D. D.
Robotics Software At IBM.
In G. D. Gupta (cditor), Computer In Engineering 1982, pages 73-75. ASME, August, 1982.

[Grossman 82b] Grossman, D. D.
Dccade of Automation Research at IBM.
In Robots VI, pages 535-543. Robotics International of SME, March, 1982,

[Licberman 77] lLicberman, L. 1. and Wesley, M. A.
AUTOPASS: An Automatic Programming System for Computer Controlled Mcchanical
Assembly.
1BM Journal of Research and Development 21(4):321-333, July, 1977.

[l.ozano-Perez 79]
l.ozano-Perez, T.
A l.anguage for Automatic Mcchanical Assembly.
In Patrick H. Winston, Richard, H. Brown (cditor), Artificial Intelligence: Artificial
Intelligence An MIT Perspective, , pages 245-271. T'he MIT Press, Cambridge, MA,
1979.

19

[Montague 74] Montague, R. ‘
Formal Philosophy: The Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974,

[Muijtaba 79} Mujtaba, S. and Goldman, R.
Al User’s Manual.
Technical Report Memo AIM-323, Stanford University, January, 1979.

[Mujtaba 82] Mujtaba, M. S., Goldman, R. and Binford, T.
The Al. Robot Programming I.anguage.
In G. D. Gupta (cditor), Computer In Engineering 1982, pages 77-86. ASML, August, 1982,

[Paul 77] Paul, R. P.
"WAVE: A Model-Based |.anguage for Manipulator Control,™.
The Industrial Robot 4(1):10-17, March, 1977.

[Paut 81] Paul, R.P.
Robot Manipulators: Mathematics. Programming and Control.
The MI'T" Press, Cambridge MA, 1981.

[Popplestone 78] Popplestone, R.J., Ambler, A.P. and Bellos, .
RAPT: A lLanguage for Describing Assemblics.
The Industrial Robot 13:131-137, September, 1978.

[Quine 59] Quine, W. V. O.
Methods of Logic.
Holt, Rinchart and Winston, New York, 1959,

[SIGGRAPH 791 SIGGRAPH Standard’s Committee.
A Quartcrly Report of SIGGRAPH-ACM.
SIGGR APH 13(3):759-764, August, 1979.

[Unimate 80] Unimate.
User’s Guide to VAL: A Robot Programming and Control System.
Unimation Robotics, Danbury, CT" 06810 (203)-744-1800, 1980.

[Waterman 78] Waterman, D.A. and Haycs-Roth, F.
An Overview of Pattern-Dirccted Inference Systems,
In Waterman, D.A. and Hayes-Roth, F. (editor), Pattern- Directed Inference Systems, , pages
3-22. Academic Press, New York, 1978.

[Winograd 71] Winograd, T.
An AL Approach to English Morphentic Analysis.
Memo 241, Artificial Intelligence Laboratory, M.LT., February, 1971.

[Wright 82] Wright, P.K., Bourne, D.A., Colyer, J.P., Schatz, G.C. and lsasi, J.A.E.
A Flexible Manufacturing Cell for Swaging.
In Manufacturing Cells and Their Subsystems. 14th CIRP International Seminar on
Manufacturing Systems, Trondheim, Norway, June, 1982,

