
Proceedings of the Artificial Neural Networks in Engineering (ANNIE
Conference, St. Louis, MO, Vol. 7, pp. 73-78, November, 1997

ASYNCHRONOUS TEAMS (A-TEAMS) AND THE A-
TEAMS TOOLKIT

TURE AND SOFTWARE FRAMEWORK
AN AGENT-BASED PROBLEM-SOLVING ARCHITEC-

PHILIP CHANG, JOHN DOLAN, JAMES HEMMERLE,
MICHAEL TERK, AND SAROSH TALUKDAR

The Engineering Design Research Center and The Robotics Institute

Carnegie Mellon Universio, Pittsburgh, PA

ABSTRACT:

This paper presents a biologically inspired architecture for problem
solving called Asynchronous Teams (A-Teams) and a Toolkit for
rapid assembly and prototyping of A-Teams. A-Teams are distrib-
uted, cooperative, and scale-efficient agent-networks. We define an
"agent" as anything that can act, sense, and exert some control over
its actions. A-Team agents are completely autonomous, that is, each
agent has exclusive control over its actions. The strengths of A-
Teams in problem solving arise from agent cooperation, agent dis-
tribution, and scale efficiency. Agent cooperation produces better
results than can be achieved by individual agents, often leading to
optimal results. A distributed architecture provides autonomy with-
out resource constraints and control dependencies, and makes new
agents relatively easy to add. Finally, scale efficiency means that the
more agents that are added, the better the results in terms of solu-
tion quality and speed. The A-Teams Toolkit greatly facilitates the
formation of A-Teams and provides a general software framework
for distributed problem solving.

INTRODUCTION

An A-Team (Talukdar, Baerentzen, Gove, and de Souza, 1995, 1996) is a scale-
efficient network of distributed computer agents working together to solve a difficult
problem. A-Teams, which are biologically inspired, are characterized by autonomous
agents and cyclic data flow. A-Teams have several unique strengths for problem solv-
ing: agent cooperation, whereby agents complement one another to produce better
solutions than any one agent could achieve; a distributed character, which allows
graceful degradation when agents cease to be useful or to function; and scale-effi-
ciency, which allows the size of an A-Team to be adjusted to the size of the problem.

Talukdar and de Souza (de Souza and Talukdar, 1991) introduced the term Asyn-
chronous Teams to represent a team of asynchronous algorithms, or agents. They
used Newton-Raphson and Genetic Algorithms (GA) as agents in an A-Team to solve
nonlinear algebraic equations in a shorter time than when the methods ran individu-
ally. Quadrel (Quadrel, 1991) used A-Teams to handle multiple objectives and con-
straints in high-rise building design. Tsen (Tsen, 1995) used A-Teams to solve train
scheduling problems involving two different types of solution representation. Table 1
summarizes problems to which the A-Teams methodology has been successfully
applied.

TABLE 1. PAST A-TEAMS APPLICATIONS (IN ORDER OF TIME OF COMPLETION)

Domain Lesson Learned

Non-linear algebraic equations Proof of A-Team concept

Traveling Salesman Problem

Hi-rise building design

Robots-ondemand

Power system diagnosis

Power system control

Train scheduling

Scale-efficiency

Handling multiple, conflicting criteria

Balancing construction with destruction

Quantitative Bayesian networks

Global optimization strategies, formations

Multiple representations

MOTIVATION

Although many powerful algorithms and heuristics have been developed and
implemented in software in the A-Teams work described above, and in the history of
optimization and problem solving, these implementations are rarely reused due to
their ad hoc nature. We have created the A-Team Toolkit (Chang, Dolan, and Terk,
1996) in order to reduce the existing barriers for reuse and provide auxiliary tools for
rapid prototyping and data collection. The Toolkit was designed to meet three goals:
1) a distributed agent architecture, enabling parallel processing and thus greater agent
autonomy and scale-efficiency; 2) modularity, so that algorithms, data structures, and
communications are cleanly separated from one another and existing algorithms can
be easily incorporated; and 3) real-time adaptability and monitoring through a conve-
nient, point-and-click, icon-based graphical user interface (GUI).

DESIGN AND IMPLEMENTATION

In the Toolkit, the high-level objects that are configured to form an A-Team are
memories and agents. Each memory contains objects called solutions, and each agent
is composed of four objects: a scheduler, searcher, selector, and operator (see Figure
1). Using this terminology, an A-Team operates by allowing agents to check solutions
in and out of memories and to modify these solutions.

A-Team

Operator1 Searcher1 Selector1 Scheduler1 Memory1
I Operator21 I Searcher21 I Selector21 IScheduler2 I I Memory2 I
I Operator31 I Searcher3 Selector3 Scheduler3 I I Memory3 I II I I

Figure 1: Libraries of agent and memory components.

Each solution contains four pieces of information: ID, data, evaluation, and his-
tory. A unique solution ID allows tracking of the solution. The data portion is a user-
defined, application-dependent data structure which expresses the solution. In the
Traveling Salesman Problem (TSP), for example, this structure might be a vector of
integers giving the city numbers in the tour. The evaluation is an array of floating
point numbers, each of which corresponds to the result of a different evaluation func-
tion. In the TSP, a straightforward evaluation is the tour length. The history contains
useful statistical information about the solution, such as which agent created it, how
many times it has been read, etc.

Memories are objects which store solutions, manage requests for solution check-
in and check-out, and keep track of individual and collective solution histories.
Agents are objects which operate on solutions using the functionality provided by the
four components of which they are composed. The scheduler determines when an
agent should run. The searcher sends a request for solutions meeting certain criteria
to a memory; upon receiving the solution IDS, the agent's selector picks one solution
and requests it from the memory. In general, the agent's central part, the operator,
then acts on this solution in a certain way.

The Toolkit currently supports six agent types: seeder, destroyer, modifier, evalu-
ator, transfer, and monitor. Four of these agent types correspond to the operator type;
however, destroyers and transfer agents have no operators. A seeder creates new solu-
tions, whereas a destroyer removes them. A modifier requests a solution from a mem-
ory, makes changes to its data portion, and reinserts it with a new solution ID. An
evaluator applies an arbitrary evaluation function to the data portion of a solution and
returns a single float type value to the memory to be inserted into the solution's eval-
uation array. A transfer agent moves a solution from one memory to another without
modification. A monitor provides information on the performance of the A-Team.
There are currently three defined monitor types: memory monitors, displayers, and
recorders. Memory monitors display memory statistics, including solution history,

the number of solutions in memory, and the number of evaluated solutions. Display-
ers graphically depict A-Team performance. Recorders store performance statistics to
file.

The described methodology was implemented in the C++ language. Several
standard tools were additionally used in order to facilitate development. Tk/Tcl, a G-
compatible scripting language, was used to create a point-and-click, icon-based
graphical user interface. PVM (Parallel Virtual Machine) was used for communica-
tions among agents, memories, and user interface on multiple machines, LEDA
(Library of Efficient Data types and Algorithms) was used for solution management
and searching.

EXPERIMENTS

Experiments were conducted on the performance, efficiency, and flexibility of
the Toolkit. The goal was to determine the extent to which use of the Toolkit 1)
improves solution quality, 2) speeds the process of assembling A-Teams, and 3)
enables the encapsulation of legacy code. Tests were conducted on two problems: the
ATT532 TSP (Padberg and Rinaldi, 1987), which seeks the shortest tour of 532
American cities, and a train scheduling application on the Burlington Northern Sand
Hills line which seeks to minimize tardiness. The ATT532 problem has a known opti-
mal tour length of 27686 units. The minimum tardiness for the Sand Hills line
achieved by the system currently used by the railroad, the Deadlock Prevention
Mechanism (DPS), is 212 minutes. In seeking to improve solution quality, the Tool-
kit’s rapid prototyping capability was used on both problems to vary agent types, data
flow, memory size, initial seeding size, and the number of machines. The memory
population sizes for the experiments were in the range of 25 to 1600 solutions. The
number of initial seed solutions varied from 20 to IOOO. Each experiment ran from 30
to 60 minutes. To test the efficiency of the Toolkit, a comparison was made between
the time needed to assemble an A-Team for the TSP with and without the Toolkit. To
test the flexibility of the Toolkit, a single-process A-Team implementation of a train
scheduler by Tsen (Tsen, 1995) was encapsulated within the Toolkit framework.

TSP Application
Various combinations of seeders, modifiers, evaluators, and destroyers were used

to solve the TSP. Three seeders were used: random, arbitrary insertion, and branch
and bound. Five modifiers were used: Lin-Kernighan (the most powerful single TSP
algorithm), two-opt, intersection, arbitrary insertion, and kick (see de Souza, 1993 for
more details). One evaluator was used to calculate the length of a tour for a given
solution. A destroyer was used which deleted the solution with the longest tour
length. Several monitor agents displayed the A-Team’s performance. Performance
testing on the TSP produced the following results: 1) the wider the variety of agents,
the better the performance, a confirmation of the principles of scale efficiency and
specialization; and 2) distributing agents and memories on n machines increased
solution speed by more than n-fold in the cases tested. This superlinear increase is

due to the increased ability of agents to benefit from one another’s solutions. The
speed increase achieved by a given number of multiple machines could be further
improved by 7% on average through the addition of load balancing.

The Toolkit reduced the time needed to assemble an A-Team for the TSP by an
order of magnitude. The original implementation of an A-Team for the TSP (de
Souza, 1993) took approximately two thousand hours over a period of 18 months.
Most of that time was spent was on developing communications data structures and
protocols, and building auxiliary tools which are already present in the Toolkit infra-
structure. The Toolkit version of the TSP required about two hundred hours, and pri-
marily involved the software encapsulation.of agents and memories in Toolkit-
compatible formats.

Train scheduler application
A single-process version of the train-scheduling line planner written by Tsen

(Tsen, 1995) was broken up and used to test the capability of the Toolkit to encapsu-
late legacy code. Once complete, the Toolkit version of the line planner consisted of
one memory (storing priority matrices and lateness evaluations), sixteen modification
operators, twelve identical evaluation operators, a random creator (to initially seed
the memory), one destroyer, and a string chart generator.

The Toolkit version had lateness results in the same range as the single-process
runs, demonstrating the ability to encapsulate legacy code without losing functional-
ity. In addition, some Toolkit results were better than the best achieved by the single-
process version. Tsen (Tsen, 1995) reported the best lateness after running the single-
process line planner application for 15 minutes was 83 minutes, whereas the best
lateness obtained by the Toolkit on the same scenario was 61.7 minutes. We attribute
this improvement to the ability afforded the experimenter by the Toolkit to explore
many more configurations in a given period of time than is possible in a manually
constructed version of the line planner, in which the overhead between runs is much
greater. This result shows that even with algorithms and heuristics that have been in
use for many years, there is still potential for improvement in solution quality and
speed by allowing rapid reconfiguration to discover effective coordination strategies.

CONTRIBUTIONS AND FURTHER WORK

The future of distributed problem solving lies in the ability to capitalize on the
vast number of algorithms and heuristics already written by researchers all over the
world. The A-Teams concept addresses this problem by providing a general agent-
based problem-solving methodology capable of simultaneously harnessing the power
of numerous, disparate problem-solving agents. Beyond this, the A-Teams Toolkit
provides a software framework for the encapsulation, rapid prototyping, and testing
of these distributed aggregates of problem-solving agents with the following features:
1) standards for encapsulation of algorithms and data structures; 2) an infrastructure
for the rapid prototyping of distributed problem-solving, including libraries of agents

and memories, transparent communication protocols, and load balancing among
machines; and 3) a GUI enabling the dynamic instantiation and reconfiguration of
agents and memories and monitoring for dynamic display and update.

There are several areas of further work to improve the Toolkit’s capabilities and
usefulness. Encapsulation of algorithms for Toolkit-compatibility and assembly of
agents from pre-compiled scheduler, searcher, selector, and operator components,
which is currently done manually, should be automated to the greatest degree possi-
ble. Additional schedulers and searchers supporting more complicated search
descriptions should be developed. Allowing the human user to interact with the Tool-
kit as another agent, capable of altering, rather than simply monitoring, solutions in
real-time, would increase the power of the system. Finally, to make A-Teams widely
available to the research community, we would like to provide World Wide Web-
available database registries giving locations and capabilities of the various compo-
nents (algorithms, heuristics, memory types, schedulers, etc.) already encapsulated
for the Toolkit.

REFERENCES

Philip Chang, John Dolan, Michael Terk, Asynchronous Team Toolkit User’s Guide, Carnegie Mellon
University, April 1996.

Pedro S. de Souza, Sarosh N. Talukdar, Genetic Algorithms in Asynchronous Teams, Proceedings of
the Fourth International Conference on Genetic Algorithms, Los Altos, CA, 1991.

Pedro Sergio de Souza, “Asynchronous Organization for Multi-Algorithm Problems”, Ph.D. Disserta-
tion, Electrical and Computer Engineering Department, Carnegie Mellon University, April 1993.

Seshashayee S. Murthy, Synergy in Cooperating Agents: Designing Manipulators from Task Specifi-
cation, Ph.D. Dissertation, Department of Electrical and Computer Engineering, Carnegie Mellon
University, February 1992.

M. Padberg, G. Rinaldi, Optimization of a 532-city Symmetric Traveling Salesman Problem by

S. S. Pyo, Asynchronous algorithms for Distributed Processing, Ph.D. Dissertation, Department of

Richard W. Quadrel, Asynchronous Design Environments: Architecture and Behavior, Ph.D. Disserta-

Branch and Cut, Operations Research Letters, Volume 6, Number 1 , March 1987.

Electrical and Computer Engineering, Carnegie Mellon University, February 1985.

tion, Department of Electrical and Computer Engineering, Carnegie Mellon University, 199 1.

Computer Engineering Department, Carnegie Mellon University, June 1994.
V.C. Ramesh, “Initial Search and Asynchronous Decomposition”, Ph.D. Dissertation, Electrical and

Sarosh Talukdar, Asynchronous Teams and Machine Cooperation, 1995.

Sarosh Talukdar, Lars Baerentzen, Andrew Cove, Pedro de Souza, Cooperation Schemes For Autono-

Chung Kang Tsen, “Solving Train Scheduling Problems using A-Teams”, Ph.D. Dissertation, Electri-

mous Agents, Engineering Design Research Center, Carnegie Mellon University, 1996.

cal and Computer Engineering Department, Carnegie Mellon University, June 1995.

