
1 

SPlE Proceedings Vol. 4109, Critical Technoloaies for the Future of Computing, 

San Diego. CA, July 30-Aug 4, 2000. 

Sensory Computing 

Vladimir Brajovic’ and Takeo Kanade 

The Robotics Institute, Carnegie Mellon University 
Pittsburgh, PA 15213 

ABSTRACT 

Computation in  artificial perceptual systems assumes that appropriate and reliable sensory information about the environment 
is available. However, today’s sensors cannot guarantee optimal information at all times. For example, when an image from a 
CCD camera saturates, the entire vision system fails regardless of how “algorithmically” sophisticated i t  is. 

The principal goal of sensory computing is to extract useful information about the environment from “imperfect” sensors. 
This paper attempts to generalize our experience with smart vision sensors and provide a direction and illustration for 
exploiting complex spatio-temporal interaction of image formation, signal detectors, and on-chip processing to extract a 
surprising amount of useful information from on-chip systems. 

The examples presented include: VLSI sensory computing systems for adaptive imaging, ultra fast feature tracking with 
attention, and ultra fast range imaging. Using these examples, we illustrate how sensory computing can extract unique, rich 
and otherwise not obtainable sensory information when an appropriate balance is maintained between sensing modality, 
algorithms and available technology. 
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1. INTRODUCTION 
Smart vision sensors integrate image sensing with on chip signal processing. These sensors are interesting because they pose 
many implementation challenges while offering significant new opportunities. Smart vision sensors are massively parallel 
systems with tens of thousands of point detectors. They often demand implementation of massive parallelism in a confined 
pixel space. Local communication with immediate neighbors is readily available, but the naive global information exchange 
(such as a general bus) across the collection of detectors quickly saturates available wiring. Yet the on-chip processing 
promises new capabilities and speed. 

Making complex pixel processors and then integrating them in a programmable architecture for image processing (such as 
SIMD - single-instruction-multiple-data’) is an interesting miniaturization of conventional architectures to a chip level, but it 
results in  unreasonably large pixels that find limited applications in high resolution imaging. In addition, many practitioners 
are finding that the on-chip image processing is not necessary to achieve computational throughput. If reliable image data are 
available, conventional DSP chips do a reasonable job for demanding machine vision applications. 

The wide availability and affordability of the CMOS process has spawned a wave of CMOS image sensors. One cited benefit 
of CMOS vs. CCD imaging is ability of the former to include some processing functions on the same chip2. However, the 
CMOS imaging array itself still suffers from limited dynamic range and will saturate in over- or under-exposed scenes. 
Artificial perceptual systems (on- or off-chip) that receive such “imperfect” sensory information about the environment will 
fail in  real-world tasks regardless of how “algorithmically” sophisticated the systems are. 

The on-chi sensory processing has also spawned the area of neuromorphic chips, sensory chips that mimic biological neural 
processes’, . Examples include simple implementations of retinal functions such as local contrast encoding and computation 
of motion flow. This area demonstrated has a myriad of mixed mode circuit solutions whose “unorthodoxy”, creativity and 
circuit compactness far exceeds that of all other smart sensor solutions5. 

Obviously, integrating image sensors and processors in a single chip is not a new idea. While all of these ideas employ 
computation at a sensory level, they do not necessarily perform sensory computing. The principal goal of sensory computing, 

f 

’ Correspondence: tel.: 4 12-268-5622, email: brajovic@cs.cmu.edu, http://www.cs.cmu.edu/-brajovic 

mailto:brajovic@cs.cmu.edu
http://www.cs.cmu.edu/-brajovic


US dejitie it, iJ to extract useful, rich arid othemise not obtainable erivironmerltal irlformatiorl front “in1petjec.t” detectors. 
Although miniaturization and increased computing power usually follow as natural benefits of sensory computing, its 
primary goal is to make better use of available detectors. 

This paper summarizes our experience in  computational sensors and attempts to outline a “guideline” for building superior 
sensors using sensory computing. We will illustrate our points with our own examples and will mention examples of others. 
This illustration is by no means exhaustive and many unmentioned cases will find that their implementation does involve a 
degree of sensory computing. 

We briefly describe the features of on-chip computation that benefits sensory computing. Then we define dimensions to be 
explored when finding creative space-efficient circuits and architectures. Finally, we illustrate how these guidelines are useful 
in  several implementations of sensory computing. 

1.1. Benefits of Sensory Computing 

Top-down adaptation at the sensory level extends the capability of native detectors. Pushing for a brute force sensitivity 
of detectors is one level of sensory improvement. But however sophisticated these detectors may be, the environmental 
conditions always demand more, thereby rendering these detectors “imperfect”. The sensory computing makes decision using 
sensory signals and can adapt detectors properties before the environmental stimulus exceeds the detectors’ native 
capabilities. 

Parallelism over collection of point detectors extends the capabilities of any single detector. Groups of single-point 
detectors, such as pixels in image sensors, detect broader environmental context and provide broader support for more robust 
adaptation. The sensory computing may influence each detector’s value by signals from other detectors. In the extreme, all 
point detectors “agree” on what is the “best” image to report, thus creating a whole whose functionality is greater than the 
sum of its parts. 

Sensory computing enables low-latency parallelism. Low latency, or quick reaction time, is necessary for closing the 
adaptation loop quickly. On-chip parallelism, if implemented correctly, will deliver speed, thus providing information for low 
latency decisions in  time-critical applications. The latency is the most difficult characteristic to scale in parallel systems. DSP 
chips can deliver desired throughput measured by the data update rates at input and output. The low latency, however, can be 
best achieved with sensory computing. 

From our experience, the only time we will want to invest time and effort in designing computational sensors is when the 
sensory signal is not reliable, or when we need low system latency. These two requirements often go hand in  hand: to achieve 
sensory adaptation we need low system latency. 

1.2. Dimensions of Sensory Computing Implementation 

To deliver superior, yet practical, performance in a small pixel and high spatial resolution computational sensors must be 
designed not only to take advantage of available signal processing means, but also, depending on the application, to leverage 
and manipulate the formation of sensory stimuli and transduction of signals. 

Stimulus transduction spans dimension of time. An optical stimulus is a flux of photons. It is modeled as a Poisson arrival 
process whose rate of arrival is controlled with general “intensity” of the stimulus. A photo detector can operate in  
instantaneous mode in  which it reports the level of the photon flux, including the shot noise of the stochastic arrival process. 
When a photo detector operates in a flux-integration mode6, it integrates photoelectrons, thus reducing (averaging) the shot 
noise. In the conventional image sensors, the integration process continues for a fixed integration period, followed by the 
measurement of accumulated charge in each pixel. If the photon flux at some pixels exceeds the limits of the sensor, the 
photo-charge saturates those pixels. Shortening the integration period is the usual remedy for this problem, but at the expense 
of not collecting sufficient photo-charge at the dark pixels. This is a well-known limited dynamic range problem of 
conventional image sensors; a problem that right at the acquisition level limits the entire vision system. In addition to simply 
dealing with the amount of charge collected during a fixed integration interval, the sensory computing can deal with the time 
intervals the detector takes to accumulate a predetermined amount of photo-charge. 

Global and local parallel computation in dimension of space. So far, a great majority of computational sensory solutions 
implement local operations on a single light sensitive VLSI chip. Local operations use operands within a small 
spatial/temporal neighborhood of data and thus lend themselves to graceful implementation in VLSI. Typical examples 
include filtering and motion computation. Local operations produce preprocessed “images;” therefore, a large quantity of data 
still must be read out and further inspected before a decision for an appropriate action is made - usually a time-consuming 



process that creates large latency. Locally computed quantities could be used for adaptation within the local neighborhood, 
but for global adaptation the latency is excessive. Consequently, a great majority of computational sensors built thus far are 
limited in their ability to quickly respond to changes in  the environment and to globally adapt to new situations. Global 
operations, on the other hand, produce fewer quantities for the description of the environment. An image histogram is an 
example of a global image descriptor. If computed at the point of sensing, global quantities can be routed off a computational 
sensor through a few output pins without causing a transfer bottleneck. In many applications, this information will often be 
sufficient for rapid decision-making and the actual image does not need to be read out. The computed global quantities also 
can be used in top-down fashion to update local and global properties of the system for adapting to new conditions in the 
environment. Implementing global operations in  hardware, however, is not trivial. The main difficulty comes from the 
necessity to bring together, or aggregate, all or most of the data in the input data set. This global exchange of data among a 
large number of processors quickly saturates communication connections and adversely affects computing efficiency in 
parallel systems - parallel digital computers and computational sensors alike. 

Sensory computing includes the dimension of stimulus formation. An optical system forms an image on the sensor plane. 
The optics determines the optical preprocessing of the scene. For example, defocusing the optics performs crude low-pass 
filtering. Sometimes we are able to influence the environment by engineered illumination. Illuminating scenes with structured 
light, has been the standard technique for providing salient image feature that would aid in subsequent processing. The more 
conveniently the stimulus is formed, the simpler and more capable the on-chip processing will be. That is important because 
we are limited in  space and capabilities of on-chip processing. 

2. EXPLOITING DIMENSION OF TIME IN PHOTOSENSING 

We have implemented two analog VLSI computational sensors for sensing and encoding high dynamic range images by 
exploiting temporal dimension of photoreception. In addition to simply dealing with the amount of charge collected during a 
fixed integration interval, we deal with time interval required by the detector to accumulate a predetermined amount of photo- 
charge. Both sensors have been reported p r e v i ~ u s l y ~ ~ * ~ ~ .  Here we briefly outline their function for illustrating the benefits of 
exploiting the dimension of time in computational sensing. 

2.1. Multiple Integration Time Photoreceptor 

The first sensor is a multiple integration time photoreceptor that avoids saturation by automatically choosing one integration 
interval from a set of predetermined intervals. When the charge level becomes close to saturation, the integration is stopped at 
one of these integration periods. The receptor encodes the intensity with two signals: I )  the accumulated charge, and 2) the 
identifier of the selected interval. The sensor can represent a wide range of light intensities using these two signals. 

Figure 1 shows the circuit for the MIT photoreceptor, and Figure 12 shows the representative signal waveforms. The receptor 
includes two photodiodes operated in the photon flux integration mode. An inverter thresholds the voltage of the photodiode 
A (Pd-a) and is responsible for detecting saturation. A transparent latch controlled by the train of timing pulses (New-IT) 
acquires the output of the 
inverter during each pulse. The 
periods between consecutive 
pulses define the set of 
available integration periods. 
Each subsequent period is twice 
as long as the previous one. In 
our experiments, we used eight 
integration times per frame; the 
Nth integration period is a 
1/(28-N) of one frame time. 

The photodiode B (Pd-b) 
integrates signal charge. The 
output of the latch samples and 
holds this charge on storage 
capacitor Capl. The latch 
output thus controls the 
duration of photon integration. 

New-IT 
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I 
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Figure 1 : Multiple integration time photoreceptor: a) pixel circuit, b) signal waveforms 



The latch output also samples and holds a ramp voltage in  the capacitor 
Cap2 to memorize the identity of the period at which the Pd-b stopped 
integrating. The ramp voltage is incremented by a predetermined step at 
each pulse in New-IT; therefore, it indicates the number of the interval 
being used. 

Figure 2 shows an early part of a frame. In this example, the illumination 
is such that the second integration period is chosen. Following the reset 
to a high voltage, the two photodiodes integrate the signal charge. Pd-a 
decays, passes the first integration timing (Itl), and then reaches the 
threshold for the inverter at to. The inverter trips from low to high. 
However, the integration gate (IC) dose not change because the new state 
of the inverter output is still not visible at the latch output. Only after the 
integration timing pulse It2 makes the latch transparent for a short time 
( e g ,  Ims) the new state of the inverter affects the samplehold gate IC. 
Then, the integration in Cap1 stops and the identity of the It2 is recorded. 
The blanking gate Blk forces the integration gate (IC) to open at the end 
of the frame if  the light intensity is too low to do so earlier. 

From the two signals, Li-out and It-out, we can reconstruct the actual 
light intensity by multiplying Li-out by 2(8-N), where N is the value of 
It-out. The reproduced outputs are plotted against light intensity in Figure 
5. There are eight segments of this graph, corresponding to the different 

Light Intensity(KHz) 

Figure 2: Reconstructed wide dynamic range signal 
for multiple integration time photoreceptor. The 
varying input illumination is generated by 
pulsating LED. 

- -  - 
integration periods. The transition from one integration period to the next is smooth and the output as a whole shows very 
good linearity over a wide range. The smallest integration period is one 128th of the largest integration time; therefore, the 
dynamic range is 128 times larger than that of a single integration period photoreceptor, for approximately 1:128,000 
dynamic range. 

2.2. The Sorting Image Sensor 

The second method, a sorting image sensor, avoids saturation by sorting pixels according to their intensities. The input image 
may have a large (or low) dynamic range, but the indices assigned to pixels always range from 1 to N, where N is number of 
pixels in  the imager. The sorting in the sensor is based on the biologically inspired notion that stronger stimuli elicit 
responses before weaker ones". The sorting is achieved in analog by dealing solely with the time intervals required by each 
receptor to accumulate a predetermined amount of photo-charge. A block diagram of our implementation is shown in  Figure 
3. A detailed schematic can be found elsewhere'. In our implementation, each pixel integrates a charge until a predetermined 
amount is accumulated. Then, an event is fired. The temporal integration ensures that 
the brighter pixels fire their events before the darker ones. Therefore, the pixel events 
are ordered in  time according to their intensities. An analog global counter tallies the 
events. When the first response is received, the global count is one. This count 
represents the order, or index, of the cell that generated the event. The sorting of input 
signals is thus achieved by assigning the global count to the cell that generated the 
most recent event. The global count is fed back to all pixels. The pixel that fired the 
most recent event memorizes this count as its index. For example, when the second 
cell responds, the global count is two, which is then assigned as an index for the 
second cell, and so on. The more time allowed, the more responses are received; thus, 
the global counter incrementally accounts for all pixels in the array. At the end, each 
pixel contains its own index - an image of indices. This method of sorting is closely 
related to a counting sort for integers". 

Readers may recognize that the image of indices is a histogram-equalized version of 
the original image. The evolving cumulative count is the temporal representation of 
the cumulative histogram of the detected imageI2. The cumulative histogram is one 
global property of the scene that is reported by the chip with very low latency, and 
can be used for preliminary decision-making as soon as the first responses are 
received. 
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Figure 3: Block diagram of the sorting 
image sensor. Only four pixels are 
shown. 
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Figure 4: Adapting to high dynamic range scenes: Sorting image sensor 
(left), CCD image sensor (right). The linear image of the scene is 
reconstructed from the image of indices and the cumulative 
histogram waveform. The reconstructed image is scaled from 
about 18-bits per pixel to 8-bits per pixel to accommodate 
document printing. 

The sensor also uses the cumulative histogram waveform 
to map detected light intensities into indices. This 
waveform can be used for mapping indices back to the 
received intensities. Therefore. the sorting sensor 
encodes large dynamic range images with I) the image 
of indices, and 2) the cumulative histogram waveform. 
The image of indices has uniform histogram indicating 
that the indices are equiprobable. Therefore, when 
storing and transmitting the image of indices, the sensor 
uses the available signal-to-noise ratio most efficiently; 
the image of indices is information-theoretic optimal 
representationi3. Figure 4 shows imaging of a high 
dynamic range scene, while Figure 5 shows imaging of a 
low-contrast scene 

2-3* vs- Data *ggregation 

The multi integration time photoreceptor works well as a 
single point detector. Recently, a full scale imaging array 
using this concept has been reported". This approach 
would deliver a plurality of independent pixel 
measurements each independently adapting to 

Our two methods efficiently encode sensory information 
noise introduced by processing is minimal. Both 
sensors have pixels whose size is less than 30um x 
30um. 

3. EXPLOITING DIMENSION OF SPACE 

We built a computational sensor for optical tracking 
that focuses attention on a local intensity peak in its 
field of view by using self-adapting spatial selectivity. 
Using both low-latency massive parallel processing 
and topdown sensory adaptation, the sensor 
suppresses interference from features irrelevant for the 
task at hand, and tracks a target of interest at speeds of 
up to 7000 pixelskecond. The sensor locks onto the 
target to continuously provide control for the execution 
of a perceptually guided activity. The sensor prototype 
is a 24x24 array of cells. Each cell occupies 62um x 
62um of silicon, and contains a photo detector and 

They are practical because the encoding is easy to interpret and the 
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Figure 5: Adapting to low contrast scenes. The low-contrast shading on 
the background wall is greatly enhanced in image of indices. 



processing electronics. The details of the sensors 
have bccn previously reported . 

Our tracking computational sensor optically receives 
an image, selects a peak in that input image, and 
continuously reports the location and magnitude of 
the selected peak. In  the context of this paper, the 
selected point is called a target. The location of the 
target is global information that is reported as the 
output. The location of the target is also used 
internally to self-adapt the location of the attention to 
implement target locking. 

An image is optically focused onto the array of photo 
detectors. Generated photocurrents are fed to the 
winner-take-all (WTA) circuit22.23, which is 
responsible for the feature selection. The WTA 
circuit also reports the intensity of the winner on one 
globally accessible wire. The cells of WTA are 
organized in  a twedimensional array. 
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array exhibits unreliable behavior; the two targets 
interfere with each other, and the sensor erratically 
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Figure 7: Tracking performance 

(a) (b) 

Figure 6: Select (a) and lock (b) mode of the tracking computational sensor. 

The WTA circuit locates the absolute maximum in the entire image. In practical applications, there are often several targets in  
the scene. The target of interest is not necessarily the strongest. We need to direct the sensor’s attention toward that target. 
Once the target is selected, we need a mechanism that will lock and track the target while the target is of interest and/or a 
perceptually guided goal is being executed. Our implementation solves these issues by inhibiting a portion of the saliency 
map, thus restricting the activity of the WTA circuit to a programmable active region - a subset of the array. Appropriate 
row-column addressing programs the active region (see Figure 6). There are two modes of operation: ( I )  select mode, and (2) 
lock mode. In the select mode, the active region is userdefined by the external addressing (Figure 6a). The active region is 
of arbitrary size and location. The target selected by the sensor is the absolute maximum within this region. In lock mode, the 
sensor itself dynamically defines a small (e.g., 3 x 3 in this implementation) active region centered at the most recent location 
of the target (Figure 6b). The select mode directs the attention toward a feature that is useful for the task at hand. For 
example, a user may want to specify an initial active region, aiding the sensor in attending to the relevant local peak in  the 
scene. Then, the lock mode is enabled for locking onto the selected feature. In the lock mode, the 3x3 cell active region is 
centered at the location of the current attention target. If the target moves, one of the eight active neighbors in the WTA array 
will receive the winning intensity peak and automatically update the position of the 3x3 active region. It is now clear that the 
salient target is not necessarily the peak of the absolute maximum intensity in the image. The ability of the sensor to define 
its own active region is an example of the top-down sensory adaptation presently missing in conventional machine vision 
systems. 

The robust performance of the sensory attention and 
sensor’s select/lock feature is illustrated in Figure 7, , 



The proposed VLSI implementation of the tracking computational sensor exhibits several interesting features. It senses input 
images and produces a few global results: the position and magnitude of the target being tracked. With no latency, these 
global results are reported off-chip via few output pins. Furthermore, in  the lock mode, the global results are used internally 
for programming a 3x3 active region, thus providing a low-latency top-down spatial adaptation for securing robust 
performance in  a rapidly changing environment. Such an adaptation, and hence reliable performance, is currently missing in 
conventional machine vision systems. In our implementation, the sensor robustly tracks targets moving up to 
7000pixels/second, while consuming only 0.25mW of static power. If we assume that a conventional CCD operates at 30 
frames per second, and that its pixels are of about lOum size, we can convert the speed of 7000 pixelskccond to about 2000 
CCD pixels per CCD frame. Since the conventional CCD arrays measure about 750 pixels across, this measure means that 
the target we are tracking would scan about 3 times across the CCD’s field of view within one frame. Clearly i n  this case. the 
low-latency on-chip processing demonstrates performance that is not replicable by conventional systems. 

4. EXPLOITING THE DIMENSION OF IMAGE FORMATION 

The issues addressed by the tracking sensor are analogous to issues facing the implementation of rudimentary visual 
attention2*. The tracking computational sensor implements primitive attention. Bright spots in received images are considered 
salient and are potential targets for tracking. If a particular saliency such as color or a particular intensity pattern is of interest 
then optical (or electronic) preprocessing is needed25.26327. In general, the input images to the tracking chip can be considered 
to be optical saliency maps that encode “conspicuousness” of targets through the scene. Broad-spectrum intensity images 
used in our experimentation are trivial saliency maps. 

Now we move on to our recently developed computational sensor for rapid range imaging. It exploits complex spatio- 
temporal interaction between image formation setup and on-chip processing. Measuring range and the three-dimensional 
(3D) profile of objects is important in many applications. Triangulation-based light stripe methods are the most practical and 
quite robust2’. The triangulation setup is shown in Figure 8. The stripe of laser light is projected onto the scene. A sensor, 
usually a CCD camera, views the scene. The depth to the point on the object is found as: 

where B is the baseline separation of the laser and the camera optical centers,fis the focal length of the camera lens, xo is the 
image location within a row where the laser stripe is detected, and a. is the projection angle of the laser in respect to the z 
axis. In order to ease the 
detection of the laser in the 
image, the illumination 
conditions are usually adjusted so 
that the projected laser generates 
the brightest features in  the 
scene. Traditionally, the range 
map is collected one slice at a 
time. The laser stripe is fixed at a 
particular angle a, the scene is 
imaged with a CCD camera, and 
the xo location is detected in  each 
row. Then, the laser stripe is 
repositioned and another slice of 
the range map is collected. This 
process is too slow: each slice 
requires at least one camera 
frame time. 

A high-speed triangulation 
approach has been proposed29. In 
this method, the laser in Figure I 
is continuously swept across the 
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Figure 8: Image formation setup for dynamic triangulation. The sheet of laser light is swept 
across the scene. 



scene, say from right to left. Each pixel in the sensor has its own line of sight and "sees" the laser stripe only once as i t  
sweeps by. By recording the time when a particular pixel at location xo sees the laser, the range is calculated as: 

B 
Z =  (2) 

X" -+ tanut  
f 

where w is the angular velocity of the mirror. This technique has been implemented in two cell-parallel VLSI range 
sensors- . In the first sensor3' each cell detects the temporal intensity peak; at that time, the cell records its timestamp. In  
the second sensor3' each cell includes two photdetectors.  The stripe is detected when the appreciable difference between 
the two photocurrents is observed; then a time-stamp is associated with each cell. 

Even though these cell-parallel VLSI implementations work well, the triangulation method is inherently row-parallel. Only 
one pixel in  each given row sees the laser stripe at any given time. Therefore, the detection of the image of the laser stripe is a 
global operation over each row of pixels. We developed a row-parallel architecture employing a winner-take-all (WTA) 
circuit embedded in  each row of the sensor. The WTA in each row detects the location of the pixel receiving the most light, 
i.e., the image of the laser stripe. Therefore, most of the circuitry in 30,31 can be removed from each cell and reused once per 
row on the side of the array. The proposed architecture builds on our experience with the tracking sensors2'. 

The sensor is a 2D array of photodetectors with an embedded WTA circuit in each row. The sensor optically receives an 
image, selects an absolute intensity peak in each row, and reports the location and magnitude of the selected peak. The 
location of the peak and its intensity is the global row information that is reported as the output for each row. 

30.3 I 

Figure 9 shows these two signals as the bright laser line travels across the row 
of 20 photodetector. A particular cell remains a winner as long as the main 
portions of the bright target are focused on it. This appears as the staircase line 
(Figure 9, top graph). As the stripe is moved, its image leaves one cell and 
begins contributing photocurrent to the next one. At some point, the cell 
receiving the target wins and takes control of the common wire reporting the 
winner's intensity (Figure 9, bottom graph). As the stripe moves toward the 
center of the new winning cell, the intensity of the winning input current 
increases. The cell continues to win as the stripe passes the center, but its input 
current begins to diminish. In the meantime, the next cell begins to receive an 
increasing amount of light and the process continues. Therefore, as the target 
passes over the winning cell, the measured common voltage increases, peaks, 
and then decreases. This behavior is clearly displayed in the bottom graph of 
Figure 9. 

The positive peak occurs when the target is centered on the photodetector. 
Conversely, the negative peak occurs when the target is positioned exactly 
between two photodetectors. Therefore, locating peaks (positive and negative) 
allows precise localization of the target at the spatial grid that is twice the 
resolution of the photodetectors. 

The row-parallel architecture of the sensor is shown in Figure 10. The WTA 
circuit continuously localizes the laser stripe in the row and generates on its 
common wire a temporal voltage waveform similar to one shown in the bottom 
graph of Figure 9. A one per row peak detector monitors this voltage. When the 
peak detector detects either a positive or negative peak in a particular row, it 
latches the time in one-per-row memory. The row memory locations are rapidly 
scanned. All rows are scanned several times within the time it takes the laser to 
travel across one photodetector. In this way, we ensure that no new peaks occur 
before we read out information regarding the previous peaks. When the scanner 
selects a row, the WTA is multiplexed to the position encoder. At the same 
time, the type of the peak (Le., positive or negative) is also multiplexed to the 

' J - i  20 

Figure 9: When the target moves across the 
row of sensors, the WTA circuit reports 
pixel location and the intensity of the 
winner. The peak in the intensity 
waveform occurs when the target is 
centered on a photodetector. The valleys 
occur when the target transitions from 
one photodetector to the next. 

output. Note that the address and the peak type uniquely determine the exact position of the stripe. If the peak is positive, the 
stripe position is in the center of the photodetector whose address is being reported. If the peak is negative, the stripe position 
is on the (stripe) receiving edge of the photodetector whose address is being reported. Even though the cell address is not well 



defined when the stripe transitions to a new cell, the 
propagation delay through the multiplexer allows the stripe to 
move into the receiving cell, thus ensuring a stable address. 
During the readout. the $canner reports the address of the 
selected row. 

At the beginning of each frame, a timer is reset. Time 
information, together with the address and the peak type, 
provides all the information needed for the reconstruction of 
the range map according to Equation ( 2 ) .  

The triangulation range mapping has several advantages over 
previous VLSI implementations: 

Most of the computational circuitry is moved out of 
the cell and placed at the edge of the array. This 
results in a high spatial resolution; the prototype has 

In conclusion, the range sensor demonstrates how a 

can be achieved when the image formation and the on-chip 
surprisingly powerful performance with low system complexity 
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Figure 12: Layout ofthe range sensor. The inset shows 6 Pixels 
with 2-10-1 aspect ratio each. 
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Figure 10: Range sensor architecture 

5. CONCLUSION 

This paper stresses that the main goal of sensory 
computing is not to miniaturize conventional 
system, but rather to extract useful information 
from available "imperfect" detectors. Interesting 
implementations of sensory computing will have 
superior sensing capabilities compared to 
conventional sensors and will have no substitutes 
in conventional systems. From our experience, 
the ability to adapt detections based on low- 
latency results provided by the on-chip 

I 

processing is the main feature that warrants the 
implementation of sensory computing. With Figure 1 1: A range map of an object collected by the range sensor. 



present integration technology, new processing paradigms that are able to exploit complex spatio-temporal interaction of 
stimulus formation, stimulus detection and on-chip processing in a confined space of a small pixel are needed. The ultimate 
test for successful implementations ought to be whether they are practical in real-world applications. 
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