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ABSTltRCT 

This paper presents a method for aiitoniatic planning of robot grasping mo- 
tions that are guaranteed to succeed, despite bounded variations in the ob- 
ject’s location. The niethod capitalizes on the physics of friction to generate 
the space of a l l  gunr;intectl grasp plans that utilize either a squeeze-grasp, 
ofrsct-grasp, o r  piish-gr;isp motion. All plaiis t lint are found arc guaranteed 
to siiccced, even if the worst-case error occurs. Froin this space of guaran- 
teed pla~ns, ;L plan can be chosen and executed without sensing or feedback. 
I3xccu tirig the motion removes two degrees of uncertainty fro111 the object’s 
position. ITor siniplicity, planar nlotion of the object during grasping is as- 
slimed. 





I. Introduction 

Uncertainty presents a key prohlcni in nianipulation. Two iiiajor sources of uncertainty 
aUe c t 111 ani p 11 1 a t o r op e ra  t ions : wor Id unc er t ain ty a11 d man i pu la t or uncertainty . Wor 1 ti 
uncertainty is the uncertainty in the position and orientation of objects in the world) while 
manipulator uncertainty is the uncertainty in the position and velocity of the nianipulator. 

Most present approiiches to robotic nianipiilation attempt to eliminate the problems 
associated with uncertainty by eliniinating uncertainty itself. World uncertainty is often 
reduced by confining the robot to a carefully controlled environment, where objects a rc  
constrained to precisely-known locations, or by employing sophisticated sensors that  pre- 
cisely iiieasiire the location of objects in the world. Both methods are expensive, and may 
fail if the precision of the controlled environment becomes corrupted. Manipulator uncer- 
tainty can be reduced by building stiffer, more precise niechanisins and control systenis for 
manipulators. However, increasing the precision of a manipulator increases its cost. 

In contrast, the underlying philosophy of our research is to develop manipulation oper- 
ations that work well despite significant uncertainty. We would like to develop algorithms 
to plan actions that will be guaranteed to succeed, given that the world and nianipulator 
uncertainty are within known bounds. Such actions would operate effectively in a more 
natural cnvironnient. Instead of trying to eliminate uncertainty, we seck niethods that will 
succeed despite uncertainty. 

This paper applies this philosophy to the problem of grasp planning. For simplicity, 
we assiiiiie that  objects to be grasped are polygoiial prisms lying on a table, constrained to 
planar motion during the grasping move. In addition, we assume coulomb friction exists 
at all contacts, and that speeds are slow enough that frictional forces dominate inertial 
forces. No assuniption is made about the distribution of support forces between the object 
and the supporting plane. 

Within this domain, we present an automatic method for producing grasping plans 
that are guaranteed to succeed even though significant uncertainty is present. No sensing 
is required, and the plans produced by the method also remove some of the uncertainty in 
the planar object’s Orientation and position. The planner described in this paper has been 
implemented and demonstrated using a Puma 560 manipulator. 
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Figure 1. An example grasp plan. Due to position and orientation uncertainty, the triangle 
might bc in either of thc configurations illustrated in (a) or (c). Both of these configura- 
tions arc subjccted to the same squrczc-grasp motion, resulting in thc final states (b) and 
(a). In both cascs, two dcgrrcs of inicertainty (orientation and y-axis position) have been 
succcssfiilly rrniovrd; only uncertainty in the z-axis position remains. 

Example 

An exaniple plan is shown in Figures 1 and 2. 

The object to be grasped is a triangular block, lying flat on a tabletop. The exact 
position and orientation of the triangular block are  unknown; however, the block is known 
to  lie within certain limits. There is a continuum of possible block positions within the 
known limits; two such positions are shown in parts (a) and (c) of Figure 1. The blocks are 

subjected to  identical squeeze-grasp motions, and in both cases the end result is the same: 
each block has rotated slightly, causing it to be held flat between the gripper fingers. 
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Figure 2. Thc sqnetxzc-grasp diagram for the triangle. The sliaded regions iridictrtc those 
squeezing IIIOVCR that arc guaranteed to succeed in achieving the final configurations shown 
on the right. 

A pair of z-y coordinate axes have been added to the gripper to help clarify this 
explanation. Notice that after the plan is executed, the location of the block is partially 
determined; while its position in the z-direction is still uncertain, the block's orientation 
and position in the y-direction are fully constrained to coincide with the gripper fingers. 
Thus, after the plan is executed, two degrees of uncertainty in the block's position have 
been removed; again, note that no feedback or sensing was required. 

Our method planned this grasp by using the geometric description of the triangle to 
produce the squeeze-grasp diagram shown in Figure 2. In this diagram, the orientation 
of the squeezing fingers varies along the vertical axis, and the finger motion direction 
varies along the horizontal axis. These axes combine to define the space of all possible 
squeeze-grasp motions. Within this diagram, the shaded regions indicate those squeeze- 
grasp moves that are guaranteed to succeed. The heavy dashed lines correspond to the 
final grasp configuration for each region; these final configurations are illustrated at the 
right of the diagram. 
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Figure 3. The squeeze-grasp diagram for the triangle, after slirinking for uncrrtainty in the 
world and in the manipulator. The shaded regions remaining in this diagram indicate those 
I I I O V C ~  that arc guaranteed to succeed, even if the worst-case con1bin;ition of uncrrtainties 
occurs. In this cwc, the shrinking process assunicd that the Uncertainty in the polygon's 
orientation is less than f50" ,  the uncertainty in the m'anipulator's execution of moves is less 
tlliul f5". iLlld the coefficent of friction / I  is within the interval (0.15,0.35). This diagram 
wits used to pkan the squeezing move in Figure 1; the move that was chosen is indicated by 
the point A. 

The diagram shown in Figure 2 does not take uncertainty into account. We can 
coinpensate for uncertainty by shrinking the regions in the squeeze-grasp diagram by the 
amount of uncertainty that is present; the remaining regions represent the space of all 
squeeze-grasp moves that are guaranteed to succeed, even if the worst-case uncertainty is 
encountered. The result of shrinking the regions in Figure 2 to account for various sources 
of uncertainty is shown in Figure 3. 

The plan shown in Figure 1 represents an example of a squeeze-grasp motion; our 
method finds guaranteed grasp plans that utilize squeeze-grasp, offset-grasp, and push- 
grasp motions, which will be explained in detail later. A guaranteed grasp plan uses one 
of the inotions inentioned above, assumes only that the initial location of the object is 



cont,aincd wi th in  ccrt.ain limits, and guarantees that after the plaii is executcd, tlic ohjcct 
will I)(: succcssfully grixspcxl with the uncertainty in the object’s location removed. 

Within the tloniain of our assuiiiptions, the method we present finds the space of all 
guaranteed grasp plans that are possible for any given grasping task. This solution space 
is coniputcd exactly, without using any siiiiplifying approxiniations. After the method 
has computed dl possible giiaranteed plans, a plan can then be chosen froiii this space 
according to other considerations (e.g., obstacle avoidance, untouchable object faces, etc.). 

Previous Work 

An analysis of the niechanics of friction during grasping operations is fundamental 
bo this paper. Several previous papers have also investigated the effect of friction on the 
motion of a manipulated object. 

Mason’s Ph.D. thesis provides the basis for this work, by proving the pushing results 
described later in Section 11. In .  addition, Mason developed a procedure that found a 
guaranteed push-grasp operation for a polygon, given the description of the polygon and 
a range of possible polygon oricntations. Mason’s procedure returns a specification of 
a grasping operation that includes a pushing plane orientation, pushing direction, and 
rninimum pushing distance required for the operation to succeed. Mason’s procedure 
returns plans that have guaranteed results, but only addresses a restricted class of polygon 
grasping problems (Masoil 1982; Mason 19841. 

While this paper investigates grasping operations using two planar fingers, Fearing 
investigated grasping operations that used two point fingers. Fearing included the effect 
of friction in his analysis, and succeeded in predicting the motion of an object under two- 
point squeezing, and the effect of disturbing forces on an object being held in a two-point 
grasp [Fearing 1983; Fearing 19841. 

Mani and Wilson independently derived a diagram similar to the push-stability dia- 
gram of this paper, and used their result to design a device that orients parts being fed to 
a manufacturing process. Mani and Wilson’s method uses the diagram to produce a tree 
of orienting pushes, and then searches the tree to find a series of pushing moves that will 
reduce the nuniber of possible polygon orientations to one [Mani and Wilson 19851. 

A key feature of the method presented in this paper is that it finds grasp plans that 
are guaranteed to succeed in the presence of bounded uncertainty. In this respect, this 
research fits nicely into a series of planning systems previously developed which attempt 
to plan robot actions despite the presence of uncertainty. 

Losano-P6rez outlined a planning system that created an assenibly plan and then 
used a feedback planner to check the plan for errors arising from the task geometry or 
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unc,crt,zin ty. The feedback planner would then niodify tlie original pliiri to correct the 
errors [IJoz;ino 1’Crez 19761. 

Brooks described a planning systeiii that kept track of uncertainty bounds at various 
stages of a plan’s execution, and then checked the resulting plan to determine whether or 
not the uncertainty at  any stage in the plan was too large. If so, then Brooks’ systeiii 
detcriiiiiietl whether the addition of sensing or other plan constraints could reduce the 
uncertainty sufhcicntly to allow the plan to succeed [Brooks 19821. 

Lozano P‘Crcz) lMason, and Taylor described a method of planning fine iiiotions that 
are guaranteed to succeed in achieving a Gnal goal. Their Fine-Motion Planner (FMP) 
achieves a higher-level goal by deterniiriing a chain of subgoal regions that can be reached 
despite the presence of uncertainty in the world and in the robot’s execution of niotions 
[Lozano-Pdrez, Mason, and Taylor 19841. Mason showed that this planner is both correct 
and complete [Mason 19831. 

Erdmann showed that Mason’s complete planner was not computable in the gen- 
eral case, but deliionstrated <an implementation of a weaker planner that worked in a 
siniilar fashion using backprojections. Erdmann also investigated the mapping of three- 
dimensional friction cones into configuration-space, and the effect of multiple frictional 
point contacts on the forces applied to  an object [Erdniann 19841. 

This paper determines all of the stable grasp configurations for a polygon being held 
by a parallel-plane gripper. Several other papers have also addressed the problem of finding 
stable grasp configurations. 

In his thesis, Paul planned grasp configurations by applying heuristics that  preferred 
grasping the object by opposing parallel faces along an <axis that  contained the center of 
mass [Paul 19721. Later, Bolles and Paul incorporated simple tactile feedback to sense the 
location of an object when its location was uncertain [Bolles and Paul 19731. 

Brou uses a volume representation coniprised of blocks cand cylinders to model objects 
to be grasped, and then develops a method of finding collision-free grasp positions and grcasp 
approach angles for picking up a modelled object [Brou 19811. Peshkin and Sanderson used 
a convex-rope algorithm to determine the finger orientations that can be used to approach 
a given edge or vertex of a non-convex polygon without causing a collision [Peshkin and 
Sanderson 19851. 

Wolter, Volz, and Woo addressed the problem of autoinatically generating strong grip 
positions and characterized grip strength in terms of resistance to slipping and twisting 
under the application of an external force [Wolter, Volz, and Woo 19841. IIoltzniann and 
McCarthy formulated the static equilibriuni equations fer <an object being grasped by three 
point fingers. Froni these equations, they were able to calculate the applied forces required 
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to niaintain st;d)lc grasping, mtl  deteriiiine wlietlier a given grasp configiiration worild slip 
or reiliain stal)le due to friction [Holtzinnnn and McChrtliy 19851. 

Hanafrisa a n t 1  As;ida investigated thc conditions reqiiired for stable preliensioii of an 
object, and the resulting iniplications for force control of a dextrous robot hand [Ilanafnsa 
and Asada 19771. Salisbury investigated the kincinatic and force control reqriirciiients 
for optininni design of a dextrous hand for grasping objects in a variety of configurations 
[Salisbury 1982; Salisbury 1!)83]. 

Cutkosky examined how various finger surfaces and gripping configurations affect 
grasp stability during the execution of typical manufacturing operations. Froni this analy- 
sis, Cutkosky was able to derive some uscful rules for the design of robot hands and wrists, 
and for choosing optimal grasps [Cutkosky 19851. 

Baker, Fortune, and Grosse discovered that a five degree of freedom, three-fingered 
hand can stably grasp any convex or non-convex polygon by touching the niaximally- 
inscribed circle fit within the polygon [Baker, Fortune, and Grosse 19851. 

Asada and  By investigated stable prehension of objects in the context of workpart 
fixturing. By placing fixtures and clamps in an appropriate configuration, they were able 
to fully constrain the position of a workpart. Their fixtures are analagous to fingers of a 
niulti-finger robot hand; both are used to achieve a stable grasp of an object [Asada and 
By 19851. 

Overview 

This paper will proceed by developing the method that is described above. Section I1 
describes our notation and the physics that the method relies upon. Section 111 explores 
the motion of a polygon being pushed by a single finger; Section IV characterizes the 
inotion of a polygon when squeezed by two opposing fingers. Section V describes some 
of the circumstcances where a simple squeeze-grasp fails, and defines alternative grasping 
strategies that succeed in these situations. Section VI discusses how the presence of uncer- 
tainty can be incorporated into the planning analysis. Finally, Section VI1 concludes the 
analysis, describes a working implementation of the system, and offers some suggestions 
for further research. 
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Figure 4. Friction conrs. At  any point-plane contact, the resulting friction cone is boiindcd 
on rithrr sidc by the rays RI and R,, which lie an angle a away from the normal to  the 
plaiic. as illnstratcd in (a). If the contact is sticking to the surface, thrn the applied force 
l i ra  within tlic friction cone; if the contact is sliding along the surface, then the applied force 
lies 011 the cdge of the friction cone (b). 

11. Task Mechanics and Notation 

Friction Cones 

Before we can explore the interaction of a robot and the objects in its surrounding 
world during grasping, a few physical concepts must be reviewed. First, we will examine 
the friction cone (Figure 4). Coulomb’s law implies that  at every instance of point-plane 
contact, a friction cone exists that  dictates how the frictional contact will react under the 
application of an exterior force. 

The friction cone is defined by an angle CY to each side of the surface normal of the 
plane, where a is the arctan of the coefficient of friction p. Applied forces that  fall within 
these angular limits are within the friction cone. Coulomb’s law states that  if the frictional 
contact is sticking to the surface and not sliding, then the applied force lies within the 



Figure 5. Rotation iiridcr pushing. The thee rays R1, R,. arid R, vote relative to the 
w1itc.r of friction (COF) to iletrrniinc> tlir rotation direction. Since Rl iuid R, both lie to 
tlic lrft of the COX’, thry win thv vote, arid the rectangle rotates clockwisr. Whethcr there is 
slidiiig or sticking contart 1wtwe.cn the cormrr and the piishing plane remains iuidctrrmined. 
RI a i d  R, a r c ’  tlic left arid right rays of the friction cone, resycrtively, and R, is the ray of 
pushing. 

friction cone. If the contact is sliding, then the applied force lies on the edge of the friction 
cone opposite the sliding direction (Figure 4(b)). 

Pushing 

Next we must consider the motion of an object being pushed. One common problem in 
grasping operations is: If one object is pushing another along a flat surface, what direction 
will the pushed object rotate? Under certain assumptions, Mason [Mason 1982; Mason 
19841 found a siniple answer to this question by isolating three rays (Figure 5): 

R, - ray of pushing (i.e., the direction the pusher is moving) 

R1 - left ray of the friction cone 

R, - right ray of the friction cone 



r ,  I liese t,liree r i tys dctermine the rotation direction by voting relative to the center 
of friction (COI‘). rI’lie center of friction of an object lies at, the centroid of the object’s 
supporting pressrire distribution; for t8he purposes of this paper, the center of friction can 
be thought of as the object’s center of gravity. 

If two or more of the three rays lie to the left of the COF, then the pushed object 
will rotate clockwise (as shown i n  Figure 5).  If two out of three rays lie to the right of the 
COF, then the puslied object will rotate counter-clockwise. If one of the three rays points 
directly at, the COF and the other two rays are 011 opposite sides of the COId’, then the 
pushed object will translate without rotating. This rule applies regardless of the pressure 
distribution supporting the object; if a flat-bottomed object and an object supported by an 
arbitrary tripod of points were subjected to the same pushing operation, they would both 
rotate the saiiie way. Note that this rule does not determine the rate of rotation, but only 
the direction; the rate of rotation can vary with different pressure distributions. Whether 
or not the contact is sticking or sliding contact is also indeterminate, but the voting rule 
holds in either case. IIence, as long as we adhere to Mason’s assumptions (outlined below), 
we can utilize this simple method to determine the rotation direction of a pushed polygon. 

Assumptions 

In order to assure that the above physical models are valid ,and simplify the problem 
of finding reliable grasp plans, we will make a few cassumptions: 

0 Coulomb’s law is assumed. This includes the friction between the robot’s gripper 
finger(s) and the object, as well as the friction between the object and its supporting 
surface. We do not assume that the coefficient of friction p is the same for these two 
sources of friction. 

0 Frictional forces dominate inertial forces. This assumption is valid for sufficiently slow 
motions. 

0 Objects to be grasped are lying on a level planar surface. 

0 No assumption is made about the distribution of contact forces between the object 
and the supporting plane. 

0 Objects are essentially “planar.” This implies two restrictions on acceptable objects: 
First, when the object is pushed, torques that tend to roll the object off of its support 
face are sinal1 compared to the lateral sliding resistance offered. Second, the faces of 
the object that will be in contact with the pushing plane must be perpendicular to 
the support face (e.g., a truncated pyramid would not be acceptable because its side 
faces are slanted). 



Subject, to these assu~iiptions, griisping iiiotions reduce to 
ildopt thcse assriiiiptions for the  rest, of the paper; our results 
real world as long as they ;ire niaintained. 

planar probleiiis. We will 
will be guarant,eed in the 

For convenience, we will iiiake one further simplifying assumption: 

0 The gripper fingers of the niiinipulator will be assutiied to be of infinite extcnt. 

This assuiiip tion allows the iiianipulator fingers to be moclelled ;is infinite half-pliincs in 
the two-diincnsional grasping abstraction, which is helpful in the following ways: 

(1) All polygons are essentially convex, since non-convex polygons are equivalent to their 
convex hulls when pushed or sqiieezed by can infinite half-plane. Thus concavities in 
an object do not offer a complication. 

(2) Contact with rz corner of a finger does not have to be considered. 

This infinite half-plane assumption can be niet by using the extent of the object to 
calculate the iiiinimuni finger width required to  make a finite finger effectively seem like 
an infinite half-plane. If the lnanipulstor gripper finger meets or exceeds this minimum 
finger width, then the pushing move may be executed in the real world with guaranteed 
results. 

Once these assumptions are met, the coniplex physical problem of real-world grasping 
can be abstracted into the simpler problem of understanding the motion of a polygon 
sliding along a plane under the influence of a few well-defined rules. This abstracted 
probleni can then be pursued with a purely geonietric analysis. 
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Figure 6. I'Polygori notation. 

Not a tion 

The notation that will be used throughout this paper to describe polygonal objects is 
illustrated in Figure 6. 

The edges of the polygon are numbered e l ,  e2, e3, ... etc., froni some chosen starting 
edge, incressjng counter-clockwise around the polygon. The vertices are numbered in a 
similar fashion, so that for every edge e;, vertex Vi is on the clockwise end of the edge, 
and vertex V;+1 is on the counter-clockwise end of the edge (see Figure 6). By convention, 
we will always choose e l  to be the longest edge of the polygon. 

Sonietinies it is useful to think of illl edge e; as a vector V;V;+1; when this is the 
case, we will denote thc edge <. Each edge e; has an edge-angle [;, which is the angle 
measured clockwise froni < to < (See Figure 6). 

The triangle illustrated in Figure 6 will be used in subsequent examples throughout 
this paper. Notice that the COF of the triangle has been intentionally chosen in an 
unusual position. This unusual choice was made for two reasons: (1) The examples are 
more interesting with the COF in an unusual position, and (2) this choice demonstrates 
that the niethod does not assume that objects are of uniform density. 
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Figure 7. Pushing notation. 

111. Pushing with One Plane 

In all of thc grasping operations considered in this paper, pushing plays an important 
role. For example, if the part is displaced slightly from its assumed location, then the 
robot’s gripper fingers will not make simultaneous contact with the object. As a result, 
there will be some period of time when the object is pushed by one finger before the 
second finger makes contact. Also, one might envision grasping operations where the 
robot deliberately pushes the object to align it before attempting a grasp. Therefore, 
it is worthwhile to understand how an object behaves while it is being pushed, and our 
polygon/infinite half-plane abstraction lends itself well to this problem. The purpose of 
this section is to develop an understanding of pushing, <and to characterize the outcome of 
various pushing operations on any given polygon. 

To investigate polygon pushing, we will divide our analysis into two parts, which are 
characterized by the following questions: 

0 Where on the polygon will the pushing plane make first contact? 

0 How will the polygon rotate while it is being pushed? 

To rigorously approach these two questions, it is necessary to formalize our notion of 
pushing. We will begin by defining a single pushing move as follows: A half-plane finger 
starts with some orientation at some start point and moves in a constant direction for 
some predefined distance. The orientation of the finger plane and the direction of pushing 
are held constant throughout the move. 
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Figure 8. Piisliiiig spacc. The rectangle defined by the 6-4 mcs contains all possiblc push- 
ing IIIOVCS: tliv claslird line down tlir center of the pushing space corresponds to “natural” 
piishing I I I O V ~ S ,  whcrc 6 = 90. 

The ,angle (p is the finger orientation, measured relative to edge el of the polygon (See 
Figure 7). The angle 6 is the direction of pushing, measured relative to the finger plane. 
4 is the angle measured clockwise from to the open face of the pushing plane, while 6 
is measured counter-clockwise from the pushing plane to R,, the ray of pushing. 

Note that (p is measured relative to the polygon’s coordinate system; this coordinate 
system is not fixed. Therefore, since the polygon may rotate while being pushed, (b can vary 
during the pushing move even though the orientation of the plane constant throughout the 
move. 

However, since the pushing direction 6 is measured relative to the pushing plane 
instead of the polygon’s coordinate system, 6 stays constant throughout the pushing move, 
even if the polygon rotates. Thus angle 6 is invariant throughout the pushing move. This 
fact that 6 reniains invariant during a pushing move will become significant later on. 

The set of all possible pushing operations forms a well-defined pushing space. This 
pushing space can be represcnted as a rectangular coordinate system with 6 as the hor- 
izontal axis and 4 as the vertical axis (Figure 8). 6 ranges from 0 to  180 degrees, while 



Figure 9. Etlgc.-flat oririitations. Tlic piisliiiig p1iUic.s illlistrate thr three pliulc oricmttrtions 
that will Initkc first contact flirt against an cclgr of the triangle. Since racli edge-flat plane 
orirritatioii (I, is cxactly e q i d  to its corresponding cdgci-arigle ti, the & cdgc-angles can be 
directly uscd to detcriiiinr the cdgc-flat lines in the pushing space. 

4 ranges from 0 to 360 degrees; all pushing operations correspond to a point somewhere 
within this rectangle (6 values greater than 180 degrees do not Correspond to valid pushing 
operations, since the  ray of pushing would point into the pushing plane). The clashed line 
down the center of tile rectangle is the 6 = 90 line, which corresponds to those “natural” 
pushing operations where the ray of pushing is perpendicular to the piishing plane. Note 
that start position and pushing distance are not included in the pushing space; determining 
the value for these parameters will be addressed in a later paper. 

Where Will the Plane Touch First? 

The point where the plane first contacts the polygon depends entirely on the orienta- 
tion of the plane, and not the direction of pushing. Thus first-contact regions are  delimited 
only by values of 4 in the pushing space, independent of 6, and we may proceed by only 
considering the effect of changing the value of 4 in a pushing operation. 

Figure 9 shows a triangle surrounded by three infinite half-planes; each plane is ori- 
ented so that it will make flat contact with one of the triangle’s edges as the plane ap- 
proaches the triangle. These special orientations are called the edge-flat orientations of the 
polygon, which correspond to edge-flat lines of constant 4 in the pushing space. Because of 
the way we chose our notation, the orientation 4 of each edge-flat plane is exactly the same 
as the corresponding edge-angle ti; in other words, the polygon’s edge [j values determine 
all of the edge-flat lines in the pushing space. 

This gives us the lines in the pushing space where first contact is made with the plane 
flat against an edge of the polygon. For pushing operations where the value of 4 is between 
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Figure 10. First-contact regions. The edge-flat lincs partition the pushing space into bands 
of vertex first contact. 

&-I and &, first contact is made with the vertex V;. Thus for all values of in between 
the edge-flat lines, contact is made with the polygon vertices, giving us bands of vertex 
first contact (Figure 10). These bands, combined with the edge-flat lines, completely fill 
the pushing space; therefore we know the point of first contact for all possible pushing 
operations. 

How Will the Polygon Rotate? 

Now that we have isolated regions of first contact in the pushing space, we can analyze 
the motion of the polygon within any particular contact region. We will first consider the 
effect of the the friction cone rays R1 and R,, and then consider the effect of the ray of 
pushing R,. 



Figure 11. The critical piisliiug fingcbr orientation de. Tlie angle dC is the plane oriciitation 
where the pushing pliuie normal points directly at the COF. In this case, c j C  is for vertex 
v3. 

For any particular vertex contact region, we will define the critical pushing orienta- 
tion 4c. & is the plane orientation where the plane normal points directly at the COF 
(Figure 11). 

Consider the case of pushing contact illustrated in Figure 12(a); the corresponding 
first-contact region in the pushing space is shown in Figure 12(b). Recall that the three rays 
vote to determine the rotation direction. Our strategy is to consider each ray individually 
and determine how its vote is distributed throughout the contact region; once we have 
considered all three rays, we can tally the votes to determine the overall rotation direction 
as it varies within the contact region. 

First, consider the left friction cone ray RI,  which lies an angle a away from the 
pushing plane surface normal. RI sweeps back and forth as 4 varies; notice that when the 
value of q5 exceeds 4c + a, RI crosses the dotted line between V1 and the COF, and Rl’s 
vote changes from clockwise to counter-clockwise. Thus, 4c +a is the decision value for RI. 
We can use this decision value to split the contact region into two subregions: one where RI 



Pushing configuration 
shown in (a) 

0 

Figure 12. (a) An c~xarnple case of piishirig contact, and (b) The corresponding first-contact 
region for (a) in the piishi~ig space. 
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Figure 13. Tlic decision valuc for RI’Y rotation vote, corresponding to i i  horizontal linc in 
the pndiing spaco clrawn at + a. 11 indicates that RI votes counter-clockwise above the 
linc, while 11 indicates that RI votes clockwise below t,he decision line. 

votes clockwise, and one where RI votes counter-clockwise.’ The decision value for RI and 
the resultant splitting of the contact region is shown in Figure 13. Note that a clockwise 
polygon rotation corresponds to a vertically downward movement in the pushing space, so 
we will denote Rl’s clockwise decision by 11. Similarly, a counter-clockwise decision by RI 
will b e  denoted by TI. 

Now consider the right friction cone ray R,. By reasoning siniilar to the previous 

‘Note that in sonic cases, the decision value may lie outside the contact region, in which case the ray 
votes uniforinly throughout t,he region. 
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Figure 14. Tlw dvrision valiic for R,,  again rorrcqollclirig to a. Ilorieorltd lir~e in the 
piishirig spare, h i t  this time drawn at q5c - cy. R, votes counter-clockwise above the li~ie, 
itlid clockwisc tx.low it. 
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Figure 15. The critical pushing direction PC. The angle PC is the angle measured clockwise 
from el to  R, when R, points directly at the COF. In this case, 0, is for vertex Vs. 

analysis of RI,  we can see that as 4 is reduced below q5c - a, R, crosses the dotted line cand 
changes its vote from counter-clockwise to clockwise. This implies that  the decision value 
for R, is cjC - a. Again, this decision value splits the contact region into two subregions of 
differing vote, as shown in Figure 14. 

Finally, consider the ray of pushing R,. As with RI and R,, as R, crosses the dotted 
line between V1 and the COF, its rotation vote changes. However, since R, does not 
vary directly with 4, Rp's decision value does not neatly correspond to a horizontal line of 
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Figure 16. Tlic tlc&ioIi Zinc. for Rp’s rotation votch. Since Rp cloc~ riot vary clirwtly with 
(6. R,’s (lccisiou l i ~ i r  is i i  line that slopes up at a 45 dcgrrc angle in thr pushing spnrr. R, 
votes rouritrr-clockwise to the left of the line, a id  clockwise to thr right of it. 

I 

-6 -+ .Pc - 
Tallying 

0 90 180 

Figure 17. Tallying tlic votes of each subregion. The three decision lines divide the contact 
region into six suhrcgioris (a). In each subregion, the votes are tallied to yield an overall 
rotation tlirectiori for each subregion (b), 

constant 4 in the pushing space. 

Rather, Rp’s direction depends on both 4 and 6. Let us define PC to be the angle 
measured clockwise from e l  to R, when R, points directly at the COF (Figure 15). 

We can tell by inspection of Figure 15 that  R, points directly at the COF whenever 
q5 - 6 = Pc. As R, crosses this critical value, its rotation vote changes. 

Thus, the decision line for R, is easy to derive: Since 4 - 6 = Pc all along the line, 
it follows that 4 = 6 + Pc. Since Pc depends only on the geometric configuration of the 
object, Pc is constant, <and the previous equation beconies a line with slope 1 and intercept 
pc in the pushing space. This decision line splits the contact region into two subregions, 
as shown in Figure 16. 
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Figure 18. Merging siibrrgions with the same rotetion direction. (a) Shows two adjacent 
first-contact regions, with tlic. rcwilts of tallying showri for each si ihgion.  (b) Shows the 
C o r l t i l c t  rctgioris aftt.r inc~giiig those adjacent subrrgions that have thr SilIlle ovcrdl rotation 
dirtx-tion. hriairi ing are boundirrics between rcy$ons of opposite rotation direction. Boiind- 
iiries with rot at inn directions that move away from thr bonndary arc’ considcrcd ciivcrgcmt 
and drawn with a siriglr linc: boiindarirs with rotation directions that move toward the 
boundary arc considrrcd convergent a i d  are drawn with a doublc line. 

At this point, each ray has delineated its own subregions of clockwise and counter- 
clockwise rotation; these regions can now be overlaid, and the votes of each subregion 
can be tallied to yield the overall rotation direction of each subregion. This process is 
illustrated in Figure 17. 

Now that we have the rotation direction of each subregion, we can merge subregions 
that have the same overall rotation direction, since the boundary between thein is meaning- 
less. This merging process is shown for two adjacent sample contact regions in Figure 18. 
Figure 18(a) shows the subregions after their votes have been tallied, and Figure 18(b) 
shows the boundaries that  remain after merging. 

After the merging process is complete, two types of boundaries remain: divergent, 
where the polygon rotates away from the boundary, and convergent, where the polygon 
rotates toward the boundary. We will differentiate between divergent ‘and convergent 
boundaries by drawing a single bold line for divergent boundaries, and a double bold line 
for convergent boundaries, as shown in Figure 18. 



Figure 19. Three saniple pushing operations. In pushing operation #1, the triangle rotates 
counter-clockwise onto e3 and remains stable on e3. In #2, the triangle rotates clockwise 
onto e2 ;wid remains stablr on e2. Pushing operation #3 starts out with the same orientation 
q5, but ii diffcwnt pushing direction 6; hs a result. the triangle rotates clockwise onto e2, 

keeps rotating to e3, a i d  then remains stable on es. 

The boundaries generated thus far have implicit stability information embedded within 
them. The divergent boundaries correspond to unstable pushing operations that might 
rotate in either direction if perturbed, while the convergent boundaries correspond to stable 
edge-flat pushing configurations where the polygon stays fiat as the pushing operation 
continues. The convergent boundaries are stable because any perturbing influences to 
either side of the boundary are compensated by the tendency of the polygon to rotate 
back to the edge-flat configuration. 

Thus we can analyze the first-contact region for each polygon vertex and generate 
rotation/stability information for all pushing operations for the polygon. 
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Piglire 21. I’iisliirig operation #2. Contact begins in thc initial configiiration shown in (a), 
wli~*reiipo~i thr triuiglc rotates clockwise until edge e2 lies flat agilinst the pushing plane (h). 
Edgv e2 rrni;iiiis stablc~ against the piishing plane because vertices V2 and Vt both oppose 
rot ation away froin e2, and the pushing operation terniinatcs in the configuration shown 
in (c). 

The result of carrying out this process on the triangle seen earlier is shown in Figure 19. 
Notice tliat the edge-flat line for e2 is only convergent for some values of 6; this is due to 
the fact that e2 only remains Rat against the pushing plane when Rp lies to the right of the 
COF. This is best understood by carefully examining the three sample pushing operations 
illustrated in Figures 19-22. 

As the three example operations demonstrate, pushing operations that begin above 
the convergent portion of e2’s edge-flat line terminate with e2 Rat against the pushing 
plane, and pushing operations that begin above the non-convergent portion of e2’s edge- 
Rat line “roll past” e2 and terminate with e3 Rat against the pushing plane. To differentiate 
between these two results, we can extend a boundary along a vertical line of constant 6 from 
the end of the convergent portion of e2’s edge-flat line until the next rotation boundary is 
encountered. 



Note that this boundary is different from the boundaries drawn previously because it 
arises from our convention that 6 is held constant throughout a pushing move, rather than 
from a physical cliffercnce in the motion of the polygon. One iiiight imagine pushing moves 
where 6 is allowed to vary, in which case these vertical boundaries become nicaningless. 
Since these vcrticnl boundaries are not as “strong” as the boundaries between rotation 
directions, we will draw t-hcni dashed, as indicated in Figure 23. 

Once any required vertical boundarics are added, the pushing space is divided into 
closed edge-stahilifjr regions, as shown in Figure 23. These regions correspond to all 
pushing moves that, will terminate with a particular edge flat, against the pushing plane; 
each region is labelled with its appropriate edge in Figure 23. 

This diagrani is the push-stability diagram for the triangle; any pushing operation 
chosen within the edge-stability region for a given edge e; is guaranteed to terminate with 
e; flat against the pushing plane. 

Note that edgc-stability regions don’t always fill the entire pushing space. For example, 
consider a regular octagon with a very high coefficient of friction; if such an octagon is 
pushed at an angle (i.e., 6 not close to 90)) it will continue to roll forever, since no edge is 
stable. This is indicated by the push-stability diagram for the octagon, shown in Figure 24. 
If a pushing move starts outside the edge-stability region for one edge (6 not close to go), it 
can never enter the edge-stability region for any other edge, and so the octagon continues 
to roll. 

This provides the answer to our question “How Will the Polygon Rotate?’’ We can use 
the first-contact regions derived in the previous section to generate edge-stability regions. 
Pushing moves within an edge-stability region for an edge e; are guaranteed to terminate 
with e; flat and stable against the pushing plane. 



360 

270 

180 

90 

0 
U 

0 180 

~ ~ ~ 

Figure 23. The pash-staldity diagram for the triangle. Any pushing operation that begins 
within tlic. edge-stability region for a given edge ei is guaranteed to terminate with ei flat 
and stable against the pushing plane. 

Summary - One-Plane Pushing 

This completes the analysis of one-plane polygon pushing; now we can fully charac- 
terize the motion of any convex polygon under pushing by applying the following analysis: 

1. To determine where the pushing planc will first contact the polygon, the pushing 
space is divided into bands of vertex first-contact by edge-flat lines; these edgc-flat 
lines correspond exactly to the polygon’s I, edge-angles. 

2. To determine how the polygon will rotate during contact, each contact region is split 
by each ray according to the ray’s rotation vote within the contact region. In the 
resulting subregions, all three votes are tallied to find the overall rotation direction 
for each subregion. 
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Figure 24. An exilI1lple of mi object that has infinitely unstable pushing moves. Pushing 
mows that originate outside the shacled area will cause the octagon to continually “roll” 
along the piishing plane. 

3. Next, all adjacent subregions with the same rotation direction are merged, defining 
boundaries of opposite rotation direction. Boundaries where the polygon rotates to- 
ward the boundary are taken to be convergent boundaries where the polygon will 
remain stable during pushing, while boundaries that  the polygon rotates away from 
are taken to be divergent, unstable boundaries. 

4. Finally, since 6 is held constant during a pushing move, vertical boundaries are estab- 
lished appropriately for any edge-flat lines that are partially convergent. 

The resulting push-stability diagram shows, for any edge of the polygon, the space of all 
possible pushing moves that are guaranteed to result in a stable edge-flat configuration. 



Figure 26. An rxarnple of an iinsiircessful squeezing operation. 

IV. Squeezing with Two Planes 

Consider the example squeezing operation shown in Figure 25. The two planes are 
parallel, and squeezc together on either side of the triangle. As the squeezing planes make 
contact, the triangle is forced to rotate until edge el  is pressed flat against the lower plane. 
Once this edge is flat against the plane, the fingers can exert a continuous squeezing force 
to firmly grasp the triangle. 

Note that in this configuration, the applied squeezing force can be arbitrarily increased 
and the triangle will not move. We will refer to this condition as wedging. By definition, 
a polygon is wedged between a pair of squeezing planes if the squeezing force applied by 
the planes can be increased arbitrarily without causing the polygon to rotate. When a 
polygon is grasped in such a wedging condition, the grasp can be made arbitrarily strong 
by appropriately increasing the squeezing force. 

The wedging condition illustrated in Figure 25 corresponds to a grasping configur a t' ion 
we would like to achieve; the triangle's orientation is constrained (since edge el is flat 
against the lower plane), and the triangle is held firmly between the gripper fingers (since 
the triangle is wedged). 

However, not all wedging conditions correspond to desirable grasps. Consider the 
second example squeezing operation depicted in Figure 26. In this squeezing operation the 
triangle is also wedged, because the squeezing force can be increased arbitrarily without 
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Figure 27. The sqiiceccgrasp cliagram for the triangle. 

causing a rotation of the triangle. However, in this configuration the triangle’s orientation 
is not fully constrained, because the presence of friction allows this type of wedging to 
occur over a sinal1 range of orientations (this will be explained in more detail later). 
Therefore, since we have not constrained the triangle’s orientation, we have not eliminated 
the uncertainty in the triangle’s position, and this grasping configuration is undesirable. 
Further, it. will beconie apparent later that  this grasp cannot be achieved as reliably as the 
first. 

These two examples prompt us to define two conditions required for a stable grasp: 

(1) At least one edge of the polygon is flat against a squeezing plane. 

(2) The polygon is wedged between the squeezing planes. 

Condition (1) assures that the uncertainty in the polygon’s orientation is removed, 
while condition (2) assures that we have a firm grasp of the object. 

I 

With our notion of a stable grasp thus defined, we would like to know what squeezing 
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motions will achieve a stable grasp without gctt,ing stuck in one of the iintlesirable wcdging 
configurations clcnionstrated in the  second ex;uiiplc. This query is answercd by the squeeze- 
grasp tliagrnni, shown in Figure 27. The sqiieeze-grasp diagrani represents the space of 
all sqiicezing inovcs, ,and the shaded regions indicate those moves that are guaranteed to 
succeed in achieving a stable grasp. 

Tlie reinaindcr of this section will explain how this squeeze-grasp diagram is generated. 
We will begin by foriiializing our notion of squeezing to allow 11s to describe squeezing 
operations in a way similar to the way pushing Operations were dcscribctl previously. 
Next we will develop a simple algorithm for finding all the pairs of polygon features that 
can make siinultaneous contact with both squeezing planes. After we have found all of 
these contact pairs, we will then determine which contact pairs provide a stable grasp 
by nieeting our criteria listed above; those pairs that do meet our criteria will be listed 
as desirable grasp configurations that we seek. In addition, we will look among a11 of 
the contact pairs to determine where undesirable wedging configurations occur, and thus 
delineate those squeezing configurations that should be avoided. Finally, we will describe 
how pushing phenomena affect a squeezing move, and combine our analysis of squeezing 
with the pushing analysis of the previous section to produce the complete squeeze-grasp 
diagrani of Figure 27. 

Squeezing Notation and the Squeezing Space 

At this time we will formalize our notion of squeezing in order to provide a context 
for the subsequent analysis of squeezing operations. First we will define a single squeezing 
move. As an initial condition, the parallel sqneezing planes start with some orientation, 
starting position, and separation. The planes then squeeze together along their common 
normal, keeping their orientation constant. Meanwhile, the two planes can also move 
laterally in unison. The speeds of plane squeezing and lateral movement are held constant 
throughout the squeezing move; by choosing different combinations of squeezing ‘and lateral 
moveinent speeds, vcarious 6 values can be achieved. This motion continues until the planes 
can’t squeeze together any more (i.e., when an opposing force is niet that  exceeds some 
pre-set threshold). Note that since guaranteed grasp plans imply that the gripper will have 
a stable grasp of the object when the planes are finished squeezing, it is not important to 
assure that the lateral movement stops when the termination condition is met. 

The notation used to describe squeezing moves is essentially identical to the pushing 
notation presented above, but must be modified to account for the presence of two half- 
planes instead of one. First, the planes are arbitrarily labelled plane #1 and plane #2. 
The parameters for each plane are  q5 and 6 as before, but are now $1 and 61 for plane #l,  
and 4 2  and 62 for plane #2 (see Figure 28). Since the two planes are always parallel, these 
parameters are related as follows: 
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Figure 28. Squeezing notation. 

As with pushing operations, the set of all possible squeezing operations forms a well- 
defined squeezing space. This squeezing space can be represented by the same rectangular 
coordinate system used for the pushing space, where the 6 and $ axes in the pushing space 
are replaced with 61 and $1 axes, respectively (Figure 29). 

The parameters 62 and 4 2  can be included in the squeezing space diagram by by 
drawing the 62 axis along the top of the diagram and drawing the 4 2  axis along the right 
side. Note that the 62 axis is reversed and the 4 2  axis is shifted 180 degrees because of the 
relationship between the paranieters for plane #l and plane #2. 

Where Can the Squeezing Planes Contact the Polygon? 

In order to understand the behavior of a polygon under squeezing, we must first be 
able to predict where the polygon can be touched by the squeezing planes. 

To represent the points of contact between the squeezing planes and the polygon 
during a squeezing operation, we will introduce the concept of a contact pair. Two features 
on a polygon are  a contact pair if, for some orientation of the opposed squeezing half-planes, 
the two features are the first points of contact. We will denote a specific contact pair as 
an ordered pair of polygon features, where the first feature listed is taken to be in contact 
with plane #l. For example, (V1,V2), (e2,V3), etc. 
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F i g u r e  29. Sqiiwzing space. Squeezing space is similar to pushing space, except for the 
addition of the ncw pararnetcrs $2 and 6 2  along the right side and top edges. 

(Vertex-Vertex) (Vertex -Vertex) (Edge-Vertex) (Edge-Edge) 

(V-V) (V-V) (E-V) (E-E) 

F i g u r e  30. Examples of polygon contact pairs. 
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Figure 31. A (V-V) roritart pili1 t h t  cannot wcdgc. 

Contact pairs are connected by dotted lines called contact pair lines. Soine exainples 
of contact pairs are shown in Figure 30. Contact pair lines can occur between two vertices, 
<an edge and a vertex, or two edges; for brevity, these cases will be referred to as (V-V), 
(E-V), and (E-E) contact pairs, respectively (Figure 30). 

Contact pairs are defined to exist for all pairs of contact points, regardless of whether 
or not the squeezing contact has the potential for wedging. Note that not all contact 
pairs can wedge, and it may not be possible to orient the squeezing planes normal to 
the contact pair line (Figure 31). Therefore, it is incorrect to  directly associate contact 
pairs with wedging; squeezing contact with a contact pair is a necessary but not suflicient 
condition for wedging. We will discuss the conditions required for wedging later; for now, 
our strategy is to find all of the polygon’s contact pairs, and then determine which contact 
pairs can wedge. 

To find all of a polygon’s contact pairs, we can capitalize on the results of our previous 
investigation of pushing. Recall that a polygon’s & values directly correspond to edge-flat 
lines in the pushing space, which partition the pushing space into bands of vertex first 
contact. A similar result applies in the squeezing space as well. The bands of vertex 
first-contact for plane #1 are identical to the first-contact bands derived previously for 
pushing. Plane #2’s first-contact bands are also identical, except that they are shifted 180 
degrees in the squeezing space (Figure 32). As we shall see, these two sets of first-contact 
regions immediately define all of the polygon’s contact pairs. 

In Figure 32, consider plane #l’s first-contact band for vertex V3 (shaded region). 
Note that this region overlaps with plane #2’s first-contact band for vertex VI,  e l  edge-flat 
line, and V2 vertex first-contact band. This implies that for orientations where plane #1 
touches V3 first, plane #2 can touch either VI,  e l ,  or V2 first, as demonstrated in Figure 33. 
Thus, by projecting plane #l’s first-contact region for V3 onto the corresponding first- 
contact regions for plane #2, three of the polygon’s contact pairs were found: (V3,V1), 

(V3,el)y and (V39v2). 

By carrying out this process for all of plane #l’s vertex first-contact bands and edge- 
flat lines and tabulating the results, all of the polygon’s contact pairs can be found. The 
table in Figure 32 shows the results of applying this procedure to our now-familiar triangle; 
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Plane # 1  Corresponding 
Feature Plane # 2 Feature 

v, 1 e, 9 v2 
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Figure 32. Dctcction of contact pairs. The first-contact rcgions for plane #1 arc projrcted 
onto the first-contact rcgions for plane #2, yielding the tablc of contact pairs shown at right. 

Figure 33. Illustration of the three contact pairs found from the shaded region in Figure 32. 

note that all of the polygon's contact pairs (in both directions) were returned by the 
procedure. 
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Figure 34. Tlir ~ U I ~ I C U  X imd p for an cdgc-vcrtcx (E-V) contact pair. 

Which Contact Pairs Provide a Stable Grasp? 

Now that we have a list of all of the polygon’s contact pairs, we can determine which 
contact pairs provide a stable grasp of the polygon. Recall the requirements for a stable 
grasp that were put forth earlier: 

(1) At least one edge of the polygon is flat against a squeczing plane. 

(2) The polygon is wedged between the squeezing planes. 

When the above conditions are satisfied, the object is guaranteed to be  held in a stable 
grasp, with two degrees of uncertainty removed from the object’s position. 

Determining what squeezing orientations achieve these conditions is not difficult. Con- 
dition (1)  is met in all cases of (E-V) or (E-E) contact pairs; all instances of these contact 
pairs have already been detected by the algorithm described in the previous section. There- 
fore, all stable grasps can be found by simply determining which instances of (E-V) and 
(E-E) contact pairs wedge, thus satisfying condition (2).  

First we will consider (E-V) contact pairs. We can determine whether or not any given 
(ei, Vi)  contact pair will wedge by examining the angles X and p,  shown in Figure 34. These 
angles are the interior angles formed between the ends of the edge e; and the opposite vertex 
Vj; X is the angle formed at the left vertex, while p is the angle formed a the right vertex. 

These angles indicate whether the contact pair (ei, Vi)  will wedge when squeezed. An 
(E-V) contact pair wedges when both p and X are less than (90 + a). To see this, consider 
the three cases of (E-V) squeezing contact shown in Figure 35: 

0 In case (a), p is less than (90 + a), but  X is not. Notice the contact pair line labelled 
*. This line lies outside the contact friction cones - this implies that there is not 
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Figure 35. Tlirw (E-V) ~cliirc,~iIig-ccirit;Lc.t rasrs. In CitSr ( a ) ,  thci polygon ro t i l t rs  roiurtcr- 
c.loc.kwisv. siricr X > (90 + u) .  In ciisc (1)). tlir polygon is wcdgcd a i d  docxs not rotate, 
siwc h t h  X a id  p iur lrss tl1:tri (90 + a) .  hi case ( c ) ,  the polygon rotatcs clockwise, since 
I' > (90 + a) .  

enough friction to make vertices Vi and V i  stick, and the polygon slips, rotating 
counter-clockwise. 

0 In case (b), X and p are both less than (90 + a) ,  and the polygon is wedged between 
the squcexing planes. This is true despite the fact that both (V-V) contact pair lines 
lie outside their friction cones. The contact between V; <vld V j  cannot slip, because it 
would result in a clockwise rotation that would cause e; to enter plane #l .  Likewise, 
the contact between Vi+l and V j  cannot slip, because the counter-clockwise rotation 
that would resiilt is also obstructed by e;. Note that if either or both of the dotted 
lines were within the friction cone, the polygon would still be wedged, since no slipping 
could occur. 

0 In case (c), X is less than (90 + a) ,  but p is not. By reasoning similar to case (a) 
above, the polygon slips as it is squeezed, this time rotating clockwise. 

This analysis provides us with a simple way to determine whether or not any given (E-V) 
contact pair will wedge. If X and p are both less than (90 + a ) ,  then the contact pair will 
wedge; otherwise, the polygon will rotate when squeezed. 

After developing the wedging conditions for (E-V) contact pairs, the wedging analysis 
for (E-E) contact pairs is trivial. Basically, the same conditions apply: (E-E) wedging 
occurs only when both X and p are less than (90 + a) .  The only change to the previous 
(E-V) analysis is that  the definitions of p and X are different for an (E-E) contact pair; 
these definitions are illustrated in Figure 36. 

Thus, each (E-V) or (E-E) contact pair can be quickly checked for wedging; if both X 
and p are less than (90 + a ) ,  then the contact pair will wedge, and is considered a stable 
grasp that we seek. Those contact pairs that  provide a stable grasp correspond to seek 
lines in the squeezing space. The seek lines for the triangle are shown in Figure 37; these 
seek lines show all of the stable grasp configurations that are possible for the triangle. 



i 
e 

Figure 36. Thc. ;tliglc*s X arid p for an edge-edge (E-E) contact p,%ir. 

So, to determine which contact pairs provide a stable grasp, we can take all of the 
(E-V) and (E-E) contact pairs found by the procedure described in the previous section, 
and calculate their X and p angles. If both X and p are less than (90 + a ) ,  then the contact 
pair provides a stable grasp, and the contact pair’s seek line is added to the list of seek 
lines for the polygon. 

What Polygon Orientations Wedge in an Undesirable Configuration? 

As shown in the second example presented in the beginning of this section, there 
are sonic (V-V) squeezing configurations that wedge, but are undesirable because the 
uncertainty in the polygon’s orientation is not removed (Figure 38). It is precisely these (V- 
V) wedging configurations that we wish to avoid; therefore, we will proceed by examining 
each (V-V) contact pair in turn, determining what squeezing orientations (if any) result 
in wedging. We will then avoid these undesirable orientations. 

Wedging occurs for a (V-V) contact pair when the contact pair line lies within the 
friction cone at each vertex (Figure 38). If the contact pair line lies outside the friction 
cones, then the vertices slip, causing the polygon to rotate. 

To determine what squeezing plane orientations cause a given contact pair to wedge, 
consider the special-case squeezing operation illustrated in Figure 39. In this configura- 
tion, the squeezing planes are perpendicular to the contact pair line. We will denote the 
orientation of plane #1 in this special case as 

Since both squeezing planes are perpendicular to the contact pair line, the contact pair 
line lies within both friction cones, and the polygon is wedged. Now imagine rotating the 
parallel squeezing planes slightly in either direction; as long as the planes are rotated less 
than a away froin $ 8 ,  the contact pair line remains within the friction cones, ,and wedging 
continues. However, as soon as the planes are rotated further than a away from d 8 ,  the 
contact pair line lies outside both friction cones, ,and the polygon slips and rotates as the 
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Figure 37. Seek lines in the squeezing space. These seek lines indicate all of the tri,angle’s 
st able grasp configurations. The grasp configurations corresponding to each seek line are 
shown 011 the right. 

Figure 38. A (V-V) contact pair that is wedged. No matter how hard the polygon is 
squeezed, it will not rotate. 
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Figure 39. Sprcial sqiierzing case. Thc contact pair line is pcrpcndicular to both squerxing 
I)liLII(Y. 
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Figure 40. Thr rcgion of possible contact with a contact pair. For the contact, pair (Vi, Vi), 
siniultaxicous contact with lmth squeezing planes can occur in tlic interval (&,in, Smaz) .  

planes squeeze together. Thus, undesirable (V-V) wedging occurs for plane orientations 
with 41 values in the range (4, - a,4, + a). 

However, not all values of 41 within (4, - a,d, + a) are realizable for some contact 
pairs, since the edges adjacent to the contact vertices may prevent the squeezing planes 
from reaching the wedging orientations (recall Figure 31, where wedging was impossible). 
Therefore, it is necessary to deteriiiine what 41 interval corresponds to possible contact 
configurations with a given contact pair, and then compare this interval with the 41 interval 
that  causes wedging. 
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Consitlcr the rcprescntation of i i  contact piiir (V;, V i )  in squcexing space (Figure 40). 
A s  before, the rcgion of V; first contact with plane # I  is shown on the lcrt, wllilc the 
region of V, first contact with plane j f 2  is shown on thc right. ltecall that the contact 
pair-finding procctlure discovered this contact pair by detecting the overlap h tween  the 
Vi Erst-contact region and the V j  first-contact region (shaded area); this overlap also 
convcniently corresponds to the  realizable plane orientations for the contact pair. Thiis, 
we can infer from the diagram that the interval &b(lx)  of rertlizahle plane orielit a t’ ions 
for any given (V, ,  V j )  contact pair can be easily calculated as follows (recall that, is the 
value of e;’s edge-flat line): 

( 6 . =  rnzn 

+m(tz min[ti-l, ( t j - 1  - 18O)] 

maz[ t i ,  (Ej - 18O)I 

Note that &in is always less than +maz, or else this contact pair wouldn’t have been 
detected in the first place. 

At this point in the analysis, we know that: 

0 Contact occurs for values of 41 in the non-empty interval 

0 Wedging occurs for values of 41 in the non-empty interval ($s - a, q58 + a). 
+,,z). 

The intersection of these two intervals corresponds to the range of plane orientations tha t  
wedge. Thus we can intersect these intervals to yield a wedging avoidance region A in 
squeezing space: 

A = (dmin, 4maz) n (48 - a, 48 + 4 
The interval of possible contact and interval of wedging are completely unrelated; they 
may coincide or partially overlap, one can be contained within another, or they may be 
completely disjoint. Thus, nil avoidance regions are possible. 

Computing the wedging avoidance region A is simple: 

Amin max[dmin, ( $ 8  - a)] 

Amaz = min[+maz, ( 4 s  + a)] 
(If ATnin > Am,,, then A = nil) 

This calculation can be carried out for all of the polygon’s (V-V) contact pairs, thus 
finding all of the wedging avoidance regions for the polygon (Figure 41). If we choose 
a squeezing operation that stays out of these regions, then we are guaranteed that the 
polygon will not get stuck in an undesirable (V-V) wedging configuration. 

So to de teriiiine what polygon orientations wedge in undesirable configurations, we 
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Figure 41. Wedging avoidance regions. Squeezing operations that occur within the shaded 
regions enroiintcr (V-V) wedging. 

can calculate the wedging avoidance region A for each (V-V) contact pair that  was found 
by the contact pair-finding procedure. All squeezing operations that stay out of the result- 
ing avoidance regions are guaranteed not to get stuck in any undesirable (V-V) wedging 
configur a t’ ions. 

Combining Seek Lines and Avoidance Regions 

After we have found all of the seek lines and avoidance regions for a polygon, we can 
conibine these seek lines and avoidance regions to form a seek/avoidance diagram, which 
fully describes the behavior of the polygon under squeezing (Figure 42). 

At this point, it is worthwhile to investigate the inotion of the polygon when subjected 
to squeezing operations that lie in the “white space” between avoidance regions and seek 
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Figure 42. Wrdging srck/avoidancc diagram. Squeezing operations that take place within 
thc shidcd avoidance regions result in uiidesirable (V-V) wedging. The dashed lines are 
swk liiirs that correspoiid to (E-V) or (E-E) contact pairs that wedge wlicn squeezed, thus 
providing a stable bpisp. 

lines. 

Consider the example shown in Figure 43(a). The rectangle is being squeezed along 
its (Vl ,V3)  contact pair and is not wedged; as the planes squeeze together, the rectangle 
rotates clockwise until el  lies flat against plane #1, and stable grasping is achieved. The 
corresponding segment of the rectangle's seek/avoidance diagram is shown in Figure 43(b); 
the rectangle starts at the heavy dot near the avoidance region, and nioves vertically down 
to the e l  seek line (as with pushing, we require that 6 is constant). 

Notice that the rectangle's rotation direction is constrained by the squeezing planes; 
the rectangle can only rotate clockwise, since counter-clockwise rotation would cause the 
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Figure 43. Tliv rotation of a rc.rtarigle under squerxing. (a) As thr p1anc.s sqiicwe together, 
tlic rcrtangle rotates clockwisr. (1)) The sqiiccxiiig move of (a), illustrated in tlic sqiirexing 
spare. Thc, rcbctarigle starts slightly below the (VI, V,) wedging avoidance rcgion, and 
travels ~iiovcs clown to the el stable grasp seek line. 

vertices Vi and V3 to enter the squeezing planes. Hence an analysis of rotation direction 
can be avoided completely; polygons under squeezing always rotate away from avoid,mce 

regions toward seek lines. Therefore, we know that any squeezing operation that begins 
between two avoidance regions will always rotate directly to the seek line between the 
avoidance regions, without wcdging along the way. 2 

Thus, the resulting seek/avoida.nce diagram indicates the space of all successful grasp- 
ing motions; any squeezing operation that begins outside of an avoid,ance region in the 
diagram is guaranteed to terminate in a stable grasp at the nearest seek line. 

How Can We Include Pushing Information? 

At this point, we have developed the seek/avoidance diagram, which characterizes 
the outcome of all possible squeezing operations. However, this result is not directly 
applicable to real-world squeezing operations because, in the real world, two-plane contact 
does not exist throiighout all phases of a squeezing move. Because the location of the 
object is not precisely known, it is unlikely that both squeezing planes will touch the 
object simultaneously; rather, the squeezing move will consist of a “pushing phase” when 
only one plane touches the polygon, followed by a “squeezing phase”, when both planes 
are in contact with the polygon. Further, it is not known a priori which plane will contact 
the polygon first. Thus, we need to devise a method of integrating the previous pushing 

’It turns out tliat t h e  is a single seek line between every pair of avoidance regions. However, it is not 
true that tlicrc is “white space” to either side of every seek line. Some seck lines are adjacent to, or buricd 
within, avoidance regions. Thus, not cvcry seek line that provides stable prehension is reachable through 
squeezing. An example of this will be presented in a later section, ‘‘When Simple Squeezing Fails.” 
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an a1 y sis wit 11 our new kn ow ledge i d )  o ti t squeezing . 

Our strategy for integrating the pushing and squeezing analyses will be as follows: 

A We will first assii~iie that plane #l touches first; this implies that  there is a pushing 
phase of unknown duration where plane #1 pushes the polygon, followed by a squcez- 
ing phase where both planes sqiieeze the polygon. Using this iwuniption, we will 
combine the push-stability diagram for plane #1 aiid the squeezing seeklavoidance 
diagram to produce the ofhet-grasp diagram, which is the space of squeezing inoves 
that arc guaranteed to succeed, given that plane #l touches the polygoii first. 

B. We will pursue the same sort of strategy for plane #a, to produce the space of squeez- 
ing iiioves that are guaranteed to succeed, given that plane #2 touches first. 

C. Finally, we will intersect these two diagrams to produce the space of squeezing moves 
that are guaranteed to succeed, regardless of which plane touches first. This diagram 
is the squeeze-grasp diagram, and is the primary result of this paper. 

Objective A 
Let us proceed with point A above. Assume that plane #1 touches the polygon first, 

and that plane #l pushes the polygon for some time of unknown duration before plane #2 
conies in contact with the polygon. Between the tiine that plane #1 touches the polygon 
and the tinie that plane #2 touches, the motion of the polygon is described by its push- 
stability diagram (recall Section 111). However, plane #2 may come in contact with the 
polygon at any time, imiiicdiately switching the motion to that described by the squeezing 
seek/avoidance diagram. 

Since we cannot predict when this contact will occur, we must choose operations 
that can have pushing phases of any duration, without ever placing the polygon in any of 
the avoidance regions of the seek/avoidance diagram. We can find the space of all such 
moves by superimposing the push-stability and seek/avoidance diagrams and rejecting 
those moves which might get caught in an avoidance region. 

This rejection process is illustrated in Figure 44. Figure 44(a) illustrates the push- 
stability diagram for the triangle, superimposed with the triangle’s seek/avoidance dia- 
gram. We wish to reject all pushing operations that can lead to wedging if plane #2 touches 
the triangle a t  an inconvenient time; what regions of the diagram should be deleted? 

Obviously, pushing moves that begin in one of the avoidance regions axe rejected be- 
cause an iiiimediate contact with plane #2 would cause the squeeze-grasp to fail. Further, 
a11 pushing moves that start outside an avoidcame region but pass through an avoidance 
region at sonie time during the move should be rejected, since plane #2 might contact the 
triangle while it is within the avoidance region. Point A in Figure 44(a) indicates a move 
of this type. 
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Figure 44. Corribiriing pusliing <and squeezing irlformation. (a) The push-stability diagram 
for plane #I, siiprrirnposecl with the squeezing seeklavoidance diagram. All pushing moves 
that start in or pass through [an avoidancc region should be rejectd because they can 
Iead to iiridrsiralk (V-V) wedging if plane #2 coiiics in contact with the polygon at  an 
iriconvcwicnt time. Point A indicates A niovr that shoiilcl be rejwtcd because it passes 
through ai avoidaricc region. (b) The space of d l  squeezing moves that are guaranteed to 
succeed without (V-V) wedging, aqsuming plane #1 toiiches first. This cliagrani is sirnply 
(a) with the appropriate moves rejected. 

This reasoning may be applied to the entire diagram to yield the space of squeezing 
moves that are guaranteed to succeed, assuming plane #1 touches first (Figure 44(b)). This 
diagram is the offset-grasp dia.grani for the triangle, because it represents the space of all 
squeezing moves that are guaranteed to succeed if we offset the gripper’s initial location 
enough to guarantee that plane #1 touches before plane #2 touches. The generation of 
this diagram completes objective A. 
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Figure 45. Arcoiiritiiig for the possiblity of plane #2 touching first. (a) illustrates the 
normal offset-grifip diagram for plane #2; notice that its axes are 62-42 instead of 61-41. 
This cliagrani is thrn transformed into plane #I% coordinates, producing (b), which is 
tlie S ~ R C C  of all squcreing moves that are guaranteed to succeed without (V-V) wedging, 
assiiinirig planc #2 touclies first. 

Objective B 

Objective B of the strategy is the same problem, but  with the plane numbers reversed: 
We assume that plane #2 touches first and starts to push the polygon, ‘after which plane #1 
can make contact with the polygon at any time. We seek the space of all squeezing moves 
that are guaranteed to succeed, under these assumptions. 

Since plane #2 is physically in’distinguishable from plane #1, we can directly use the 
offset-grasp diagram result from objective A, relabelling the axes 62-42 instead of 61-41 
(Figure 45(a)). However, since we plan to  intersect the plane #1 and plane #2 diagrams 
later, both diagrams need to have the same coordinate axes. Therefore, it is necessary to 
derive plane #a’s offset-grasp diagram in terms of plane #l’s coordinates. 
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Figlire 46. Thr squc.rae-grasp diagram for the triangle. The squeezegrasp diagram shows 
thc s p a r r  of dl squeezing moves that <are guaraxiteed to succeed. rcgiL1.dlcss of which plane 
touclics first. Tliia tliagran is the result of intrraorting tlie diagranis of Pigiire 44(b) and 
Figure 45(b). 

This can be accomplished by applying a transforni to plane #2’s offset-grasp diagram. 
A short bit of algebra reveals that the transforin is quite simple: To generate the offset- 
grasp disgraiii for plane #2 in terms of plane #l’s coordinates, the nornial offset-grasp 
diagram for plane #2 is vertically phase-shifted 180 degrees, and reflected about the 6 = 
90 line. The result of applying this transform to the triangle’s offset-grasp diagram is 
shown in Figure 45(b). This transform arises from the algebraic relationships between the 
parameters for plane #l and plane #2 (see squeezing introduction above). 

The resulting diagram displays the space of push-squeezing moves that are guaran- 
teed to succeed, assuming plane #2 touches first, expressed in plane #17s coordinates 
(Figure 45(b)). This completes objective B.of the above strategy. 

Objective C 
Objective C wraps-up the squeezing analysis. The diagrams produced in objectives 

A and €3 delineate the space of guaranteed push-squeezing moves, assuming respectively 
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tlint plane // 1 or plaiie #-2 touches the polygon first. The areas that are coiiiiiion to 
both t1ingr;niis represent those squeezing iiioves that are guaranteed to succeed if pliine j /  1 
touclies first, or if’ plane #/2 touches first. So, by intersecting the diagrams, we will generate 
the space of all squeezing nioves that are guaranteed to succeed, regardless of which plane 
touches first. This final result is the squeeze-grasp diagram for the polygon. 

The  squeeze-grasp diagram for the  example triangle is shown in Figure 46; this diagrani 
is the result of intersecting the shaded regions of the diagraiiis in Figures 44(b) and 45(b). 
Any squeezing iiiove that begins within a shaded area of the squeeze-grasp diagram is 
guaranteed to succeed and provide a stable grasp of the triangle in the configuration 
shown. 

So to include pushing information into our squeezing analysis, we siinply execute the 
following steps: 

1. Superimpose the squeezing seek/avoidance diagram over the push-stability diagram 
to yield the offset-grasp, diagram, which is the space of squeezing moves that are 
guaranteed to succeed, assuming plane #1 touches first. 

2. Transform the offset-grasp diagram for plane #2 into plane #l’s coordinates by verti- 
cally phase-shifting the diagram 180 degrees, and reflecting about the S = 90 line. The 
result is the space of all squeezing moves that are guaranteed to succeed, assuming 
that plane #2 tonches first. 

3. Intersect the results of Steps 1 and 2 to yield the squeeze-grasp diagram, which de- 
lineates the space of squeezing moves that are guaranteed to succeed, regardless of 
which plane touches first. 

Summary - Two-Plane Squeezing 

This conipletes our investigation of two-plane squeezing; a short summary of the entire 
squeezing analysis follows. 

The pairs of polygon features that can make simultaneous contact with both squeezing 
plaiies can be found by projecting the first-contact regions for plane #1 onto the first- 
contact regions for plane #2, yielding a table of all of the polygon’s contact pairs. 

The polygon orientations that provide a stable grasp can be found by calculating the 
angles A and p for each (E-V) or (E-E) contact pair. If both angles are less than (90 +a), 
then the contact pair wedges when squeezed, thus providing a stable grasp. Each contact 
pair that  provides a stable grasp corresponds to a seek line in the squeezing space; the 
resulting seek lines show all of the stable grasp configurations that are possible for the 
polygon. 



The polygon orientations that should be avoided because they cause uridesirable (V-V) 
wedging arc found by calculating the wedging avoiclance region A for each (V- V) cont;ict 
pair. 'l'he avoid;ince region A is foiind by intersecting the intervals (q5.y - cy, qh8 + a )  and 
(&in, q57rL(15) ,  where (q5.., - c y ,  q5.3 -t a )  is the range of plane orientations where the particular 
(V-V) contact pair wedges, and ($,,Lin, $mnz) is the range of realizable plane orientations 
for the contact pair. 

The resulting seek lines and wedging avoidance regions are then combined to form a 
single sqiicezing seeklavoidance diagram, which fully describes the beliavior of the polygon 
under squeezing. 

Finally, this squeezing information can be integrated with previously-derived pushirig 
inforniation by superimposing the squeezing seeklavoidance diagran on the pnsli-stability 
diagrams for plane #1 and plane #2, and then intersecting the resulting spaces. This 
process produces the squeeze-grasp diagram for the polygon, which shows the space of a11 
squeezing moves that are guaranteed to succeed in grasping the object, while siniultane- 
ously removing two degrees of uncertainty from the object's position. 
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Figure 47. Thr ”roly-pointy” object. 
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Figure 48. Push-stability diagram for the roly-pointy. 

V. When Simple Squeezing Fails 

Consider the object shown in Figure 47, which we will refer to as a “roly-pointy.” 
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Figure 49. Roly-pointy seeklavoidance diagram. 

This object is interesting because of its squeeze-grasp diagram, which is developed in 
Figures 48-57. Figure 48 shows the push-stability diagram for the roly-pointy, produced 
by the method presented in Section 11. The wedging seek-avoidance diagr,am for the roly- 
pointy is shown in Figure 49; notice the many avoidance regions, and that several seek 
lines are adjacent to or contained within avoidance regions. 

With this object, the move reject,ion process is very severe. After the seek-avoidance 
diagram is superimposed over the push-stability diagram and the moves that can wedge 
are removed, only a few small regions remain. Figure 50(a) shows the space of push- 
squeeze moves that are guaranteed to succeed, assuming that plane #1 touches first, while 
Figure 50(b) shows the same regions, assuming that plane #2 touches first. However, notice 
that the intersection of these diagrams is nil! Therefore, there is no possible squeeze-grasp 
that is guaranteed to succeed, even in the presence of very small uncertainty. 

How can this be so? No squeezing move is possible for this object because there is 
no (E-V) contact pair which can be reached by a squeezing move where either plane may 
touch first. 
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Figure 50. Roly-pointy diagrams after rejection of moves that may (V-V) wedge. (a) 
Assiiriiing plcanc #I touches first. (b) Assuming plane #2 touches first. Notice that the 
intersection of (a) a d  (b) is nil. 

For example, consider the squeezing move labelled A in Figure 50. Since this move is 
in a shaded region of Figure 50(a), A represents a squeezing move that is guaranteed to 
succeed if plane #1 touches first. 

To see why this is the case, we will examine the result of applying the squeezing 
move A to the roly-pointy, first assuming that plane #1 touches first, and then assuming 
that plane #2 touches first. 

Figures 51 and 52 show move A’s result, assuming that plane #1 touches first. Here we 
assume that plane #1 makes contadt before plane #2, and pushes the roly-pointy for some 
time of unknown duration before plane #2 makes contact. If plane #2 touches right away, 
then the roly-pointy slips as it is squeezed until edge e5 is flat against the plane (Figure 51). 
If plane #2 doesn’t make contact for a long time, then the roly-pointy rotates clockwise 
under pushing until e5 is flat against the pushing plane, and then e5 remains flat against 
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Figure 51. The rcsrilt of applying the sqiiccxing move A of Figure 50, assliming that 
planr # 1 toiic-lirs first, and planc #2 makes contact hnnicdiatcly. When the move is finished, 
cclgc e5 of the roly-pointy is flat against plane #l. 

Figure 52. The result of applying the squeer,ing move A of Figure 50, assuming that 
plane #1 touches first, and tliere is a long delay before plane #2 makes contact. As in 
Figure 51, edge e5 is flat against plane #1 when the move is hished. 

the pushing plane until plane #2 eventually makes contact, conipleting the squeezing move 
(Figure 52). Notice that the roly-pointy ends up in the same final configuration in either 
case. This is why move A is in a shaded region of Figure 50(a); it is guaranteed to succeed 
as long as plane #1 touches first. 

However, our results are not as good if we apply move A to the roly-pointy and 
plane #2 touches first (Figure 53). If plane #1 touches right away, then the polygon 
slips as it is squeezed until e5 is flat against plane #1, and the grasp succeeds as before 
(Figure 53). However, if plane #1 doesn’t make contact for a long time, then the roly- 
pointy rotates clockwise under pushing by plane #2, and will continue rotating until e3 

is flat and stable against against plane #2. Thus, if a long delay occurs before plane #1 
makes contact, then the resulting final configuration is entirely different than if plane #1 
made immediate contact (Figure 54). Therefore we can make no guarantee about the 
result of move A if plane #2 touches first; this explains why A is not in a shaded region 
of Figure 50(b). 



54 

Figure 53. ‘rlic rcwilt of applying the sqiirrxirig move A of Figiirt. 50, assii~iiiiig that 
I)liIIi(’ # 2 toiichw first, ;uid p1a1ie #I niakrs colit i ict  inimriliiitcly. Whcm tlie I I I O V ~ .  is fiiiishcd. 
tdgc. e:, fliit against I)liLlic #/1, as in Figures 51 axid 52. 

-‘D+7 1 - - - 
Figure 54. The result of applying the squeezing move A of Figure 50, assiiming that 
plaric. #2 touclieu first: and there is a long &.lay before pl:ine #1 makes contact. In this 
case. the roly-pointy rotates clockwise until e3 is flat against plane #2, winding up in a find 
coiifigiiration that is completc.1y diffcrcnt than in Figures 51-53. 

And so it is unhappily true: our diagrams are not lying to us, and there is no squeeze- 
grasp that can pick up the roly-pointy with guaranteed results. However, there is a way 
to successfully pick up the roly-pointy. Recall that  move A was guaranteed to succeed 
in plane #1 touched first; if we can insure that plane #1 touches the roly-pointy before 
plane #2, then we can use move A with guaranteed results. 

The Offset-Grasp 

To meet this end, we will define the offset-grasp (Figure 55). The offset-grasp is 
executed by offsetting the gripper’s initial position to one side so that it is always true 
that plane #1 touches before plane #2. If we eniploy this grasping motion, then we 
can plan offset-grasps by simply using the offset-grasp diagram generated in the previous 
section. Figure 44(b) shows the offset-grasp diagrani for the triangle; Figure 50(a) shows 
the offset-grasp diagram for the roly-pointy. This offset-grasp diagram is the space of all 
squeezing moves that are guaranteed to succeed, as long as we offset the gripper sufficiently 
to assure that plane #l touches before plane #2. 
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Figure 55. Thc. offsc:t-grasp. The gripper lingers are offsct to one side to insiirc that 
plane # 1 toiiclws bcforr plane #2. .a 0 
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Figure 56. Demonstration of why the roly-pointy cannot be squeeze-grasped along its 
(e3,VI) contact pair. (a) The desired stable grasp configuration. This configuration cannot 
be achieved by a squeeze-grasp because orientations (b) and (c), which are very close to the 
desired grasp, are caught in undesirable (V-V) wedging conditions and do not slip to flat 
when squeezed. 

The addition of the offset-grasp considerably increases the number of grasping motions 
available for picking up the roly-pointy. However, there are still some grasp configurations 
that we might like to achieve, but remain unavailable to us. 

For example, suppose that for some reason we wanted to pick up the roly-pointy by 
its (e3,Vl) contact pair; i.e., where e3 is flat against plane #1, and plane #2 squeezes 
Vi.  At present, this grasp is unavailable to us, since the squeeze-grasp diagram for the 
roly-pointy is nil, and there is no shaded region for e3 in the offset-grasp diagram for the 
roly-pointy. Figure 56 shows why 'this grasp is impossible to achieve through squeezing. 
Since the vertices on either side of e3 both wedge, orientations that are rotated only slightly 
clockwise or counter-clockwise from the edge-flat configuration lead to (V-V) wedging, and 
do not slip to flat when squeezed. Thus no squeezing motion can guarantee that e3 ends 
up flat against plane #1. 



The Push-Grasp 

Again, there is a solution to this problem which will allow us to achieve the desired 
configuration: the push-grasp (Figure 57). A push-grasp motion consists of a pushing 
phase, where the object is pushed until it is in alignment with plane #1, followed by a 
squeezing phase, where plane #2 squeezes in to firmly grasp the object. 

A push-grasp will succeed for any edge that is stable when pushed, regardless of 
whether or iiot the edge remains stable when squeezed. To see this, consider the polygon’s 
configuration at  the end of the pushing phase of the push grasp; in the squeezing space, 
this configuration falls either on a seek line, within an avoid,ance region, or in the “white 
space” between avoidance regions. We can see by the following that in all three of these 
cases, the grasp is guaranteed to succeed: 

(1) If the configuration is on a stable-grasp seek line, then it is obvious that the grasp will 
succeed when thc second plane squeezes the polygon. 

(2) If the configuration is within an avoidance region, then we know that the polygon will 
wedge when squeezed, siniply because the configuration is within a wedging avoid<ance 
region. However, we also know that some polygon edge is flat against the pushing 
plane, because we just finished our pushing operation. Therefore, since an edge is 
flat against the plane and the polygon will wedge when squeezed, we know polygon is 
actually on an (E-V) or (E-E) seek line, and the grasp will succeed by the analysis in 
(l), above. 

(3) If the configuration is in the white space between avoidance regions, then we know 
that when the polygon is squeezed, it will immediately rotate to  the adjacent (E-V) 
or (E-E) seek line without encountering .my avoidance regions along the way, thus 
providing a successful grasp. 



Figure 58. Piisli-grasp cliagranis. (a) The push-grasp diagram for the triangle. (b) The 
push-grasp diagram for thc roly-pointy. 

Therefore, all points within edge-stability regions in a polygon's push-stability diagram 
correspond to succcssful push-grasps. Combining the pushing and squeezing analysis to 
produce a push-grasp diagram is then done as follows: 

Each edge-stability region is examined in turn; if' the corresponding edge is stable 
under squeezing, then the region is converted to a push-grasp region. If the corresponding 
edge is not stable under squeezing, then the region is converted to a push-grasp region 
for the seek line that the polygon will rotate to when squeezed (this can be looked up in 
the seek/avoidsnce diagram). Finally, any adjacent regions that correspond to the same 
final squeezing configuration are merged, yielding the complete push-grasp diagram for the 
polygon. 

Notice that this diagram does not indicate how far the polygon has to be pushed in 
order to assure that the desired edge is Bat against the plane; this topic, while important, 
will be deferred to a later paper. 
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I .  1 lie resulting piisli-grasp diagrain represents the space of all push-grasp moves that 
arc gunrantecid to succccd in grasping the object in the final squeezing configm-nt.ion shown. 
The  push-grasp (1i;tgraiiis for the triarigle and roly-pointy arc shown in Figure 58. 

In this section, we have seen an example situation where an ordinary squeeze-grasp 
motion will fail. In  addition, we have defined two additional grasping motions: the offset- 
grasp and the push-grasp. These additional grasping motions extend the capabilities of 
our grasp-p1;tnning method in two important ways: 

(a) Objects that were otherwise impossible to grasp through squeeze-grasp motions can 
now be successfully grasped, and 

(b) More uncertainty in the object’s location can be tolerated, since previous Iiiovcs that 
were rejected because they passed through avoidance regions are now acceptable. 

We now have three grasping motions: the squeeze grasp, offset-grasp, <and push-grasp. 
The next section will discuss a method for incorporating the presence of uncertainty into 
our analysis. 
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VI. Handling Uncertainty 

Thus far, we have derived a method for planning successfill grasping moves, but we 
haven’t directly addressed the presence of uncertainty. How can uncertainty be included 
in this analysis? 

One way to handle uncertainty is as follows: Imagine the range of orientations and 
pushing directions as an “uncertainty cloud” in the pushing space. This cloud rcprcsents 
the set of all initial configurations that might actnally occiir For any chosen sqiieczitig 
operation. If we choose a11 operation whose uncertainty cloud is fully contained within a 
single shaded region in the squeeze-grasp diagram, then we know that we will achieve the 
same final result, regardless of which initial configuration actually occurs. Thus, finding r?. 

grasp that will work despite the presence of uncertainty reduces to the problem of trying to 
fit an uncertainty cloud fully within a single shaded region in the squeeze-grasp diagram. 

However, this method is computationally difficult, both because the shape of the cloud 
is difficult to define, and because the operation of trying to fit the cloud within a region is 
conipu tat ionally expensive. 

An alternative approach is to shrink the regions in the grasp stability diagram to 
account for uncertainty. This can be accomplished by removing those parts of each region 
that are close enough to a region boundary that the worst-case uncertainty might came 
the actual initial configuration to lie outside of the region. Points that remain are then 
far enough away from the original region boundary that even worst-case errors won’t lead 
to an initial configuration that is not within the region. Thus any grasping operation 
that lies within a remaining shaded region is guaranteed to succeed, even if the worst- 
case error is encountered. This shrinking process is similar to growing obstacles in robot 
obstacle-avoidance problems[Lozano-PCrez and Wesley 19793. 

So how can we shrink the regions in our grasp-stability diagrams to appropriately 
account for uncertainty? In the discussion that follows, we will treat two different kinds of 
uncertainty: world uncertainty and manipulator uncertainty. World uncertainty is uncer- 
tainty in the location and orientation of the object, and also in the coefficient of friction 
p. Manipulator uncertainty is the uncertainty in the gripper orientation 4, and the uncer- 
tainty in the relative pushing direction 6. These various uncertainties can be accounted 
for in our grasp-stability diagrams by shrinking regions in ways appropriate to each type 
of uncertainty. 

For example, consider uncertainty in the orientation of the robot’s gripper. This 
corresponds to uncertainty in the plane orientation 4; we will denote this uncertainty as 
U4. If we shrink stability regions in the 4 direction (i.e., vertically) by the amount U4, then 
we are assured that points that we choose lie within the remaining regions will have actual 
values that lie within the original regions, even if the worst-case uncertainty is encountered. 
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Figure 59. Compcwsatixig for uxicc~rtatixity in plane orientation, U,. Shrinking rcgioiis ver- 
tically r(mov(’s all opratioris that might fail if the worst-case uncertainty is encountered. 
(at) Sliows a portion of the tri<mglc’s push-st;hility diagram, assuiriing no iinrcrtaiiity. (b) Il- 
1llstriltc.s the sanic’ (1iaqpmi7 ;tftc.r shrinking the regions for uncwtainty in 4. Notice that e2’s 
(dgc-fliLt liric rcriini~is stable, even though it is no longer contained within e2’s edge-stability 
rcgion. Her(., Ub = f 15“. 

irinking process is illustrated in Figure 59. Notice that U4 is large enough that t le 
bottom boundary of e2)s  stability region shrinks past e2)s convergent edge stability line. 
This is not a problem, however, because e2’s edge-stability line is still stable; the physics 
of the situation haven’t changed. The shrinking we have done only limits the space of 
starting moves that we can choose froni and still be assured that uncertainty won’t place 
the actual operstioii in another region. 

Next consider uncertainty in the polygon’s position and orientation. Since we haven’t 
discussed starting positions, minilnuin finger widtli/separation, or pushing distance, we are 
not prepared to address uncertainty in the polygon’s x-y position, so we will treat this topic 
in a later paper. However, we can compensate for uncertainty in the polygon’s orientation, 
which we will denote Uori. This uncertainty has the same effect as the uncertainty in plane 
orientation, since both contribute to error in the angular difference between the polygon’s 
coordinate system and the pushing or squeezing plane(s). Thus we can coinpensate for 
Uor; by shrinking the regions in our diagrams vertically, just as we did for U4. Since the 
two uncertainties might add in the worst case, the shrinking for Uori should be done in 
addition to the shrinking previously accomplished for U4. An example of applying this 
shrinking process is shown in Figure 60. 

Another source of uncertainty arises from the uncertainty in the robot’s direction 
of motion, denoted Ub. This uncertainty can be compensated for by shrinking regions 
horizontally in our diagrams, thus assuring that any move we choose within the remaining 
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Figure 60. Comprnsating for uricrrtainty in the orirntatiori of tlir polygon, UOr,. Again, 
shrinking thr  rrgioris vcrticiilly rrnioves oprratioiis that ~riiglit fail if tlir worst-case uncer- 
tainty is cncoiiritrrccl. Since the iincrrtainty in plane orientation and tlic unccrtaiuty in 
polygon orirntatioii iriiglit add in the worst caw, thc regions are shrunk for U,,,, in addi- 
tion to tlir amount shrunk for U,. (a) A segment of thc triangle's push-stability diagr<un. 
(b) Thr srgniriit shown in (a), after shrinking for U+ arid Uori. In this figure, U,,,, = f15" 
ant1 u, = f5" .  
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Figure 61. Compensating for iincertainty in the direction of motion, Ua. Regions are 
shrunk liorizontally to rcmove opcrations that may f id  for the worst-case u6. (a) Shows 
rrgions before shrinking, wliilc (b) shows the same regions after shrinking to compensate 
for [/a. U6 = f5"  in this figure. 

regions will have an actual 6 value t.hat lies safely within the original true regions, even if 
the worst-case uncertainty occurs. This shrinking process is illustrated in Figure 61. 

Finally, there can be uncertainty in p,  the coefficient of friction between the polygon 
and the robot's fingers. We will denote this uncertainty Up. Uncertainty in p implies 



Figure 62. Accounting for iirtrrrtairity in thcl coefficicmt of friction, U,,. 01ily the liorieontal 
rotation 1)ouritliiric.s iuc ;df(,ctccl by lJ,&, so only tliosc. Imiritlarirs imp shriink vertically. 
(a) Shows a typical rotiitioIi bollIitlitry, iuid (I)) shows the saiie boiiiidiiry i f c r  sliririkiiig to 
colripcllsitt(’ for (J*. Hrrr the uncvrtainty in p was such that U, = f 5 ” .  

uncertainty in the angle Q that defines the friction cone. Recall that  this angle CY was 
crucial to the generation of our diagr,ams-in deciding which way the polygon would rotate, 
whether or not an edge was stable under pushing or squeezing, and in determining what 
polygon orientations should be avoided because they cause undesirable (V-V) wedging. 
Thus, uncertainty in p has the potential of fundamentally changing our diagram, in a way 
that is more draiiiatic that siiiiply widening borders. 

Let’s consider a simple case of only a single divergent rotation boundary in the pushing 
space (Figure 62(a)). Recall that the horizontal segments of this boundary arose from a 
change in vote of the rays RI or R,, and the diagonal boundary arose from a change in 
Rp’s vote. However, only RI and R, are affected by uncertainty in p; the variation of 
R, is independent of the friction cone. Thus only the horizontal segments of this rotation 
boundary are affected by Up. Therefore, we can adequately compensate for Up by vertically 
shrinking regions only along the horizontal segments of the rotation boundary, as shown 
in Figure 62(b). 

Up will be described as m interval of p values. Since Q = tan-’(p), this p interval 
implies an interval of CY values U,; this interval U, determines how to  shrink the horizontal 
rotation boundaries; the use of U, in this shrinking process is shown in Figure 62(b). 

However, simply shrinking regions along horizontal boundaries does not correctly com- 
pensate for Up in all cases. Consider the diagram segment shown in Figure 63(a). The 
upper divergent rotation boundary of e,’s edge-stability region is very close to the con- 
vergent edge-stability boundary for eb. When the horizontal segments of the rotation 
boundary between el, and e, are  expanded to account for U, (shown dotted), the divergent 
rotation boundary will cross eb’s edge-stability boundary. 

This crossing presents a problem because it implies that we are unsure of Rl’s vote 
when the polygon’s edge eb is flat against the pushing plane. If Q is near the high end of 
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Figure 63. Tlir cffcct of U,, on stable edges. If shrinking regions to compensatr for U p  
caiiscs a divc,rgcrit rotation 1)oundruy to cross a convcrgent boiiiidary. thrm it is no longer 
clear whrther or not that edge is stable for those values of 6 where the boundaries crossed. 
Thus that portion of the convergent boundary must be assumed to havr indetrrrninatc 
stability. iuid all operations that finished 011 that portion of the convergent boundary xriiist 
bc avoidcd. 

its uncertainty interval U,, then the polygon will “rollover” to e,; if a is near the low end 
of U,, then e6 will remain stable as before. Therefore we can’t be sure whether or not eb 
will remain stable or rollover to e,, and so the uncertainty in p has caused the stability of 
eb to become indeterminate for those values of 6 that are included in the crossover of the 
rotation boundaries. As a result of this indeterminacy, all pushing moves that rotate into 
this indeterminate region must be avoided. 

Thus, shrinking the stability regions of Figure 63(a) to account for Up is slightly 
more difficult than siniply expanding the horizontal segments of the divergent rotation 
boundaries; the stability region for e6 must also have all pushing moves with indeterminate 
results removed. This can be accomplished by establishing a new vertical boundary from 
the intersection of the divergent and convergent boundaries, as shown in Figure 63(b); this 
new boundary removes exactly those moves that lead to indeterminate results. 

For squeezing diagrams, the compensations for Up are simpler. Uncertainty in p 
widens existing (V-V) avoidance regions to the worst-case CY value, with the wider friction 
cone perhaps creating some new avoidance regions as well. This can be handled by assum- 
ing the worst-case (widest) friction cone when generating the seek/avoidance diagram. 

The (E-V) and (E-E) seek lines are also affected. ‘Since worst-case CY values may yield 
conflicting decisions on whether or not a given (E-V) or (E-E) contact pair will wedge when 
squeezed, some edge-flat contact pairs may have indeterminate squeeze-stability once Up is 



64 

A 
'p1  

360 

I 

" I  I 

(a) 

9: 
360 

270 

180 

0 180 

Figure 64. Squeree-grasp and push-grasp diagrams, after shrinking regions for uncertainty 
in the coefficient of friction Up. (a) Remaining regions in the triangle's squeezegrasp di- 
agram, where p E (0.15,0.35), implying that a E (8", 19"). (b) R,cmaining regions in the 
roly-pointy's piish-grasp diagram, where p E (0.2,0.5), implying that a E (l l@, 27"). 

considered. Thus some contact pairs previously thought to slip and rotate when squeezed 
might actually wedge, and some seek lines expected to wedge might actually slip and 
rotate; these indeterminate cases should be avoided. This effect of Up on edge-flat contact 
pairs can be handled by checking each (E-V) and (E-E) contact pair individually to see if 
the high and low values in V, yield a conflicting squeeze-stability conclusions; if so, then 
that contact pair should be avoided by adding the appropriate avoidance region to the 
seek/ avoi d ance diagram. 

Since uncertainty in p can affect the stability information embedded in push-grasp 
and squeeze-grasp diagrams, region-shrinking for Up is best accoinplished before shrinking 
for U4, Veri, or Us. Figure 64 shows the result of shrinking regions to account for U p ,  given 
the triangle squeeze-grasp diagr,un of Figure 46 and the roly-pointy push-grasp diagram 
of Figure 48. In the diagram for the roly-pointy, note that the uncertainty in ,u caused e3 
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Figure 65. Rrsult of shrinking rrgions, including all types of unccrtainty. (a) Reinaining 
regions for the triimglc's squeezr-grasp diagrni. (b) Rrmaining regions for tlic roly-pointy's 
push-grasp diagram. Uncertainty values for thesc diagrams were as follows: Uncertainty in 
p :  p E (0.15,0.35) for (a), p E (0.2,0.5) for (b); Uncertainty in 4 = k5"; uncertainty in 
polygon oricntation = zt20"; uncertainty in 6 = 4~5". 

to have indeterminate stability For values of S not close to  90 degrees. 

After the diagram has been modified to account for the uncertainty in p,  we can 
shrink the regions to account for the other sources of uncertainty, as described earlier. 
Figure 65 shows the result of shrinking the regions of Figure 64 to account for Us, Uori, 
and Ub, in addition to Up.  Notice that the regions For the roly-pointy edges e2 <and e4 have 
disappeared; this iniplies that there is too much uncertainty for these grasps to succeed. 

Compensation For uncertainty can be accomplished after the push-grasp and squeeze- 
grasp diagrams have been generated, and we have explained uncertainty handling in this 
way. However, it  is coinputationally easier to compensate for uncertainty as the diagrcams 
are being generated. This should be possible in most cases because 274, Ub, and Up will 
all be known for a particular robot once the polygon has been defined. UO7i might also 



be availitble, if it depends on the angiilar resolution of a sensor that is detcrinining the 
polygon’s 1) osi t ion. Generating these di agrariis whilc sjiiiiil taneously conip ensating for 
uncertainty is not difGcult, and will not be explained in detail here. 

After all uncertainties have been accounted for (whether they were built-in a t  the 
time of diagram generation or added later by shrinking regions), the regions that remain 
constitute the space of all guaranteed grasp plans. This is the space of a11 grasping moves 
that are guaranteed to succeed, even in the face of worst-case uncertainty. This guarantee 
holds as long as we have established an upper bound on the uncertainties present in the 
problem, and the previously-stated assumptions <are met. 
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VII. Conclusion 

Making the Final Decision 

In this paper, we have defined a class of three types of grasping operations: squeeze- 
grasp, offset,-grasp, and push-grasp. For each of these operations, we have described a 
method for computing the space of all grasping nioves that are guaranteed to succeed, 
even if the worst-case error occurs. Choosing an operation from among these guaranteed 
grasps can then be acconiplislied by taking into account other, higher-level considerations: 

0 optimal pushing distcance 

0 avoiding nearby obstacles 

0 avoiding untouchable surfaces (e.g., wet glue on an edge that will be  pressed against 
another object) 

0 optimal grasp balance 

0 maxinium grasp firmness 

The priorities associated with these factors will vary from situation to situation; the final 
grasping decision will be deferred to a'higher level of processing which takes into account 
these and other inputs. 

Implementation and Experimental Results 

The grasp-planning method described in this paper has been implemented in LISP on 
a Symbolics 3600 Lisp Machine <and physically tested using a Puma 560 manipulator. The 
program takes as input the shape of a polygon and the location of its COF, as well as the 
lower and upper bounds in p and the uncertainty bounds Ud, Uo7;, and US. Given these 
inputs, the program can generate .any of the diagrams described in this paper. 

The program generates push-stability and offset-grasp diagrams very quickly, even 
though no serious effort was made to  optiniize the code. Push-grasp and offset-grasp 
diagrams are calculated almost instantaneously, while squeeze-grasp diagrams take one or 
two seconds to compute. The squeeze-grasp diagram takes extra time because the code 
that intersects the plane #1 and plane #2 diagrams runs in O(n2) time, while the push- 
grasp and offset-grasp diagrams are generated in O(n)  time (where n is the number of 
polygon edges). 

The implementation described above was used to informally test the validity of the 
planning method. A variety of planar objects were measured and their shapes were input 
into the grasp-planning system. Pushing and squeezing operations were tested by gen- 
erating the push-stability or squeeze-grasp diagram for an object, selecting a particular 
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operation froiii the diagrani, arid then pcrrorniing the selected opemtion with the Pnina to 
verify that the expected result was actually achieved. Moves were selected froill through- 
out the diagra.iii, both well within regions and near region boundaries. Applying various 
pushing and squeezing operations consistently resulted in achieving the correc t final con- 
figuration, even for extreme operations whose predicted results seemed counter-intuitive. 

Future Research 

While this research adequately solves a restricted class of grasping problems, it is lim- 
ited in several ways. Extending this grasp-planner to overco~ne these liinitatioiis provides 
several areas for future research. Some likely extensions to the current grasp-planning 
method are: 

0 Remove the infinite half-plane assumption to directly account for fingers of finite 
length. This would allow the planner to capitalize on concavities in the polygon, and 
pick up large objects that extend past the ends of the gripper fingers. 

0 Presently the method assumes perfect knowledge of the shape of the object and the 
location of its COF. In many situations, however, this information will only be known 
approximately. Therefore, incorporating the uncertainties Ushaye and Ucor;. in the 
analysis would be usefiil. 

0 While many grasping tasks meet our two-dimensional planar motion abstraction, a full 
three-diniensional extension of this analysis would make the planning method out,lined 
in this paper applicable to a broader range of tasks. 

Research investigating these areas is currently in progress at the CMU Manipulation Lab. 
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Figure 51. Tlic. rrsiilt of applying the squcrzing niove A of Figiirc, 50, assliming that 
plaric. # 1 toiiclirs first, arid plair $2 makes contact iirinicdiatcly. When the niovr is fhiishcd, 
c~lgc, c:, of the roly-pointy is fiat iigaiiist plant. #l. 
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Figure 52. Tlie result of applying the squeezing move A of Figure 50, assliming that 
plaric # 1  touches first, arid tlicre is a long delay before plane #2 makes contact. As in 
Figiirc 51. rdge e5 is flat against plane #1  when the move is finished. 

the pushing plane until plane #2 eventually makes contact, completing the squeezing move 
(Figure 52). Notice that the roly-pointy ends up in the same final configuration in either 
case. This is why move A is in a shaded region of Figure 50(a); it is guaranteed to succeed 
as long as plane #1  touches Erst. 

However, our results are not as good if we apply move A to the roly-pointy and 
plane #2 touches first (Figure 53). I f  plane #1 touches right away, then the polygon 
slips as it is squeezed until e5 is flat against plane #1, and the grasp succeeds as before 
(Figure 53). However, if plane #l doesn't make contact for a long time, then the roly- 
pointy rotates clockwise under pushing by plane #2, and will continue rotating until e3 

is flat and stable against against plane #2. Thus, if a long delay occurs before plane #1 
makes contact, then the resulting final configuration is entirely different than if plane #1 
made immediate contact (Figure 54). Therefore we can make no guarantee about the 
result of move A if plane #2 touches first; this explains why A is not in a shaded region 
of Figure 50(b). 



t D 
Figure 55 .  
plane #/ 1 toiiclws lwforc. plane #2. 

Tlic offsc t-grasp. The gripper fmgcrs arc offsrt to one side to insiirc that 

Figure 56. Demonstration of why the roly-pointy cannot be squeezc-grasped along its 
(e3,VI) contact pair. (a) The desired stable grasp configuration. This configuration cannot 
bc achicvcd by a squerzcgrasp because orientations (b) and (c), which arc very close to the 
desired grasp: are caught in undesirable (V-V) wedging conditions arid do not slip to  flat 
when squeezed. 

The addition of the offset-grasp considerably increases the number of grasping motions 
available for picking up the roly-pointy. However, there are still some grasp conEgurations 
that we niight like to achieve, but remain unavailable to us. 

For example, suppose that for some reason we wanted to pick up the roly-pointy by 
its (e3,Vl)  contact pair; i.e., where e3 is flat against plane #1, and plane #2 squeezes 
VI. At present, this grasp is unavailable to us, since the squeeze-grasp diagram for the 
roly-pointy is nil, and there is no shaded region for e3 in the offset-grasp diagram for the 
roly-pointy. Figure 56 shows why ‘this grasp is impossible to achieve through squeezing. 
Since the vertices on either side of e3 both wedge, orientations that are rotated only slightly 
clockwise or counter-clockwise from the edge-flat configuration lead to (V-V) wedging, and 
do not slip to flat when squeezed. Thus no squeezing motion can guarantee that e3 ends 
up flat against plane #l. 


