
Using the Feature Exchange Language
in the Next Generation Controller

David Alan Bourne
Duane T. Williams

CMU-RI-TR-90-19

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

August 1990

Copyright 0 1990 Camegie Mellon University

The work described in this document was supported by Martin Marietta, Information dr Communications
Systems as part of the Next Generation Workstation/Machine ControIIer WGC) Program.

ii

Contents

1 . ExecutiveSummary .. 1

2 . Introduction .. 3

3 . CurrentStatusofFEL .. 7 .

4 . Functional Requirements for NML .. 14

5 . Programmability ... 20

6 . Graphical Interfaces to FEL and NML 31

7 . Efficiency Issues with E L ... 33

8 . Enhancements to the Generic FEL Application 35

9 . Conclusion .. 41

Bibliography .. 43

Appendix A: Commentary on the NGC Requirements Definition Document 44

iii

Abstract

The Air Force has two ongoing initiatives to aid the ailing U.S. Machine Tool Industry.
The first is the Intelligent Machining Workstation (IMW), which has the goal of auto-
matically producing one-off quality parts. The second is a Next Generation Controller
(NGC) initiative, which has as its primary objective to design and specify an open ar-
chitecture controller for machine tools.

This report analyzes whether the integration language developed for the IMW is ade-
quate to support the requirements of an integration language needed to build the NGC.
The W s Feature Exchange Language (EL) is a simple message oriented language
designed to integrate diverse modules. The NGC has a specified need to design a Neu-
tral Manufacturing Language, which can be readiIy used to integrate diverse third-par-
ty modules into a coherent controller. We show how with a few minor extensions FEL
can be used to meet this need.

V

.-

1. Executive Summary

The Feature Exchange Language (E L) is a simple language that was designed for com-
municating modules. It was initially developed at Carnegie Mellon as part of the Air
Force’s Intelligent Machining Workstation (IMW) program. In this context, FEL was
used to represent part geometry and communicate between IMW modules: a planner, a
modeler, a cutting expert, a holding expert and a low level controller.

The Next Generation Controller (N G Q has some modules in common with IMW, but it
also emphasizes lower level processing and timing constraints, namely, the system
must be fast enough and it must act on time. In addition, the NGC must be designed so
that third party vendors can readily include their modules (e.g., a new collision avoid-
ance package or a new boar& for 3 - d motion control).

As part of the NGC architecture, a Neutral Manufacturing Language WML) is pre-
sumed to tie together the various NGC modules. However, this language has also been
envisioned as a means of programming the NGC, which could mean many things de-
pending on the components of a particular controller. For example, a particular NGC
controller could have a 3-axis motion controller, a set of special purpose vision boards
and a higher level part programming environment. All of these components must be
programmed in our new language. The question answered by this report is: ”Does FEL
suffice and, if not, how would it have to be extended to satisfy the requirements of
NML?”

This report gives several different detailed examples of how FEL could be used to pro-
gram different representative NGC modules and their connections. For example:

Programmable Modules or Boards - Some modules and board are
programmable in the sense that they can interpret their own language com-
plete with control structures and other programming devices. In this case,
the program or parameters to a program must be represented in NML.

Module Configuration or Board Configuration - Some modules (or
boards) are mostly hardcoded for a articular task, but it is possible to set

this case, the names of the registers and their values must be represented in
NML.

Part Descriptions (like PDES) - The NGC is going to include a planning
module and it will almost certainly be feature oriented. In this case, the fea-
tures of the part and their parameters must be represented in NML.

Process Oriented Part Descriptions m e NC data) - A design feature of a
part does not necessarily match a process features (i.e., how that feature is
made). In this case, the process data must be represented in NML.

Connecting Modules - There are many possible modules that can make up
an NGC and they must all communicate in NML..

key registers and control the path o P data and a few internal functions. In

1

These examples describe what NML must represent. And yet there are other key con-
straints on NML, which will shape the language and its implementation.

Perhaps, the most important additional constraint is performance. In this case, it should
be possible to pass messages between modules very quickly, for example, it would be
possible to have a binary representation of FXL messages and that the only data that is
actually sent is a pointer to the message. The purpose of this extra level of representa-
tion would be to eliminate overhead between modules so that third party vendors
could design cooperating modules even for time critical tasks (eg., a collision avoidance
algorithm internal to a motion controller).

However, no matter, how the messages are sent they should have a uniform view to a
human developer, system tester or diagnostiaan. Therefore, the tool used by these
users of the system should be abie to transparently view messages in the most readable
way (e.g., a text representation or an iconic representation).

Some components of the language are task independent and some are task dependent.
The task independent elements should become a standard part of the language, while
the dependent parts should be possible to change or update according to the particular
NGC being configured and what modules make it up. Some examples of task indepen-
dent features of the language include:

(1) Transporf information - The name of the sender and the receiver of a mes-
sage is necessary to deliver a message.

(2) Time information - Because most of the information in an NGC is time crib
ical, we are choosing to make time constraints a standard component of a
message.

Protocol information - There are various protocok between modules and
the message should reflect the state of a particular transaction (e.g., if the
protocol is simply SEND and RECEIVED then a message should be marked
as one or the other).

(3)

We believe that a simple language like FEL will make a good initial model for NML, be-
cause it is simple enough to convey to third party developers and it makes it feasible for
programs to automatically generate and understand messages. However, it does place
some constraints on the NGC architecture, namely, most of the control structure of an
NGC must be internal to the modules rather than between modules.

2

2. Introduction

This document is a detailed, comparative evaluation of the Feature Exchange Language
(FEL) and the Neutral Manufacturing Language (NML), aimed at determining the ex-
tent to which FEL already achieves the goals of NML.

2.1. Languages and Computational Models

The first question that must always be asked when designing a new language is: why?
There are two simple reasons for having a language in the first place and possibly de-
signing a new one:

(1) Standard Communications - The reason to be for a language is simply a
convention for communicating ideas between people, people and machines
and just machines. Clearly, every participant in a communication must be
able to "speak the language" in order for it to be considered successful. The
problem is that in manufacturing virtually every system is programmed dif-
ferently and wants to communicate in a different way. It is no wonder that
true Computer Integrated Manufacturing has proved to be so difficult.

(2) A Good and Simple Way to Think - Besides multi-party communications,
a language also gives people and machines a way to "think." For example,
there are some simple analysis problems that are virtually impossible with-
out calculus, but with it are incredibly simple. Yes, calculus is a language, it
provides new words (and therefore new concepts) and Iegal ways of manip-
ulating and combining those concepts. When computers are involved, we
call this a computational model.

The objectives of the NGC project have strong requirements for a standard way of com-
municating between many different types of computer modules; as well as providing a
good and simple way to describe the solutions to all sorts of control problems.

2.2 A Brief History of Manufacturing Control Languages

This section gives a brief and incomplete history of programming languages used for
manufaduring to try and pinpoint what has been the result of past attempts to intro-
d u e something new.

An early Air Force program in the 1950's also had an objective of standardizing the way
we control machines. The result was Numerical Control data or NC programming,
which frankly was almost too sumssful. It was such a radical improvement over past
ways of controlling machines, that it has lasted until now and 1s still ing strong.

ing of computer science and computer languages have gone through major changes,
possibly 5 times. With each one of these changes, there was an attempt to keep up in
manufacturing circles; however, it was only the Fortune 100 companies that could really
manage these changes.

However, the world has not stood still during this time and our ide-as an Cr understand-

3

As Fortran became the dominant saentific programming language for computers in the
1960's, APT (A Programming Tool) was developed to try and keep pace by providing
Fortran-like representations of numeric formulas. The problem with APT was that it re-
quired the use of the 'large business machine" in order to convert it into NC data.
Small companies didn't have this machine at all, and big companies had feuds over
who could use the "business machine" and who had priority.

In the late 1960's and 1970's, computer science began to advance quickly as the "struc-
ture of programs" was better understood. As a result, "structured programming" be-
came popular with languages like Algol and Pascal (and many others) gave program-
mers simple tools to organize and manage the control structures in their programs.
These languages evolved their way into still other languages such as C and ADA, which
address the need to have low level access to a machine and to manage multi-million line
projects, respectively.

To some degree, manufacturing skipped structured languages altogether, although
there were a few important forays into very high level languages by powerful research
groups (such as IBMs AUTOPASS, but this was a project before its time). About 10
years later, small companies that made robots and vision machines, began to develop
structured languages (e.g., Unimate's VAL and Automatix's RAIL). Finally in the
1980's, structured languages caught hold in the biggest manufacturing companies (e.g.,
GM's Karel and IBMs AML) and they also appeared in more of the new products (e.g.,
Adept's V+).

In the late 1980's and now the go's, everyone is discussing object oriented programming
based on Smalltalk, C++ and other languages that have been developed in computer
saence. Also Symbolic languages based on LISP, PROLOG and various Expert System
shells have been used to some degree. However, not much of this has made its way
into broadly accepted practice.

From these experiences, we can see an unusual trend. Programmers complain, but in a
few years they move on to the new methods. However, in manufacturing there is a
sense in which only 10% of the community moves on to the next computational
paradigm. The result is that NC programming is still dominant, and the chief contend-
er is still ladder logic that predates NC prog'amming.

2.3, Other Areas Manufacturing has Used Languages

The previous section concentrated on languages that control machines. This section will
just list a few other areas that have been accepted and used by the manufacturing com-
munity:

(1) Business - The business groups in manufacturing have essentially kept
pace with IBM, they have used COBOL, PL/l and RPG to do their work
without too much regard to anyone else. Finally in the 1980% this has
changed somewhat as more and more businesses rely on personal comput-
ers and electronic spreadsheets, and specialized accounting packages.

4

Design - Designers in manufacturing companies have also gone off on their
own and developed various methods of describing geometry and other Dit-
ical product data. As a result standards, such as IGES and tolerance stan-
dards have emerged and they are now quickly evoking to more symbolic,
or feature-based, representations of products (e.g., PDES).

Machine to Machine Protocols - During the 1970’s, manufacturing compa-
nies were hopeless when it came to protocols for tying machines together.
This was realized in the 1980’s; many companies partiapated in the devel-
opment of the Manufacturing Automation Protocol (MAP), while those who
could not wait started to use the computer companies’ accepted products
(Xerox’s Ethernet, DEC‘s Decnet and 1BMs token ring). While we have had
many successful Machine Tool and AUTOFAC shows, I don’t think we
have any m h e M r t g success at this on the factory floor.

Research Groups - There has been no lack of research interest in these
areas, but the impact has been relatively modest. Camegle Mellon’s CML,
MITs LAMA, NBS’s hierarchical workpackages, and IBM’s many efforts
have probed the limits of technology.

2.4. The FELs and NMLs Place in This History

The purpose of the NGC and the trend in manufacturing is to begin the process of com-
bining these diverse aspects of the manufacturing business and the product life cycle.
For example, tool rooms, stock rooms, part programming, manufacturing engineers,
machine operators, maintenance people, and system developers have historically been
in different departments and used different computational tools. The NGC is starting to
bring together these various concerns and therefore bringing together the tools of the
past. But they don’t fit together.

The Feature Exchange Language faced this problem in the Air Force’s Intelligent Ma-
chining Workstation program. Industry suggested using various languages for various
tasks: PDES for part description, NISTs workpadcap for wntrol, NC programs for
running the machine, a standard expert system shell, MAP and others (all at once, all in
the same system). Each of these choices is probably fine in isolation, but when put to-
gether they represent a design and programming nightmare. For this reason, FEL was
designed to be as simple as possible, while still covering all of these different areas.

NML has the same problem as FEL, it too is trying to bring together man diverse areas

were covered by EL, but in addition is has to reach down into the bowels of the control
and be able to cope with the real time issues that face a controller. Therefore, this docu-
ment will address these new constraints head on and consider whether or not FEL can
be extended to fill the role of NML.

of the manufacturing business. In many ways, it has to represent all o r the areas that

5

2.5. The Organization of This Report

The sections that follow this introduction were written with the follow goals in mind:

to describe the current state of FEL, both to initiate readers not already
familiar with FEL and to provide a basis for evaluating the extent to
which FEL already meets the requirements for NML;

to provide a conceptual framework in which to think about the require-
ments of NML and to say what we believe the requirements are from the
point of view provided by the fundamental questions that define this
framework;

to show by example how FEL satisfies many of the requirements of
NML; and

to explain some enhancements to FEL which we believe will significant-
ly improve the language and its operational environment and will reme-
dy some of its key deficiencies and make it a reasonable choice for NML.

Section 3 (re item (1) above) describes the current status of FEL, including its syntax, se-
mantics, and standard execution environment. Section 4 (re item (2) above) discusses
requirements for NML in both eneral and specific terms. It includes a topic which we
feel is especially important: higa-level module-to-module protocols. Sections 5 through
7 aim to satisfy item (3) above. Section 5 contains a set of realistic examples of how FEL
might be used to program various levels of an NGC. The examples employ control and
sensing hardware with which we have first-hand experience. Section 6 discusses
human interface issues. Section 7 talks about the efficiency of FEL Section 8 (re item
(4) above) describes some enhancements that we would like to make to FEL and its
runtime environment, and the motivation for them. Included are: real-time support,
better dialog support, simplified extensibility features, and improved error handling.
Section 9 contains OUT general conclusions. An appendix includes the RDD items per-
taining expliatly to NML and a few comments on each of them.

6

.-

3. Current Status of FEL
The current status of E L , as an operational component of the our IMW prototype mod-
ules, is explained in considerable detail in our report The Operational Feature Exchange
Language (see [I]). In this section we summarize, for those who have not read the previ-
ous report, the main features of the language and of the generic module application in
which it is embedded.

3.1. Basic Syntax

3.1.1. The Grammar

The design of FEL syntax is based on a few simple concepts: (1) sentences, (2) verbs, (3)
attributes with associated values, i.e., attribute-value pairs, and (4) lists.

An FEL sentence consists of a verb and one or more lists of attributevalue pairs. An
FEL verb is a symbol from a table of legal verbs. An FEL attribute is a symbol from a
table of legal attributes. An FEL value is an integer, a real number, a dimensioned inte-
ger, a dimensioned real number, a symbol, a string, or a list of values. We plan to ex-
tend the syntax to effectively allow a list of attribute-value pairs to be the value of an at-
tribute. This new type would be similar to a sfruct in C and a record in Pascal.
(Currently, if such a list were to appear in the value position of an attribute-value pair,
it would be treated as a list of lists of uninterpreted symbols and other values. The
mechanisms that find and extract the values of attributes do not work on such lists.)

Here is what a partial grammar for E L looks like:

= ”(” <Verb> <List of Feature List> ‘3” I ”(“ ”)”

= <Feature List> <List of Feature List> I NIL

t

Sentence

List of Feature List

Feature List = “P <List of Pairs> 3”

List of Pairs = ”(“ <Attribute> <Value> ”)” <List of Pairs> I NIL

The following is an example of a typical FEL sentence, in this case a portion of the re-
sponse of the IMw Process Planner to a request to plan setups for a part to be
machined:

(planned ((name
(type
(to
(from

60942)
message)
hi)
PX) 1

((name plan-boss)
(type planning-op)
(application planner)
(environment h)
(part boss)
(stock S0235)
(translation (0.0 0.5 0 . 2 5)))

7

((name
(type
(method
(ma jor-ref
(minor-ref
(ma j o r g o s
(rn inorgos
{ma jor-normal
(minor-normal
(x-rotation
(y-rot at ion
(z-rot a t ion

((name
(type
(face
(p-vec t o r
(1-vect or
(w-ve ct or
(d-vec t or

((name
(type
(method
(ma jor-ref
(minor-ref
(ma j o r g o s
(rninorgos
(ma j or-normal
(minor-normal
(x-rotat ion
(y-rotation
(z-rotation

(In-
(type
(face
(p-vect or
(1-vector
(w-vector
(d-vec t or

setup-47)
setup)
vise)
mx-6)
m-3)
down)
on-solid-jaw)
(0.0 0.0 -1.0))
(0.0 1.0 0.0))
0)
0)
0)

f ace-4 8)
face)
m-5)
(3.5 2.5 1.5))
(-3.5 0.0 0.0))
(0.0 -2.5 0.0))
(0.0 0.0 -0.25)))

setup-4 9)
setup)
vise 1
mx-5 1
m - 3 1
on-solid-j aw)
down)
(0.0 0.0 1.0))
(0.0 1.0 0.0))
-40)

0)
0))

face-50)
face)
m-1)
(3.5 0.0 1.5))
(-3.5 0.0 0.0))
(0 . 0 0.0 -1.5))
(0.0 0 . 5 0 . 0))) ..

Code Example 1

This entire example is a single FEL sentence with an initial verb, PLANNED, followed by
several feature lists. Each feature list has the required rypE and NAME attriiutes, which
together identify the role that list plays in the context of the sentence. For example, the
hst feature list has TYPE 'face', indicating a face milling operation, and NAME 'face-50',
an arbitraq identifier, which distinguishes this face milling from others. The other at-
tributes that appear in the feature lists are context dependent data that describe the as-

8

sociated operations. For example, the last feature list has a FACE attribute which identi-
fies the side of the stock to be milled; and the various vectors describe the volume of
material that is to be removed from the stock.

In this particular example, the order of the feature lists is significant, except for the first
one, with TYPE 'message', which may appear anywhere. In general, though, neither the
order of the feature lists nor the order of the attribute-value pairs within feature lists
matters.

3.1.2. The Parser and Sentence Generation

The details of the grammar of FEL are implemented by a parser that is automatically
generated from a faunal description of the language using the W X utilities LEX,
YACC and SED. The arser converts the ASCll representation of FEL into a binary
representation that can k accessed by the module.

Sentences of FEL are constructed by means of a set of parameterized functions which
guarantee that the resulting binary representation is in the proper format. Moreover,
the module programmer is insulated from the details of the binary format, both for con-
struction and subsequent access, which makes the implementation of the language
more robust and maintainable.

3.2. Semantics

3.2.1. Meaning is Determined by Use

The meanings of FEL sentences, verbs, and attributes are not predefined, but are,
instead, determined by their use in communication between the various modules. Dif-
ferent pairs of modules may use the same sentences, verbs, and attributes in different
ways and, thereby, assign them different meanings. In practice, of course, the differing
uses of a verb or attribute tend to be related in a sensible way, and it makes sense to en-
courage this.

The IMW Process Planner may be asked to PLAN a part and the Holding Expert may be
asked to PU a setup. Both uses of the verb PLAN indicate that the module receiving

gout a certain action. In the one the request is to produce a sequence of steps for c
case the steps are a sequence of setups that will resu tin the part being produced. In the
other the ste are a sequence of fiituring instructions that will result in the part being
securely he1 r during a setup. There is no reason to have two separate verbs, since each
module is specialized for a particular task and there is no local ambiguity about what a
verb means to a module.

This reuse of keywords in different contexts to mean different, but similar, things is con-
sidered a design feature of FEL It helps to simpliry the language by reducing the vo-
cabulary and, thereby, making the language easier to learn

T

9

.-

3.22. High-Level Protocol Conventions

Above the byte transport protocols, FEL supports its own protocols for designating
which module is to receive a message and for grouping related messages.

Every FEL sentence is required to contain a feature list whose TYPE is ’message’ which
contains values for the attributes TO and FROM. The value of the To attribute, a symbol-
ic name, is particularly important, because it is used by the intermodule communication
facilities of the generic application to route the sentence to the appropriate destination.
The value of the from attribute is normally used as the destination for replies.

Groups of related messages, ‘‘dialogues’’ (as they were called in the IMW), enable mod-
ules to track the progressof requests and to coordinate their actions. FEL sup ort for
dialogues is provided by a feature list (with “type message”) that is required (%y con-
vention) in all messages and by the use of conjugated verb forms. See
Code Example 2, page 11.

Every feature list in an FEL sentence is required to contain at least two attributes: TYPE
and NAME. In the context of a verb, these attributes describe the role of the feature list.
FEL sentences all contain a feature list whose TYPE is “message”. The NAME attribute of
this feature list is taken to be the name of the dialogue of which the message is a part.
This allows the message to be given speaal significance by virtue of its playing a role in
the dialogue. The role it plays is largely determined by the form of the verb.

Every FEL sentence has a tensed verb that is a conjugated variant of a root form. The
variants are (1) present, (2) present partiaple, (3) past, and (4) a negative form that indi-
cates failure to satisfy a request or command. These verb forms enable a module to
tra& its progress in a dialogue. The negative form of a verb provides support for han-
dling errors and certain kinds of errors can be handled automatically by the generic FEL
application, which is described below.

10

(get
((type message) (name PL-003)

1
((type object)

(to MX) (from PL)

(name part-123)
(application currentqatt)
(environment part-geometry)

)
1

(getting
(type message) (name PL-003)
(to PL) (from MX)

(type object)
(name part-123)
(application currentgart)
(environment part-geometry)

(type message) (name PL-003)
(to PL) (from MX)

(type object)
(name part-123)
(application currentgart)
(envi ronrnent part-geome t ry)
(feature (envelope blind-hole-1))

Code Example 2

Code Example 2 shows what a simple dialog looks like. In this case a process planner
(PL) requests information from a modeler MX) about an object named "part-123" that
is stored in a certain area of the modeler's hierarchical database, identified by the at-
tributes APPUCAnON and ENVIRONMENT. The protocol handler in the receiving module
(Mx) uses the feature list with "type message" to direct the re uest to an appropriate
task withiin the module, and returns to the sending module 8 L s a message (with verb
"getting") indicating that the request is being handled. The planner module recognizes
the "getting" sentence as a response to its request because "getting" sentences are al-
ways responses to "get" requests and the sentence it receives has a "type message" fea-
ture list whose name attribute matches that of a request that it generated. The protocol
handler in the lanner makes sure that the "gettin sentence gets to the associated

according to the verb. This results in the modeler retrieving the object named
"part-123" and building a reply sentence (with the verb "got") naming the features that
compose that object. When the planner receives this reply it will have sufficient infor-
mation to request more details about the features ("envelope" and "blind-hole-I"), if it
needs them.

task. The m o f eler task interprets the remaining f eahm lists of the "get" sentence

3.3. Generic E L Application

Within the context of the IMW, FEL is embedded within a standard application for
modules (see Figure 1, page 12). This enables modules to share a common FEL parser
and sentence generation facilities. The lower-level interface to the intermodule mmmu-
nication path is also hidden from the module-speafic code provided by the module de-
veloper.

Intermodule Communication Path
(FEL Network Format Messages)

I FEL Parser & Protocol Handler

Speaalized Module
Functionality ('1 (FEL Internal Form)

Figure 1. Generic FEL Architecture

3.3.1. Module Roles

Modules built within the generic FEL application may adopt either or both of two func-
tional roles. A module may behave as a server process, simply responding to requests
as they are received. Alternatively, a module may behave as a generator of requests in
the process of carrying out a plan. The generic FEL application supports both of these
roles.

The generic application allows a module to remain idle indefinitely until activated by
an event, such as an incoming request The module may then act as a server by sending
a reply to the requesting module. The support provided by the generic application in
this situation includes:

(1) automatic conversion of the incomin message to an internal binary form

automatic generation of a template reply sentence, addressed to the sender
of the request, into which the module can insert the context dependent de-
tails of the response;

which the module can access without L owing the format;

(2)

12

(3) a set of functions for constructing lists of attributevalue pairs and including
them in the reply sentence without having to know the details of the sen-
tence format; and

(4) automatic conversion of the outgoing message to a processor neutral net-
work format.

The generic application also allows a module to be actively engaged in a task and to
also be available to respond to incoming messages, but support for this is weak. Mod-
ules have to be carefully designed to periodically check their message queues. In order
to do this without risk of losing the processor for a long time, they have to arrange for
an event to occur that will wake them up in case the queues are empty. The generic ap-
plication could be enhanced to provide periodic wake up calls for non-server modules.

3.3.2. FEL Parser

The FEL parser is an integral component of the generic application, and its function,
translating the network representation of FEL (which is currently an ASCII representa-
tion) into the internal binary form, is entirely hidden from the developer's module-spe-
cific code. This design would enable a more efficient message transfer to be implement-
ed on a shared memory machine with no visible change to the modules.

3.3.3. FEL Sentence Generation

FEL sentences are constructed at the module level by means of functions that construct
the smallest meaningful components, Le., attributevalue pairs, and combine them as
desired to form feature lists and sentences. This method of sentence generation
explicitly, and deliberately, rejects the idea of hard-coding sentences, with a few param-
eters to be filled in at run-time, and enables the development of modules with consider-
able flexibility in the relation between their internal data and the resulting E L sentence.

From the developefs point of view, this design insures that structurally invalid sentenc-
es will not be produced and possibly transmitted to other modules, while allowing an
unlimited number of structurally distinct sentences to be generated. This approach
eliminates much of the need for validation of individual modules in order to protect the
integrity of a system.

This design also enables the underlying internal representation of sentences to be
changed without affecting module-speafic code.

13

4. Functional Requirements for NML

In this section, we look at the requirements that are imposed on NML by virtue of the
role it is intended to play in the NGC. In a sense, these are the only absolute require-
ments. So, the first and most important question that we have to answer is ’What is the
role of NML in the NGC?”

It is possible that there are other reasonable requirements that should be imposed on
NML, even though they may not be essential to achieving the desired functionality. For
example, it is desirable that NML be relatively simple, so that it can be easily learned,
quickly processed, and relatively robust. So, the second question that we will address is
’What are some of the desirable general features that NML might possess?”

In subsequent sections of this report, we will explore the degree to which FEL satisfies,
or might be modified to satisfy, these requirements.

4.1. What is the role of NML in the NGC?

NML has potentially two roles in the NGC. The most important is that it is to be the lin-
guistic medium for transmitting information between modules. A secondary role is that
it is to be a language in which the behavior of a module may be programmed. We will
see as we develop these ideas that there is no sharp distinction to be drawn between
these two roles.

4.2. Language Requirements

There are several different kinds of requirements that we can describe and analyze for
the NGC and its NML language.

42.1. Complexity Requirements

Computer saentists study the complexity of various languages and try to understand
their abstract properties. As always, we have a situation where we desire a program-
ming language complex enough to do what is required and no more than necessary.

Complexity is usually couched in terms of the Chomsky hierarchy, which describes four
general levels of languages.

Type 3 languages also known as regular languages can be represented as
a finite state machine.

Type 2 languages also known as context free languages can be represent-
ed with a push down stack with f i t e state control.

(3) Type 1 languages also known as context sensitive languages can be rep-
resented with 2 bounded push down stacks with finite state control.

(4) Type 0 languages also known as unrestricted languages can be repre-
sented with 2 push down stacks and finite state control (alias the Turing

(1)

(2)

14

machine).

There are good reasons for choosing from the simpler end of the hierarchy, namely that
the proessing of the languages a t each higher level is provably more complex (compu-
tationally expensive) than the previous levels, and in practice these languages are hard-
er to implement. On the other hand, if the language of choice is too simple, it cannot be
used to express some ideas that we might want to compute.

In the case of NML, we Ian on operating in an environment where there are rich mod-

planning). Therefore, we the see the function of NML as the glue, which binds these
subsystems together. Since the applications of NML are so varied, we must assume that
the messages sent between modules should be able to carry state information, that is,
the state of the communication, which FEL d l s "&dogs." Furthermore, it may be pos-
sible for two modules to be communicating with a third "serving" module at the same
time, which means that the state of two different communications must be maintained
by the server. This complexity is necessary if any NML module is ever to handle multi-
part messages with more than one party.

As we move up the hierarchy, the added complexity becomes more and more difficult
to justify. A type two language is required to handle tasks such as balanang parenthe-
ses. In the communication domain, this would mean the ability of keeping track of dia-
logs within dialogs and still be able to pop your way out of a nested communication in
an orderly fashion. It should be noted that considerably more mechanism is needed for
nested dialogs than than just handling multiple, but separate dialogs.

EL, fully implemented to support dialogs, is a type 3 language since the complexity of
the dialog transition tables have been proposed to be finite state machines. However, it
could be argued that a type 2 language will be ultimately required since it may be able
to handle a kind of "interrupt dialog." We've all had person-to-prson dialogs where
the topic of discussion is changed midstream. It is the rare occasion that people can suc-
ceed at backing there way out of a nested dialog by properly finishing previous discus-
sions. Therefore, we do not believe that this complexity is necessary for NML.

Type 1 and type 0 languages fill out the hierarchy, and there are a few nice models for
handling these richest of languages, such as, Augmented Transition Networks (ATNs),
which look a little like finite state machines (e.g., states and are), but here the arcs can
be attached to full scale programs. Again, we may eventually be interested in this
additional complexity, but we will have to wait for the future computers to offer us con-
siderably more power than is available to an NGC module.

422, Simplicity Requirement

The simplicity of a language is, on one interpretation, the reverse of complexity. But as
we go up the Chomsky type hierarchy, or even as we just add more features to a lan-
guage, the language becomes more and more difficult to implement and draws more
and more computer resources to process it.

One major goal of the NGC and the SOSAS architecture is to make it
possible for third party developers to make NML compliant modules.
This requires a profound simplicity, since the small companies making

d e s that p r f o m comp P ex operations (e.g., motion control, database management and

(1)

15

these products most likely have a limited talent pool for these tasks.
Furthermore, the best talent in a small company is almost never placed
on "integration duty."

(2) The time constraints imposed by a real-time controller demand that the
messages being sent in the NGC can be processed with a minimum of
computational resources. This constraint may eventually be relaxed as
we look forward to the machines of the next century, but for the decade,
the time requirements of the NGC manufacturing processes will contin-
ue to stress affordable computational engines.

We believe that NML's first design should err on the side of simplicity. Once there is
strong industrial acceptance, and relaxed computational constraints, it will be relatively
simple to upgrade the expressive power of NML.

4.2.3. Expressivity Requirements

There has been much discussion of whether NML has to be a "full blown" program-
ming language. Once we have chosen, languages from the bottom of the hierarchy, we
must place more burden on the modules that communicate. However, we must still be
able to control the function of these modules. Chapter 5 illustrates how several differ-
ent kinds of modules can be controlled with a type 3 language such as FEL. Further-
more, the messages in the language should be meaningful and easy to understand. This
was the reason E L chose human readable strings to express commands with attribute-
value pairs as arguments. Chapter 6 develops more fully how the human interface can
be implemented and used.

Note that each statement of FEL is essentially a function call, and the power of the lan-
guage is found in the organization of the messages, that is, messages taken together de-
scribe (and coerce) the flow through the appropriate finite state machine in each dialog
participant.

4.3. Protocol Programming

There are two distinct styles of programming that one can envision for NGC modules.
The first is "operations programming" which is a style of programming that controls
the internal functions of a module. Traditional NC programming is a good example of
this, since the program is loaded directly into the control box and then is interpreted to
control the sequence of operations.

A second distinct style of programming is protocol pr amming, which controls the

relat K messages that are sent between modules. As we see in the next section, protocol
programming or dialogs can be used as a tool in distributed problem solving.

order1 interactions between modules. We use the term T inlog to describe a collection of

16

4.4. IS There a Need for Negotiation between Modules

There are two broad philosophies of control system design that strongly determine how
systems are built and how, in particular, controllers are buiIt. These two philosophies
come under the heading of open-loop and closed-loop control.

In open loop systems, there is a built in assumption that the fundamental algorithms
and/or physical process is repeatable under reasonable environmental fluctuations. For
example, NC programming of a Saxis machining process works without feedback even
when stock supplies change. Minor variations in material hardness and g G n direction
have little or no effect on the machining process. It is said that this level of repeatability
is really all that is needed in the work-a-day environment of industry.

In closed loop systems, there is a built in assumption that the fundamental algorithms
and/or physical processes can never be built with all of the appropriate contingencies
taken into account. To compensate for this lack of knowledge, engineers design sys-
tems that measure the environment during the process and feed these results back to
the control algorithm, which then adjusts its control parameters to make up for the per-
ceived errors. For example, some systems adjust the feed of a machining process a c
cording to an indirect measure of the cutting force. A simple instance of this is to in-
crease the feedrate of a machining process when it is out-of-the-cut and decrease it to a
specified rate as the work engages.

Oddly, each of these two points of view have strong advocates in practice. While in the-
ory virtually no one would argue that open loop systems are better than closed loop
systems, there are many designers that design systems as open loop with a stated view
that feedback can be added as needed, but they then never get around to adding it. As
a result, the US. machine tool industry builds machines that behave poorly as tools
wear and as tool and part materials are changed (e.g., stock steel to stainless). In at least
some of these cases, the technology and control theory are well within the state-of-the-
art and yet there continues to be a strong adherence to this practice.

A closed loop system is a kind of “negotiation” between the assumptions of a hand built
control module and the physical environment. Saenhts are slowly realizing that this
same level of uncertainty can exist between software modules, because they are often so
large and complex that even their designers are no longer sure of what assumptions
they have made in its construction. When two or more modules are brought together in
a complex decision making situation, it is very difficult for one module to know what
information the other module(s) need and how they will behave once they get it. For
example, most 3D modeling systems su port (unqualified) the intersection of two well
defined solids. And yet, when a solid o P modest complexity is: (I) copied to another ob-
ject (2) rotated slightly and (3) intersected with the original object, it will result in a
hard-crash of many of these systems.

The idea of “negotiation” between modules has the same underlying spirit as closed
loop control, but it operates between software objects instead of a control system and its
physical counterpart. The feedback provided between two modules can provide virtu-
ally any kind of information:

17

(1) error messages indicating the lack of ability to carry out a particular func-
tion,

(2) suggestions of how something might have been done better, such as the
choice of a different tool or fixture,

a proposed solution to a small aspect of a complex decision problem such as
process planning,

status reports, such as a task is late meeting a deadline but it will produce a
good result, a task completed, or even an old fashioned error-control signal.

(3)

(4)

Just as with closed loop control systems, negotiating modules must be designed to be
convergent and stable. That is, they must work together to quickly come to a solution
and the suggestions (or whatever) should vary smoothly or at least consistently. For ex-
ample, all dosed-loop control systems oscillate (e.g., go slow, faster, faster, faster,
slower ...I but they should be designed to not oscillate wildly (e.g., go fast, stop, go fast,
stop, ...). Both divergent and unstable behavior should be carefully avoided in the d e
sign of cooperating modules.

4.4.1. FEL’s Contribution to Negotiation

While a messageoriented language such as FEL cannot guarantee the modules will be-
have properly, the language and its environment can make it relatively easy to build
closed-loop module to module systems. FEL has been designed with this in mind.

4.5. Embedded Languages

One of the desired features of the NGC is that it should be able to incorporate existing
technology. But existing devices and software systems do not understand NML. In
order to use them, while satisfying the requirement that all modules communicate
using NML, it will be necessary to adopt one of two approaches:

(1) either build a sophisticated NML frontend for such devices

(2) or build into NML the capability to transmit “foreign” languages to a rela-
tively simple frontend that would then extract the ”foreign” text and pass it
directly to the device.

The latter solution has serious disadvantages. First of all, each module that needs to
communicate with the device would have to contain some “knowledge” of the archaic
language, even if only in a fixed collection of pre-coded programs, stored statically.
This would make it more difficult to eventualIy eliminate the archaic langua e, since

of solution (2) is that the burden of supporting such a device is placed on multiple
users, i.e., the developers of other modules that communicate with the device, rather
than on the single develo r of the pre-NGC device itself. This would likely increase
the overall effort (and cost zp required to support the device. Aside from the initial devel-
opment cost, any upgrades to the device that affect the interface may require a change

there would be more existing instances of it to be eliminated. The second disa c f vantage

to every module that uses the device. Finally, developers, or programmers, of modules
would have to learn multiple languages, rather than simply NML. For these reasons, it
is not a good idea to embed other languages in NML for the purpose of supporting pre-
NGC devices.

Fortunately, pre-NGC devices can be accommodated in the NGC architecture by
building a sophisticated NML frontend for each of them (i.e., solution (I)). This is a task
that need be done only once per device. The end result would be that the device would
be instructed to perfom its functions by means of standard NML expressions-such as
would be used by modules originally designed to speak NML.-which the frontend
would convert to the (now) hidden archaic language.

It is important to realize that adopting solution (I) does not require that NML contain
programming control and data representation syntax comparable to the syntax under-
stood by all the various devices that might be retrofitted with a frontend for use in the
NGC. The most that is required is that the functionality of such devices be accessible
via NML. It is not necessary that that functionality be achieved in the same way that it
would ordinarily have been achieved using only the archaic language built into the
device. Furthermore, some of the underlying functionality may simply not be needed
in the context of the NGC.

19

5. Programmability

In this section, the range of FEL programmability of various aspects of the NGC is illus-
trated by means of semi-realistic examples drawn from our experience with the IMW.
We divide OUT examples into two broad categories: operations programming and pro-
tocol programming, with the bulk of the examples falling in the former.

Kee in mind that aII of the examples shown here are just one way of employing FEL to

natives that could have been chosen.
per P o m the illustrated tasks. In every case there are reasonable, possibly better, alter-

5.1. Operations Programming

Operations programming is the production of instructions that activate the internal op-
erations of a module. The examples below illustrate the capabilities of operations pro-
gramming in FEL that we Mieve indicate its suitability for the complex open architec-
ture environment of the NGC.

5.1.1. Feature-Oriented Part Programming

FEL has been extensively used for feature-oriented part programming within the con-
text of the IMW. In particular, the detailed geometrical part descriptions are introduced
into the IMW in FEL format and all of the IMW test parts produced by the IMW were
described in FEL.

The following example of a description of an tMW test part illustrates the how FEL can
be used to convey a geometrical part description to the IMW Modeler.

; IMW Test Part 2

(add

; Define the object with default environment and application
; Specify position vector and three orthogonal edge vectors-

((type object)
(name myobj 1
(p-vector (0. 0. 0.1) ; location of one corner
(w-vector (2.312 0. 0.)) i x (horizontal) vector
(1-vector (0. 2.582 0 .)) ; y {vertical) vector
(d-vector (0. 0. .15))) ; z (depth) vector

; Define the three thru holes for the object, specifying a position
; vector, the axis of the hole and its radius

((type thru-hole)
(name holel)
(object myobj)
(p-vector (.375 2.207 0 .)) : location of center

(d-vector (0. 0. .15))
(radius .172))

i depth vector
: hole radius

{ (type thru-hole)
(name hole21
(object myobj)
(P- vector (1.375 1.312 0.))
(d-vector (0 . O. .is))
(radius .172) 1

((type thru-hole)
(name hole3)
(object myobj)
(p-vector (2 . .312 0.))
(d-vector (0 . 0. .15))
(radius . 1 7 2) 1

; Define the angled side of the part as a thru slot, which is
; basically just a parallelopiped

{ (type t h ru-s 1 o t)
(n a m anglel)
(object myobj)
(P- vector (2.312 .312 0.)) i location of one corner
(w-vector (1. 0. 0.1) i x vector
(1-vector (-.507 2.582 0.)) ; y vector
(d-vector (0. 0. .IS))) i z vector

i Define the ends of the part as swept cylinders

((type
(name
(object
(p-vector
(d-vector
(or-vect or
(angle
(radius

I (type
(name
(object
(p-vector
id-vector
(w-vect or
(angle
(radius

swept-radius)
topradius)

(-375 2.207 0.)) i center of rotation
(0. 0. 0.15)) i axis of cylinder
(0. 0.625 0.)) i location of cylinder
40.) i degrees of rotation
.25)) i radius of cylinder

myob j)

swept-radius)
bot tomradius)

(2 . .312 0.1)
(0. 0. 0.15))
(0.562 0. 0.))
-180.)
- 2 5)

myob 5)

i Define the circular edge of the part aa a thru hole

(type thru-hole)
(name cutout)
(object myobj)
(p-vector (-2.081 -1.543 0.))
(d-vector (0. 0. .15) 1

(radius 4.235)

((type message)
(name mymes sage)
(to m)
(from ui

Code Example 3

5.1.2. NC Programming

Traditional NC programs can be represented in FEL in several wa s. A straightforward
representation is shown by the following example (a program ry ragment) of NC code
and then equivalent FEL instructions, in which each line of NC code is represented by a
feature list in an FEL sentence.

00030 T21121001 M06
NO040 S1528 M03
NO050 GOO X0.6000 Y-1,0000 22.6000
NO060 GOO X0.6000 Y-1.0000 22.2800
NO070 GO1 X-4.1000 Y-1.0000 22.2800 F18.3000

Code Example 4

(execute ((type
(name
(toolnumber

((type
(name
(speed

((type
(name
(position

((type
(name
(position
(type
{name
(position
{ feedrate

)

Toolchange)
cx-0 00 1)
21121001))

cx-0 002 1
Spindle-ON-CW)

1528 RF’M) }
RapidPositioning)
CX-00 0 3)
(0.6 -1.0 2.6) 1
RapidPositioning)
CX-00 0 4 I
(0.6 -1.0 2.28) 1
LinearInterpolation)
CX-0 0 0 5 1

18.3 IPM))
(- 4 . 1 -1.0 2 .28)

Code Example 5

One question that arises in an example like the above is “Why is a NAME attribute
required in each of the feature lists?’’ Unlike the modeler example of
Code Example 3, page 20, the names in this example do not seem to be playing an identi-
fying role. But they would play such a role in the event of an error, since the names
could then be used to refer to specific instructions that caused the error.

5.1.3. Motion Control

The following example illustrates how FEL can be used to send commands to a low-lev-
el motion controller (in this case the GALIL 3-axis DMC-230).' The motion to be pro-
duced is shown in Code Example 6 on page 23.

6172

5ow

0

Figure 2. Motion Path for Code Example 6

One set of instructions that may be sent to the controller to produce this motion are
shown in Code Example 6 on page 23 (the comments on the right in the example are not
sent).

VP 5000 ,5000 Initial 45'straight segment
CR 4000,135, -45 Circular segment
VP 10000,6172 Final straight segment
VS 4000 Vector speed
VA 100000 Vector acceleration
BGS Start the sequence

Code Example 6

The FEL sentences that c a m this set of intntctions to be sent to the controller might
look like those in Code Example 7 on page 24. An important thing to keep in mind
about this example is that the details of the E L sentences need not correspond oneto-
one with the details of the low-level instructions actually sent to the controller. The
module that converts the FEL sentences into the low-level instructions understood by
1. The diagram and GAUL instructions for this example wen? borrowed from the GAUL DMC230 Se-

ries Lker Manual.

23

the hardware may be designed to provide a different, perhaps enhanced, interface to
the hardware than the hardware manufacturer supports.

(define
((type coordinated-sequence)

(name sequence-1)
(vectorgosition (5000 5000))
(circle (4000 135 - 4 5))
(vectorgosition (10000 6172))
(vector-apeed 4000)
(vector-acceleration 100000)

)
1

(start
((type coordinated-sequence)

)

(name sequence-1 I

)

Code Example 7

For example, an alternative EEL sequence to perform the same motion is shown in
Code Example 8 on page 24. Here the user defines parameters for a higher level motion,
a circular comer, not directly supported by the hardware.

(define
((type coordinated-sequence)

(name corner-1)
(circular-corner (

(approach (7071.07 45))
(turn (4 0 0 0 -4511
(follow-through (2172 0)))

)
(speed 4000)
(acceleration 10 0 00 0 1

)
)

(start
((type circular-corner)

1
(name corner-1)

1

Code Example 8

The above example is a simple one, because the control it illustrates can be accom-
plished with a sequential list of parameterized commands. FEL is well suited to this
style of programming, but the motion controller used in this example is capable of
being more generally programmed and users will want tu take advantage of the fea-

24

tures that this provides. In particular, the language built into the controller has vari-
ables, labels, conditional branching, and parameterless subroutines, In order to take ad-
vantage of these features, FEL would have to be significantly enhanced, or else the mod-
ule that controlled the GALE board would have to be designed with a higher level in-
terface.

5.1.4. Image Processing

In this section, we Will describe how FEL can be used to send commands to specialized
image processing hardware to control real-time image processing functions of a Sensing
Expert module. We will use Datacube’s MaxVideo hardware and MaxWare software as
the basis for our examples. These VMEbus boards, Unix device drivers, and C library
interfaces are among the most sophisticated, affordable, general purpose image process-
ing hardware avaifabk.

5.1.4.1. Datacube Interface

The standard user program for a set of Datacube boards is much more complex than the
interface to the GALL motion control described in the previous section (“Motion Con-
trol”). Datacube‘s MaxVideo boards are designed to be used in grou s, with the boards

are many different kinds of Datacube boards, each capable of several related functions,
and many possible linkages between them. To function properly as an image process-
ing pipeline, the boards usually have to operate in synchrony with each other. To col-
lect meaningful data from a pipeline, the user has to wait until the end of a processing
cycle. These timing dependenaes are coordinated by means of interrupts which are
handled and hidden from the user by a special Unix device driver. Commands to the
Datacube hardware are queued and subsequently sent to the hardware after the first in-
terrupt following a flush instruction. Special care must be taken to insure that queued
and immediate instructions are executed in the desired order. In addition, there can be
multiple queues whose instructions are interleaved in order to achieve real time opera-
tion. Not surprisingly, the standard programming environment uses the C program-
ming language supplemented by libraries of Waabsupplied subroutines.

5.1.4.2. BuiIding an FEL Datacube Interface

Despite the complexity involved in programming a set of Datacube boards, the FEL in-
terface to a module that conirols the boards can be relatively simple, because the lowest
level procedures that access the hardware just set or get values in registers on the
boards. This allows a straightforward E L interface to be developed, with FEL verbs
and attributes that match the Datacube procedures and their assoaated parameters.

The following examples illustrate this for the DIGIMAX Digitizer and Display Module’s
board setup and lookup tab!e CUT) control functions. In each case, the C interface to
the Datacube hardware is shown, followed by its FEL counterpart. (Portions of an actu-
al FEL message, such as the TYPE ’message’ feature kt, are omitted to Simplify the ex-
amples.)

linked together via their own private high-speed bus, in addition to t K e VMEbus. There

25

DG-DESC' dgOpen (UCHAR' baseAddress, int interruptvector, int verbosity)

(execute ((type dgOpen)
(name sx-0 0 0 1)
(verbose 1)

i hardware base address and interrupt vector
: are assumed to have been determined at
: system initialization: so they need not be
i supplied by the user module

)
1

(executed ((type agopen)
(name sx-0 00 1)
(descriptor 800140)

)
1

The above example illustrates that an E L interface to a hardware/software system can
reasonably be used to insulate a module from some low level details. Once a Datacube
system is configured, the base address and interrupt vector associated with a board are
constant; so modules that use the system shouldn't need to know about them.

dgInit (DG-DESC' descriptor, int LlJTTransfonnValue)

(execute ((type dgInit)

(descriptor 800140)
(transformType unsigned)

(name sx-0 002

1
1

(executed ((type
(name

)
)

dgInit)
sx-0002,

Notice that the DESCRIPTOR, returned as a result in the d

from the module, if desired.

dgConstLut (DG-DE=* descriptor, int LUTvalue)

en example, is supplied as
an argument in the subsequent examples. Even this leve g9p of detail could be hidden

(execute t (type dgConstLut)
(name SX-0 003 1

(value 255)
(descriptor aooi40)

)
1

26

(executed ((type
(name

1
1

dgConstLut)
SX-0 0 0 3 1

As these examples illustrate, it is very easy to construct an E L interface for a system
that can be controlled via a series of parameterized functions. The function names b e
come values of the TYPE attribute in an EXECUTE sentence and the parameters to the
functions are supplied by other attribute-value pairs.

dgWtRlut (DG-DESC' descriptor, SCHAR* dataBuffer, int bufSize, int startAddress)

(execute ((type dgWtRlut)
(name SX-0 00 4)
(descriptor 800140)
(data (1 2 3 4 5 ...))
(start 0)

i note: the module will count the values, put
; them into an appropriate buffer and call the
; C interface with the correct parameters

(executed ((type dgWtRlut)
(name SX-000 4)

1
)

This is another example where the FEL interface is simpler than the underlying C inter-
face supplied by the board manufacturer. In this example, a series of numeric values
are written into a lookup table in the hardware.

dgRdRlut (DG-DESC* descriptor, SCHAR* dataBuffer, int bufSize, int startAddress)

(name s x ~ o o o s ~
(descriptor 8001401
(count 2 5 6)
(start 0)

(execute ((type dgRdRlut)

1
)

(executed ((type
(name
(data

)
)

dgRdRlut)
sx-0 0 0 5 1
(1 2 3 4 5 ...I

In the final example, a series of numeric values are read from a lookup table in the hard-
ware.

27

5.2. Protocol Programming

Protocol programming is the production of instructions that control the interface
between two modules, apart from the internal functionality of the modules. In languag-
es such as Pascal and C the rotocol between two procedures or functions is fixed at
compile time and consists o? compiler generated instructions for passing parameters
and renuning function results. In FEL, the protocol between modules is much more sc-
phisticated. The examples below illustrate the capabilities of protocol programming in
FEL that we believe will also be needed in the complex open architecture environment
of the NGC.

5.2.1. Dialog Example

FEL was designed to support complex dialogs and negotiation between modules. The
protocol that governs such interactions between modules is supported in the language
by requiring a feature list of TYPE MESSAGE to appear in every FEL sentence. The NAME
attribute of that feature list is automatically treated as the name of the dialog of which
that sentence is a part, and all FEL sentences are treated as part of some dialog or other.
An example of a simple dialog is shown in Code Example 2.

5.2.2. Temporal ReIations Example

Temporal relations between a request and a response can also be handled at the
protocol level, independent of module-specific code. The following example illustrates
how two modules might interact at the protocol level.

(make ((type bracket)
(name PO12341
(due-at (4:30 PM 30 MIN))
...

1
I (type

(name
(f rom
(to

)
1

message)
HI-05 32)
HI)
PL)

(making ((type bracket)
(name PO12341
(due-& (5:30 PM 15 MIN)) ...

1
((type message)

(name HI-0532 1
(from PL)
(to HI)

1
1

28

(stop ((type
(name
...

)

((type
(name
(from
(to

)
1

bracket)
P01234)

message)
HI-0532)
H I)
PL)

Code Example 9

The four FEL sentences in the above exampre represent a possible interaction between a
human interface (HI) module and a planning module (PL). The human interface (pre-
sumably because of some w r action) initially requests the planner to make a bracket,
indicating that the result is needed between 4 and 5 p.m. 7'he planning module is un-
able to satisfy this request on time; so it informs the human interface that the bracket is
being planned for a later deadline. This is not satisfactory; so the human interface or-
ders the planner to stop the operation.

5.2.3. Repetition Example

Modules sometimes need to request a service to be repeated some number of times.
This is a sufficiently common activity that it can be handled by the generic FEL
application, ideally in the module receiving the request. The following example
illustrates how two modules might interact in such a situation.

(make ((type bracket)
(name PO12341
(copies 5)

message]
HI-0 532
H I)
PL)

(making ((type bracket)
(name P01234)
(finished 1)

message)
HI-0532)
PL)
H I)

29

...
(making ((type

(name
(f h i s h e d
...

1
((type
(name
(from
(t o

1
1

(made ((type
(name
(copies
...

)
((type

(name
(from
(to

)
)

.-

bracket)
P01234)
5)

message)
H 1-0 5 3 2)
PL)
H I)

bracket)
P01234)
5)

message)
HI-0 532
PL)
H I)

Code Example 10

The control of the repetition in the above example is relegated to the receiving module,
because that's where it can be handled most efficiently. If the modulespecific code is
designed to handle repetition, then it may be able to eliminate recomputing results that
will be the same for each repetition.

On the other hand, if the modulespecific code does not know how to handle repeti-
tions, the generic FEL application level can assume the responsibility for repeatedly ask-
ing the modulespecific code to perform the desired task. The generic application can
provide the functionality of repetition whether or not the developer of a module makes
special provision for it.

6. Graphical Interfaces to FEL and NML (and its use)

There is a concern that once we commit to an ASCII interface language that this design
decision would somehow prevent an NGC system from utilizing results found in a
graphic based object-oriented languages. We give a brief desaiption in this section of
how a graphical programming system could be built on top of NML and how it might
be used. Furthermore, it is suggested that the choice of a simple language such as FEL
would facilitate this effort.

6.1. Views of FEL and NML

Currently, FEL is a series of ASCITmessages that are passed to and interpreted by vari-
ous system modules. This has several advantages for both debuggers and system de-
signers of an NGC system over binary module interfaces (e.g., subroutine calls). De-
buggers can easily read and track messages that flow between modules, even without
access to the internals of particular modules. (Note that third party software developers
will jealously guard their source code and that it will not be possible for a system devel-
oper to track the progress of module internals.) For system designers, the ASCII repre-
sentation of messages provides a simple standard view of data that bypasses many dif-
ficult low-level problems of how to represent data (e.g., representations of floating point
numbers).

While a textual representation of messages has advantages, there are other tasks that
have a preferred view (or representation). Various system development and debugging
tools can provide the user with various sorts of “magnifying glasses” that allow various
users to see the message data in the most appropriate way.

6.2. An Iconic View

Many modem programming environments are iconic and this is becoming the expected
norm (witness the Ap le MacintoshrM and NeXFM machines). The idea is that the tex-

module could watch these messages and display appropriate graphics from above.

With thii iconic view of message data, it would be convenient to build a system wide
monitor, where each module is identified with a particular graphic. As NML messages
are sent back and forth between modules, this would be indicated on the lines that con-
nect the modules (e.g., arrows could be added to represent the direction of data flow).

At a lower level (reached by double clicking on a module’s graphic), each module
would have a series of graphics to represent its task and its performance. The symbolic
and numeric data found in the NML messages could be used to fill in the key parame-
ters that control the overall look and settings of the graphics. For example, a message to
set the furnace temperature could be sent in the usual text-form between a planning
module and a control module. When this message is sent, the graphics interfaces could
oversee it and then change a value in a picture of a thermometer to a new value. In
many cases, you would need to have two ga es to reflect the new module/device set-

measurement.

tual representation o P messages would be flowing between modules and that a user

ting and the last known actual setting wi t i a time marker indicating the time of

31

Eventually, this method of viewing the NGC could be used to program it as well as its
eventual monitoring and diagnosis. Such graphic style of programming has become the
standard in PLC's with ladder logic and more recently with Grafcet for programming
larger scale systems. The basic idea would be to:

draw the overall system architecture of the NGC at the module level,

automatically have implementation modules installed,

have available modules for an NGC dynamically offered to the system
builder for generic tasks (e.g., motion controllers),

offer design advice about any known limitations of a particular module
choice,

review the general class of NML messages that a module can deliver and
receive and setup relative sources and destinations for input and output.

It would be possible for the developer of a module to use similar tools to
develop a module-specific graphic interface, but it is probably not possi-
ble for the system developer to manage this task especially when source
materials are being protected.

Once an NGC system was built with a graphic interface, it could then be simulated with
software generated events. Finally, the NGC system would be ready to control a physi-
cal process and the corresponding graphics (used in development) can now be used to
monitor process events. Diagnosis modules could also be added to safely test hypothe
ses for machine failures.

This vision for the next generation controller is made largely possible by the standard-
ization of a simple interface language, such as NML There is no doubt that it places
more rigorous standards on module developers, but once this is accomplished there
would be an unparalleled ability to build easy to use, robust control systems.

32

7. Efficiency Issues with FEL

The NGC is meant to be a controller for real-time applications and thus it must deliver
task performance both relatively fast and on time. Since, NML is the message-oriented
glue that binds the various modules of the NGC together, the transport and interpreta-
tion of these messages must keep up with the inherent needs of every module. Howev-
er, it should be noted that a "slow" module is not necessarily the fault of NML but may
indicate a poor choice of module decompositions.

7.1. Performance of FEL

In the current implementation of FEL, messages are transmitted between modules in
ASCII and converted to a binary representation for use by the modules. The following
chart shows typical times for messages between modules on I Sun 3/60, although the
times between multiple machines are basically the same.

Messace Situation Timing
Typical network transport time
(process to process via TCP-based sockets on I Sun 3/60)

0.0220 secs/msg.

Typical time in generic application
(parsing and delivery to task) 0.0085 secs/rnsg.

Typical module to module messaging limit 32.8 messages/sec.

Note: These times are sensitive to many parameters that relate to the messagesent, the machines
on which the modules run and the network that they use to communicate. Therefore, these times
should be used as relative timings rather than as an absolute performance measure. For example,
messuge transport times are nof tightly relnted to message size, but rafher to the packet size of
the local area network.

We believe that except for the most demanding applications that this performance is ad-
equate. Furthermore, that by the time the NGC is a commercial possibility that it would
be conservative to expect these times to be improved by an order of magnitude with no
implementation changes.

7.2. Implementation Changes If Performance Must Be Increased

There are several drawbacks to making changes in the representation of a message. For
examples, we consider two likely candidates for improving performance:

7.2.1. Global Binary

On a single machine it would be relatively easy to manage a global communication pool
that would allow messages to be inserted in their underlying binary representation.
Then, when a message is sent between two modules on a single machine it would only
be necessary to pass a handle (or index) into this global data.

Commenfs: Managing the global data is not time-free, since solutions to: memory allo-
cation, memory fragmentation, garbage mllection and module synchronization all must

33

be implemented. Furthermore, this would entail slightly higher message access times
and would not change the performance between machines. h addition to these issues,
the engineering complexity of the overall system goes up considerably, probably mak-
ing it much harder to add new modules (old time Fortran propammers know that the
time maintaining global (or common data) can be excessive relative to other code main-
tenance time).

7.2.2. Remote Procedure Calls

A different strategy entirely would be to try and use procedure calls across module
boundaries. This path would almost certainly increase performance within a machine
and machine class (i.e., Suns). However, it sacrifices the possibility of expanding the
basic language beyond simple subroutine calls. Furthermore, it places a strong limita-
tion on the machines that can be considered NGC compatible. We consider these limi-
tations too stringent to consider further this option.

7.3. Conclusions

We believe that the cost of adding implementation complexity to NML outweighs po-
tential performance improvements. For example, it is possible that the time it takes to
implement a good solution to the “global message strategy,” listed above, would delay
the commeraalization of an NGC and in that same time it could be expected that speed
improvements in available machines could rival the performance increase. Unfortu-
nately, solutions such as accessing global data, or even RPCs, are highly machine and
operating system dependent. So it may not be easy to move to the new-higher perfor-
mance platforms. The software industry has encountered this very issue countless
times.

34

8. Enhancements to the Generic FEL Architecture

Several enhancements to the generic FEL environment are proposed to enable FEL to
satisfy identifiable requirements for NML. In this section we look at those require-
ments, the problems of the current implementation of FEL with respect to those require-
ments, and propose feasible solutions.

8.1. Real-time Support

By "real-time" we mean "fast enough for the purpose at hand." So a computation that
requires several hours to complete will be said to occur in real-time if, on that particular
occasion, waiting several hours for the result is fast enough for our needs on that occa-
sion. For a human user of a time-sharing computer, quarter second response is usually
considered real-time, although high-powered personal computers have been raising
peoples' expectations.

In order to be able to provide real-time response, a computer system must be able to re-
spond on demand within a guaranteed time interval. To interact with such a system, a
language must be able to designate when a response is required, possibly within a time
interval.

8.1.1. Adding Support for Time

There is no built-in support for real-time processing in the current version of E L , ex-
cept for representing values with temporal units, such as seconds, revolutions per
minute, etc. Support for red-time processing can be added to FEL by:

(I) adding some new attributes to the language; and

(2) enhancing the generic FEZ. processing environment to handle the mod-
ule independent aspects of time.

8.1.2. Attributes for Time

Two new attributes can be added to E L that will allow for flexible specification of
when something, such as the completion of a process, is to occur. These attributes are
DUE-BY and DUE-AT, as illustrated in Fi
time line shows the range of times
thing is due by a certain time& plus or minus& means that the request should be satisi-
fied no later than k+& but it is okay for it to be satisfied immediately. Saying that
something is due at a certain time plus or minus E. means that the request should be
satisfied betweeni-g and k+c earlier satisfaction is not acceptable.

36. The bracketed portion of each
request. Saying that some-

35

DUE-BY time t f E

E
0 t

DUE-AT time t f E

L
0 t

Figure 3. Two Ways to Schedule an Event in Time

In FEL, each of these attributes would have as its value a pair of real numbers, (t E),
where the first numbertwould speafy the desired time by which or at which an event
should occur. The second number g in the pair would specify the maximum allowed
deviation of the time of the event fromt.

8.1.3. Generic Processing of Time

The addition of temporal attributes to FEL would enable real-time modules to be
usefully incorporated within systems of modules communicating with each other in
FEL. But, at the very least, each real-time module would have to include code to handle
aspects of temporal processing such as keeping bade of various requests and when they
need to be responded to, informing other modules when a request cannot be handled
within the requested time, storing computed responses that have to be delivered later
and delivering them on time, and notifying other modules of the minimal or expected
time needed to satisfy a request. Some, or all, of these chores could be handled, in
whole or part, by an extension of the generic FEL module environment (see the
subsection "Generic FEL Architecture" under "Current Status of FEL").

8.2. Dialogs

8.2.1. More Support for Dialog Management Needed

Further work needs to be done on the protocol level in the C++ version of the generic
FEL environment in order to rovide better support for dialogs? Currently, it is up to

same dialog name. It is possible to largely automate this.

8.2.2. Possible Improvements

Within the context of our generic application for modules written in C++, the following
improvements could be made in the way dialogs are managed:

Dialogs can be represented as separate tasks using the C++ task system
and thereby take on an added level of independence within a module.

2. The level of support being suggested here Largely exists aIready for the Lisp version of the generic

each module implementer to E eep track of the relationship between messages with the

(1)

application.

36

This representation would provide the implementer a natural place to
maintain dialog speafic information.

(2) The creation of dialog tasks can be automated for dialogs initiated by an-
other module and mostly automated for dialogs initiated locally.

(3) In the process of automating dialog creation, the generic application can
be enhanced to automatically forward incoming messages to the appro-
priate dialog.

It is not necessary that the C++ task system be used. The advantage is that it provides a
straightforward mechanism for representing multiple dialogs in such a way that a dia-
log may be suspended and later resumed, eg., upon receipt of a subsequent message or
after a specified delay.

8.3. Language Extensibility

8.3.1. The Problem of "Compiled In" Names

The current version of FEL has a centrally maintained parser with "compiled in" lists of
verbs and attributes. This has several potential advantages, including:

(1) the language is guaranteed to be syntactically the same in all modules
using the common parser;

the growth of the language is more likely to be conceptually compatible
with previous design ideas implicit in the choice of verbs and attributes,
if one person is in charge of changes;

(3) the chance of error is reduced and the ability to fix errors is enhanced.

Unfortunately, having "compiled in" lists of verbs artd attributes also has some serious
disadvantages, including:

(1) it hinders the distributed development of new modules that require new
verbs and attributes;

(2) any effort to experiment with new sentences impacts everyone, when it
only need impact the modules that will use the new keywords,

someone has to deal with all changes to the language.

(2)

(3)

8.3.2. Dynamic Verbs and Attributes

We propose to simplify the addition of new vocabulary to E L by allowing module de-
velopers to update FEL with new dynamic verbs and attributes that can be added to the
parser's standard list at run time. Since all modules will share a standard "compiled in"
list of verbs and attributes, a set of standard services, e.g., automated error messages,
can be provided and guaranteed. Since all mcdules will have the ability to augment the

37

standard list, development efforts will not be hampered by centralized control.

We will implement dynamic verbs and attributes using files of speaally formatted data
that will be automatically loaded at run time.

8.4. Error Handling

8.4.1. HOW Errors Can Arise

There are many ways in which errors can happen in a system of modules, but errors
will always fall into one of two groups:

errors that result from requests that are in some way invalid relative to
the receiving module's documented (intended) capabilities; and

errors that result from the failure of modulespecific code to perform as
documented.

Errors of type (l), i.e., invalid requests, may be either syntactic or semantic. FEL sen-
tences produced by the functions provided with the generic FEL application will never
be syntactically incorrect, but they may be semantically incorrect in four ways:

(1)

(2)

(I) an attribute may be assigned a value of the wrong type for the request
being made (attributes do not have fixed types);

an attribute may be assigned an incorrect value of the right type for the
response being supplied;

a list of attribute-value pairs may be incomplete for the request being
made; and

the verb may not be meaningful to the receiving module (but will al-
ways be one of the legal verbs of the language).

(2)

(3)

(4)

Errors of type (2), i.e., module-spedfic errors, may result in no response being supplied
to a requesting module or they may result in an incorrect response. The latter may be
semantically incorrect in any of the three ways listed above.

8.42. Approaches to Error Handling

It is desirable for there to be a uniform mechanism for handling errors that arise within
the context of the generic FEL application.

Some ws of errors can be handled automatically by possible extensions to the generic
applicahon, forestalling any possibility of catastrophic failure due to a module's
receiving and mishandling an erroneous message. For example, a module could be re-
quired to provide the generic application with a specification of the FEL sentences that
it is designed to handle (in a non-trivial way). The generic application could then use
the specification to filter messages addressed to the module, passing those that match
the speafication and automatically returning error messages for those that fail to match.

38

In the case of errors that can only be recognized by the module-specific code of a mod-
ule receiving a request, we can provide standard procedures for responding to errors
that will simplify the task of implementing error-handling within modules.

8.4.3. Automating Error Handling

8.4.3.1. An Easy Improvement

A simple way to (partially) protect a module from having to deal with unwanted mes-
sages is to have the generic application filter out messages that have a verb that has no
special meaning to the module. This could be implemented with minimal overhead
within the FEL parser itself.

8.4.3.2. Moderately Complex Improvements

Modules could provide the generic application with more detailed information about
the expected contents of incoming messages. For each verb and type of feature list, a
list of "required" additional attributes could be specified and the generic application
could reject messages that contained feature lists with missing required attributes. This
level of error checking would not involve any changes in FEL, but it would incur con-
siderably more overhead than just checking that the verb is one that the module wants
to deal with. Also, detecting missing attributes is something that happens "naturally"
as a module collects the values it needs to perform the requested function.

Checking that attributes are assigned appropriate types of values is not possible with-
out a change to E L to allow "typing" of attributes.

8.4.3.3. Handling Catastrophic Failures

Modules based on the generic application can be made more robust against certain
types of catastrophic errors. For example, within the Unix environment, some types of
erros, such as division by zero, cause signals to be generated. These signals can be
caught, saving the processing from terminating, and an appropriate action taken. Wor-
rying about errors such as division by zero errors is not a fanciful exercise. The NGC
will need to include sophisticated geometrical modeling capabilities; it is notoriously
difficult to implement reliable geometric algorithms using fmite precision arithmetic
and many such programs can be rather easily be made to crash on valid input3

The generic application already recogTlizes out-of-memo conditions, but does not do

sonable, but it would E2 better to first inform other modules that it is taking place so
they will know that the failed module is no longer available.

Very little can be done to automate handling module-specific errors that result in no re-
sponse from a module, aside from implementing timeouts in the requesting modules.
Asking a module to say why it has not responded to a request is not likely to be effec-
tive if the module was not designed to catch and report an error in the first place.

anything about it exce t for shutting down the process c 7 eanly. The shutdown is rea-

3. For a technical discussion of this problem and a proposal for dealing with it, see tZ1.

39

The generic application cannot do anything about errors that result in the wrong value
(of the appropriate type) being associated with an attribute, though the results are likely
to be catastrophic and unpredictable.

40

9. Conclusion

We have shown that in principle all of the basic functions of NML can be accomplished
with a simple message-oriented language such as FEL. However, in the process of this
exercise we learned several important lessons.

Module Granularity - The required computational power of the language
directly trades off with the sophistication of the modules. This has several
consequences: the control structure of a module’s task must be represented
within the module, hyper-real time applications should probably be left as a
single module.

Representational Adequacy - We have considered various manufacturing
applications of how FEL could be used to communicate. For example, mo-
tion control, hardware board configurations (e.g., vision boards) and part
representation. With the right module decomposition, all of these applica-
tions can be properly serviced with an FEL-like language.

Performance -While it is possible develop schemes for enhancing the per-
formance of a message-oriented language, there is some serious question as
to whether these complex schemes are worth it. The advantage of a lan-
guage such as FEL is simplicity and if this is lost in the name of perfor-
mance then the ease of integration and even the advantages of an open ar-
chitecture begin to be compromised. Furthermore, a simple language can
be processed verv auicklv and this will imurove further as new ulatfoms
foithe NGC evohi.

Representing Time - The NGC has an unambiguous need to obey time con-
straints. Therefore, to properly service this need NML must have a repre-
sentation of time that is globally accepted by the modules.

Dialogs -The requirements of NML do not seem to recognize the need for
”back-and-forth“ communications between modules. A language that only
supports “one-message-at-time” is essentially equivalent to open loop con-
trol. But we know from many years of research in Artificial Intelligence that
virtually every kind of decision requires some level of feedback. This could
be as simple as ‘Do a task - OK” to ”Do a task - I can’t and here’s why” to
”Can you do a task this way - no, but how about this - OK but make sure
you do that - OK”. Furthermore, these discussions may be held in conjunc-
tion with other multi-party dialogs.

Standardized NML Front Ends -Even in this simplest variations of NML,
there is a complexity that must be managed mperly and equivalently by

what NML features they will implement there must be standard package
that can be utilized by ALL modules to support ALL of the NML functions.

a

each module. Rather than allowing a mod up e developer to pick and choose

41

A successful NGC program is heavily dependent on the choice and design of NML.
The acid test will be how difficult it is for third party to developers to use NML to inte-
grate their products. If it is very easy to use NML and io be NGC compatible then the
NGC program will have the best chances for success.

42

Bibliography

[l] Bourne, David Alan, Jeff Baird, Paul Erion, and Duane T. Williams, The Opera-
tional Feature Exchange Language, Carnegie Mellon Robotics Institute Technical
Report, CMU-RI-TR-90-06, March 1990. This is a compilation of several reports
on FEL, including the original design document and the FEL interface descrip-
tions for key IMW modules.
Milenkovic, Victor Joseph, Verifinble Implementafions of Geaefric Algorithms Using
Finite Precision Arithmetic, Carnegie Mellon University, Dissertation in Computer
Science, CMLKS88-168, July 1988.

121

43

44

Appendix A: Commentary on the NGC
Requirements Definition Document

This appendix is a commentary on the requirements in the Next Generation Worksfa-
tionlMachine Controller (NGC) Requirements Definition Document (RDD) that pertain spe-
cifically to NML. In each case, the requirements and associated RDD comments are
quoted, followed by an assessment of how well E L meets these requirements.

1. RDDR-56

REQUIREMENT: The SOSAS shall make provision for entering and displaying
NML sequences in human understandable form using graphic and textual
presentations appropriate for the specific user .

COMMENTS: Because an NML statement may apply to a range of machinery
and processes, it is iuportant to provide the human user of NML with
Context-dependent interpretations of NML statements and sequences.

E L is currently presentable in a textual form suitable for use by module developers.
Clearly, the information conveyed in FEL sentences could be presented in other graphic
and textual formats.

2. RDDR-87

REQUIREMENT: The SOSAS shall make provision for a language in which all
communications with, and within, an NGC can be expressed. This language
shall be named the Neutral Manufacturing Language (NML) .

How well any language satisfies this requirement will depend upon what communica-
tions need to be expressed and that will depend on the implementation of the modules.
Although the syntax of E L is simple, it's expressive power is considerable.

3. RDDR-8S4

REQUIREMENT: The SOSAS shall make provision for expressing in NHL those
elements which an end-user will use in communicating with an NGC.

COMMENTS: These elements will include: descriptions of processes and
their successive levels of decomposition, product descriptions using
features and attributes, and equipment descriptions including the capa-
bility, capacity, and topology of the workstation. Other elements will
be found in Figure 3-1 (of the RDD).

Section 5 of this report includes examples that demonstrate the flexibility of Fn for
communicating with various kinds of modules, including process and product desaip-
tiOnS.

4. This quirement is beyond the scopeof the Air ForceNGC Program.

45

4. RDDR-89

REQUIREMENT: The SOSAS shall make provision for NML statements which
have equivalent meanings across diverse NGC configurations, types of
manufacturing equipment, and equipment-specific processes.

COMMENTS: Example equipment includes machine tools, robots, and dimen-
sion-measuring equipment. The NMl statement "clamp workpiece" is mean-
ingful to each of these types of equipment.

FEL is capable of accommodating this requirement. In fact, a design goal of FEL was to
keep the number of verbs and attributes relatively small, and to make them sufficiently
general so that they could be used to express conceptually similar operations in multi-
ple contexts.

5. RDDR-90

REQUIREMENT: The SOSAS shall make provision for expressing in NML pro-
cess descriptions which can be implemented on a wide range of machinery
using a wide range of processing techniques.

FEL is compatibIe with this requirement. It is currently implemented on two very dif-
fering architectures: a Lisp machine and a Unix machine in C++.

6. RDDR-91

REQUIREMENT: The SOSAS shall make provision for expressing in NML
StateMntS pertaining to every level of the SOSAS architecture.

COMMENTS: The SOSAS should make provision for expressing in NML:

' Upper levels of manufacturing processes, such as machining, as-
sembly, and inspection

* Intermediate levels of manufacturing processes, such a8 turning,
milling, and grinding

- Lower level of generic processes c o m n to manufacturing pro-
cesses, such as continuous motion control, discrete logic control,
monitoring, diagnostics, model definition, and material handling

Low level activities such a8 move, latch and activate.

These "higher-level' descriptions are the basis for translation into
more machinery and process-specific descriptions, which are also ex-
pressed in NML.

These descriptions are applicable not only to a range of machinery and
processes which might be used presently in an installation, but they are

46

appl icable a l s o to upgraded machinery and processes. Thus, they great ly
reduce the cost of upgrading.

FEL is not level-specific in any way; so there is nothing intrinsic to FEL that would pre-
vent its satisfying this requirement.

47

