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Abstract 

One of the problems associated with redundant manipulators which have been proposed for space 

applications is that the reactions transmitted to the base of the manipulator as a result of the motion of the 

manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is 

therefore necessary to minimize the magnitudes of the forces and moments transmitted to the base. In 

this report we show that kinematic redundancy can be used to solve the dynamic problem of minimizing 

the magnitude of the base reactions. The methodology described in the report is applied to a four 

degree-of-freedom spatial manipulator with one redundant degree-of-freedom. 
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1 .O Introduction 

In the near future, autonomous robotic manipulators will be used on space stations to perform exhaustive 

tasks such as repairing of the exterior of a space station [l], and performing delicate experiments, etc. The 

employment of these manipulators will reduce extravehicular activity of the astronauts and free them for 

other tasks. 

Manipulators used in space are operated under microgravity conditions. Furthermore such manipulators 

will in general have redundant degrees of freedom in order to facilitate the peformance of tasks. (It is well 

known that redundant manipulators can be used to avoid obstacles, avoid singular configurations, etc. [4]). 

In this research we are concerned with planning trajectories for redundant manipulators operating under 

microgravity conditions in space. 

The forces and moments transmitted by such "space" manipulators to the supporting structure will, in 

general, act as a disturbance on the spacecraft and therefore have an undesirable effect on the dynamic 

behavior of the spacecraft. Compensating for the disturbance (caused by the transmitted forces and 

moments) by means of a suitable control scheme is extremely difficult and expensive. An alternative 

approach, described in this report, is to plan a trajectory which minimizes the magnitude of the forces and 

moments transmitted by the manipulator to the supporting structure. (We will refer to these forces and 

moments as the base reactions.) 

The trajectory-planning problem for a manipulator reduces to the problem of solving the inverse-kinematic 

problem for the joint variables given the trajectory in the task-space. In the case of a non-redundant 

manipulator, this inverse-kinematic problem has, in general, a unique solution whereas in the redundant 

case, there are an infinite number of solutions to the inverse-kinematic problem. In this paper we pose an 

optimization problem of minimizing the base reactions in order to obtain a unique solution to the 

inverse-kinematic problem. 

Since there is a large body of research -see, for example, [2,3,4,5,6] - it is important at the outset to indicate 

the contributions of the current work. In contrast to most of the research on redundant manipulators, which 

has focused on the kinematics of these devices [2,4,5], we show how kinematic redundancy can be used 

1 



to resolve dynamic issues. In particular, we develop and apply a methodology for using kinematic 

redundancy to minimize the magnitude of the base reactions generated by the motion of the manipulator in 

space. 

2.0 Outline of Contents 
The paper is organized as follows. In the next section, we formally define the problem of minimizing the 

magnitude of the base reactions. The basic approach to solving the problem is defined in Section 4. The 

approach consists of two parts: 

1. generation of the end-effector trajectory (Section 5) 

2. solution of the inverse-kinematic problem for the joint trajectories (Section 6). 

In Section 6 we pose the optimization problem of minimizing the magnitude of the base reactions in order 

to obtain the unique inverse-kinematic solution. The algorithm, used to implement the methodology 

developed in Sections 5 and 6, is described in Section 7. The application of the methodology to 

minimizing the base reactions of a four degree-of-freedom spatial manipulator (with one redundant 

degree-of-freedom) is demonstrated in Section 8. Finally, in the last section, we draw some conclusions 

and summarize our work. 

3.0 Problem Statement 
In this section we describe the trajectory planning problem for redundant manipulators. Consider a rn 

degrees of freedom redundant manipulator with m revolute or prismatic joints mounted to a base. The 

base of the manipulator can be considered as part of the spacecraft or space station. 

In general let qi denote the joint displacement of joint i. The joint variable of each joint is either an angle 8i 

(revolute joint) or a distance di (prismatic joint). The joint displacement vector q can be defined as 

Let E be an arbitrary point on the end effector as shown in Figure 1. The position of E can be represented 

with reference to the coordinate frame xyz fixed in the base by 
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The kinematic equations relating the end-effector position and the joint displacement variables are given 

by 

r(t) = g (q(t)) 
where g is the vector of functions which are nonlinear in q(t) . 

For a redundant manipulator, the number degrees of freedom, m is more than the minimum number 

degrees of freedom required to perform a task which is denoted by n. Therefore, there are an infinite 

number of joint space solutions q(t) for a specified end-effector position, r(t). From these solutions, we 

can select a joint space solution based on certain criteria. In this paper we use the minimization of the base 

reactions as the criterion to select appropriate joint space solution. 

The trajectory planning problem studied in this paper is restricted to point-to-point motion. In a 

point-to-point motion, the objective is to move the end-effector of a manipulator from a starting position, ri 

to a final position, rf. During the execution of point-to-point motion, the base force (Fo) and base moment 

(No) exerted by the manipulator on the base cause undesired linear and angular motions of the supporting 

structures. Ideally, one would desire the base reactions to be zero. Since in reality this objective may not 

be achievable , we seek instead to minimize the magnitude of the base reactions. 

The trajectory planning problem for redundant manipulators which we are going to address has two 

requirements : (1) to move a redundant manipulator according to specified motion requirements; (2) to 

minimize the magnitude of the base reactions ( No and F,, ) transmitted by the manipulator to the base 

during motion. 

4.0 Description of the Approach 
The basic approach to the trajectory planning problem was described in [7,8] and consists of splitting the 

problem into two parts which enables us to deal with the end-effector trajectory and joint trajectories 

separately. 

The first part, described in Section 5, deals with the generation of the end-effector trajectory to satisfy 

certain motion constraints. The motion constraints of interest are the maximum acceleration of the 
end-effector trajectory and the total time of the task. 
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In Section 6, we discuss the second part of the approach. The basic idea is to pose the inverse kinematics 

problem for determining the joint trajectories as an optimization problem with a cost fucntion that is a 

measure of the base reactions. The approach begins by partitioning the joint variable vector, q into a set 

of redundant joint variables and a set of nonredundant joint variables. This enables us to work with a 

square Jacobian matrix as in the nonredundant manipulator case. Then the Jacobian matrix is partitioned 

into a nonsingular square Jacobian matrix associated with nonredundant joint variables and a submatrix 

associated with redundant joint variables. Using these partitioned matrices, we are able to represent the 

motion of all the joints in terms of an optimization parameter matrix. The unique inverse kinematic solution 

can then be determined by finding the optimal parameter matrix for the optimization problem. 

5.0 Part 1- Generation of End-effector Trajectory 

Trajectory planning for a manipulator can be conducted in joint space or task space. However in order to 

take advantage of the redundant kinematics, it is beneficial to specify the end-effector trajectory in task 

space. 

Let the velocity, v and acceleration, of the end effector be defined as: 

Consider the motion of an end-effector moving from a specified starting position, ri (1) to a specified final 

position, rf (1). There are many ways to execute this motion. A simple way is to move the end effector 

along a straight-line path that connects the two points. To describe this trajectory, the time histories of the 

position, velocity, and acceleration of the end-effector in the task-space have to be specified. They can be 

described by smooth and simple fucntions. 

One of the constraints in trajectory planning is to have zero velocity at the initial and final positions. Cycloid 

curve which satisfies this requirement can be used to describe the linear speed of the end-effector 

trajectory. Furthermore, it is a smooth function and can be defined by three constants (a, b, c). Using 

cycloid representation, the linear speed of the trajectory is given by 

v ( P ) =  b ( l    COS^) (3) 
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where p is the parameter ( 0 5 p 5 2x ) . When p = 0, the end effector is at the initial position, ri. And when 

p = 2 x, the end-effector reaches the final position, rf. 

The parameter p can be related to the time of the motion by 

t = a ( p - c sin p) (4) 

The distance traversed by the end-effector, d can be obtained by integrating Eqn. (3) with respect to time: 

d = a b [ ( 1+ 0.5 c) p - ( c  + 1) sin p + 0.25 c sin 2p] (5 )  

The magnitude of linear acceleration, C is obtained by differentiating Eqns. (3) and (4) : 

bsinp 

i m ) =  a(1ccosp) 

The magnitude of the maximum acceleration is 

b 

I ' k I  = a (1s 2) 0.5 

which occurs at the instant given by 

The three constants a, b, and c can be determined by forcing the cycloid curve to satisfy three motion 

constraints - total distance traversed, total time of the task, and the maximum acceleration magnitude. In 

other words, we can obtain these constants by solving Eqn. (6) and the following equations: 

T ( total time ) = 2 1c a 

D ( total distance ) =I rf - q I = ab (2 + c ) 1c 

After these constants are determined, the position vector, r can be obtained by 
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r=q  +du (9) 

where u is an unit vector which points from the initial position to the final position and d is defined in Eqn. 

(5). 

Similarly, the velocity and acceleration of the end-effector are 

v = v u  

V=GU 

where v and are given by Eqns. (3) and (6). 

6.0 Part 2 - Joint Space Solution 
Once the end-effector position, r(t) is defined, the minimization of base reactions reduces to determining 

the joint space solution, q(t) that minimizes the base reactions. 

In this section , we develope kinematics relations that are used in formulating the optimization problem for 

minimizing base reactions. Then we describe the optimization scheme. 

6.1 Redundancy Resolution 

We begin by determining the infinitesimal motion relation between the position vector, r(t) and joint 

variable vector, q(t) for a m degrees of freedom redundant manipulator. This relation will be useful in 

finding the joint space solution. For a given desired change in r(t), Ar the required change in q(t), Aq is 

given by: 

A r =  J A q  

where J(q ) t R nXm is known as the Jacobian matrix. 

The corresponding velocity vector is 

Differentiating Eqn. (11) with respect to time, the acceleration of the end-effector is 
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For redundant manipulators, the Jacobian matrix, J is not a square matrix. In order to obtain joint variables 

solution, we have to resort to the generalized inverse appraoch [ 51. We break up the joint vector q into the 

following two sets: 

a) a set of n independent joint variables denoted by q, and 

b) a set of (m-n) redundant pint variables denoted by qr. Thus the joint variable q can be written as: 

Similarly, the Jacobian matrix, J can be partitioned as follows : 

J=.[ Jn J r l  (14) 

where Jn = a nonsingular nxn matrix corresponding to qn and 

Jr = a submatrix nx(m-n) matrix corresponding to qr. 

qr is arbitrarily chosen so that Jn is always invertible (nonsingular). Substituting partitioned J and q in 

Eqns. (lo), (1 l), and (12), they become: 

Rearrange Eqns. (1 5-1 7) we have 

hqn = Jn-' (Ar - Jr Aqr) 

4nzJn-l (V-J, 4,) (19) 

qn = Jn-l (V - Jr qr -Jn& - Jr &) 

(18) 

(20) 

Eqns. (18-20) express the motion of the nonredundant joint variables, qn in terms of the motion of the 
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redundant joint variables, qr . 

6.2 Optimization Problem Formulation 

The end-effector trajectory can be divided into a number of segments. For conveniece, assume that the 

duration of each step is the same even though this assumption is not essential to the scheme described 

below. 

The pint trajectory at the end of an arbitrary step can be expressed as : 

in which qo = the value of q at the start of the time step. 

Substituting Eqn. (18) in Eqn. (21), we have 

Note that the subscript [ . ] 0 denotes quantities evaluated at the known starting point (90) of the step and I 

denotes an identity matrix of size (m-n) x(mn). 

For the purpose of optimization, we express the rates of change of redundant joint variables, qri as 

where 

qrl = C l l  f1(t) + C12 f2(t) + . . . . . . .+ Clkfk(t) 

= C21 f1(t) + C22 f2(t) + . . . . . . + C& fk(t) 

. . . . . . . . 
dlr(m-n) = c(m-n)l fl(t) + c(m-n)2 f2(t) + . .+ c(m-n)k fk(t) (23) 

Cij = optimization parameters 

fi = shape functions. 

Or in matrix form, 
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4, = C f(t) 

where C is the matrix of optimization parameters, Cij and 

f(t) is the column vector of shape functions. 

For convenience, polynomials in t are chosen for f(t) 

f(t)=[l t 12 G... tk]T 

where k is the degree of the polynomial. 

Substituting Eqn. (24) in Eqns. (18 - 20), we have 

Now, we can describe the motion of all the joint variables, q(t) by specifying the values of C matrix. For a 

particular manipulator configuration, the base reactions (Fo and No) for the end of that time step are 

dependent on the impending motions of all the joints which by Eqns. (24 - 28) are functions of the C 

matrix. 

Recursive Newton-Euler dynamics formulation [9] is employed to obtain the base reactions. It consists of a 

set of forward and backward recursive equations. The recursive forward equations are used to compute 

linear velocity and acceleration, angular velocity and acceleration of each pint variable, proceeding from 

joint 1 to joint m. The backward recursive equations are used to compute the forces and moments exerted 

on each joint, starting from joint m and back to pint 1. Once the moments and forces exerted on joint 1 are 

computed, the base reactions (Fo and No) can then be determined. 

6.3 Cost Function 

The problem of minimizing the magnitude of the base reactions is essentially one of minimizing a suitable 

cost function, 6 which is a measure of the base reactions Fo and No. 
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In general, the magnitude of base reaction force is given by 

Fo 5 Fol 2 + Fo22 + Fog, 

and the magnitude of base reaction moment is 

No = No1 * + N0z2 + No3 

We introduce two weighting factors (w1 and "2) that enable us to place different weights on base force 

component and base moment components. Now, we can define a cost fucntion , B that is a measure of 

the base reactions, 

B -  W I  Fo2 + wz No2 

Or in matrix form, 

lfwechooseR=[Fo N,, IT and Q =  

the cost fucntion B becomes 

B = R T Q R .  

W: The weights w1 and w2 must be carefully chosen to: 

(a) appropriately scale the base reactions with respect to a reference set of base 

reactions and 

(b) ensure that all terms in the cost function are dimensionally homogeneous. 

In the example of Section 8, we demonstrate one way of choosing w1 and w2 to satisfy the above 

requirements. 

6.4 Optimization Scheme 
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The optimization problem for minimizing the magnitude of the base reactions is the following: determine 

the optimization parameter matrix C which minimizes B = RT Q R. The above optimization problem is solved 

using the following scheme: 

1. Divide the end-effector trajectory r(t) into a sufficiently large number of 

segments. 

2. For a known initial configuration of the manipulator, obtain C that will minimize 

the cost fucntion B at the end point of the segment. 

3. Compute the joint trajectory over this segment using Eqn. (26). 

4. Go to the next segment of the trajectory and repeat steps 2 and 3 . Stop if the 

end of the trajectory is reached. 

6.5 Optimization Technique 

In step 2 of the optimization scheme, an unconstrained optimization technique, the Hooke & Jeeves 

approach (121 is used to obtain the optimal C for each time step. This algorithm is one of the earliest and 

most succesful direct search methods. It does not require derivatives as in more sophiscated first-order 

methods. The disadvantage is that it has difficulties with highly constrained problems. 

7.0 Algorithm of the Approach 
An algorithm of the approach described in sections 5 and 6 and a computer program written in Pascal have 

been developed to implement the methodology. The flowchart in Figure 2 illustrates the basic algorithm. 

The first step of the approach is to find the constants of cycloid curve based on the three motion 

constraints as outlined in section 5. Then we formulate the optimization problem using the equations 

developed in previous section. The optimization scheme of Section 6.4 is applied to obtain a unique joint 

space solution which minimizes the base reactions. 

8.0 Illustrative Example 
In this section we demonstrate how our approach can be applied to minimize the base reactions of a four 

degrees of freedom spatial manipulator proposed by NASA for space applications (see Figure 3). For a 

point-to-point spatial motion, three degrees of freedom are required. Therefore, this manipulator has one 

degree of redundancy. The manipulator has three links with lengths of 11, 12, and 13 respectively. The 

reference frame XbY$b is located at the base. Link 1 is mounted to the supporting structure and the other 

two links are each driven by a differential drive mechanism (a traction drive) which has two outputs that 
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begin (4 

. J 

FindC => min. cost 
function, B 

define cycloid 

- 

divide end-effector 
trajectory into 
segments 

N 
go to 

next segment - 

start at a known 
initial configuration 

Figure 2. Flowchart of the Algorithm of Trajectory Planning 
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b 21 (joint 2 axis) 

q,-qk Link 3 v4 

22 
24 (joint 3 axis) 

x 2 z 3  

I 

Link 2 

(joint 4 axis) 

Figure 3. A 4 DOF Spatial Redundant Traction-drive Manipulator 
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rotate about orthogonal axes. For the purposes of kinematic and dynamic analyses, this differential drive 

mechanism can be considered as two intersecting revolute joints. 

8.1 End-effector Trajectory 

For the end-effector trajectory, the following task specifications are chosen: 

T = 2.0s 

limaxl = 2.0 m/s2 

‘i = [1.5m 0.5m 0.5m IT 

‘f = [1.2 m -0.5m 0.2m ] 

D=l r f  - q  1=1.086m. 

Solving Eqns. (6-8), the parameters for cycloid trajectory are obtained: 

a = 0.3183 

b =0.39 

C = 0.79. 

8.2 Cost Function 

To minimize the base reactions properly, it is important to select a suitable weighting matrix, Q for the cost 

fucntion, B = RT Q R. Therefore, the choices of the values for the two weighting factors (w1 and w2) are 

crucial. To understand the effects of these weighting factors on the base reactions, three cases with 

different Q matrices are studied: 

8.21Case 7 

In this case, we want to find out to what extent the base force component can be minimized by ignoring the 

base moment component i. e. wl=l  and w p 0 .  The cost function, B is given by 

B = Fo2 (33) 

B=RTQ, R (34) 

or in matrix form, 

where Q1 = (35) 
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8.22 Case 2 

In this case we select a cost function that only minimizes base moment component to study how small the 

base moment can be obtained. The cost function takes the following form: 

B =No2 

The weighting matrix becomes 

[: PI Q2 = 

(36) 

(37) 

8.23 Case 3 

In general, we want to minimize both the base force, Fo and the base moment, No transmitted to the base. 

Since Fo and No are different physical quantities, we require a weighting matrix Q to non-dimensionalize 

and to appropriately scale the base force and base moment. The results of Cases 1 and 2 are useful in this 

regard. 

The average value of the force ( Fo2) transmitted to the base in Case 1, Favg2 is an indicator of small we 

can reduce the base force. Similarly, the average value of the moment transmitted to the base in Case 2, 

Navg2 measures how small we can reduce the base moment. We therefore choose, 

The weighting matrix is given by 

(39) 

where w7 = l/Favg2 = average of FoT Fo in Case 1 and, 

w2 =1/ Navg = average of NoT No in Case 2. 

Note that the above choices of w f  and w 2  simultaneously achieve the desired scaling and 

nondimensionalization. 
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8.3 Optimization Scheme 

Using the methodology developed in section 6 we can formulate the base reactions optimization problem 

for the example using the following procedures: 

1. Select q1 as the redundant joint variable. 

qr = 41 

q n = t q 2 %  lT 

q1 = c o + c l t  

Using Eqn. (24) we can represent the rate of change of joint 1 by 

2. 

3. 

Then partition J into Jn and Jr (see Appendix for detailed expressions) 

Substituting qr in Eqns (26-28) we have a complete description of the joint 

trajectories. 

Apply the optimization scheme outlined in section 6 with At = 0.1s. 4. 

8.4 Discussion of Results 
The magnitudes of the base reactions corresponding to the above three cost functions are illustrated in 

Figures 4 and 5. In Figure 4 the base forces for all three cases are shown. The base force in Case 1 is the 

smallest among the three cases. This is expected as in Case 1 only the magnitude of the base force is 

minimized. In Case 2 where only moment component is weighted, we have the largest base force. The 

magnitude of base force in Case 3 (where we minimize the scaled and weighted sum of Fo and No ) lies in 

between Cases 1 and 2. 

Figure 5 shows the base moment for all three cases. For case 1, we have a peak in base moment at t- 

1.2s. But in Cases 2 and 3 better results are observed. This indicates that the cost function must include a 

suitably weighted base moment. 

From results of these three different case studies, the cost function that weights both the base force and 

base moment is obviously a suitable choice for properly minimizing base reactions. The results of Figures 4 

and 5 also indicate that the weights w1 and w2 given by Eqn. (39) are good choices for minimization of B. 

The end-effector trajectory generated using cycloid curve is shown in Figures 6-8. In Figure 9, the time 

history of the redundant joint variable, q1 is also shown. Note the joint trajectory obtained using our 
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algorithm is smooth. 

9.0 Conclusions 
In this paper, we have shown how kinematic redundancy can be employed in planning joint trajectories to 

minimize the base reactions exerted by the manipulator on the supporting space structure. Using the 

approach proposed in this paper the joint trajectories are obtained by minimizing a quadratic cost function 

which is a measure of the magnitude of the base reactions. From the results obtained, we observe that 

the cost fucntion which weights both the base force and base moment as given by Eqns. (38-39) is most 

suitable for minimizing the base reactions. 

The major advantage of this approach is that the cost function can either be an analytical expression (i.e. 

explicit) or computed from other formulations e.g., Newton-Euler dynamic Formulations ( Le. implicit). 

The disadvantage of this approach is that it is computationally intensive and hence time consuming 

because an optimization routine is required to find the optimal joint trajectories. One possible solution is 

to use an optimization technique with a faster convergence rate. 

We have posed an optimization problem which minimizes the cost function 

B = R T Q R  

at every instant of time. It is probably useful to compare the present approach with the use of an " integral" 

cost function, for example 

over a time interval of interest. In the case of the "integral" cost function we would be minimizing the 

average magnitude of the base-reactions. We also need to explore the effect of the choice of the 

end-effector trajectory on the magnitude of the base reactions: in the present work we choose a cycloid as 

it meets all our motion constraints. 

B = I RT Q R dt 

In summary, we have demonstrated the feasibility of using kinematic redundancy to solve the dynamic 

problem of minimizing base reactions. 
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Appendix : Kinematics Analysis 

The manipulator of interest is shown in Figure 3. Links 2 and 3 are each driven by a 2 DOF traction drive 

joint. The coordinate frame XqYqZq represents the position and orientation of the end effector. The 

coordinate systems in Figure 3 are assigned according to Denavit-Hartenberg notation [ lo].  The axis 

about which a link rotates is defined as the z-axis and the corresponding joint variable is q. An A (4x4) 

matrix is used to describe the relative position and orientation between two link coordinate frames. The 

position and orientation of the end effector with respect to the base coordinate frame described by the 

matrix T4 which is given by 

where qi  ,q2, 43, and 44 are the joint variables of joint 1 to joint 4 respectively, 

[n 0 a] = orientation matrix of the XqY& with respect to the base coordinate frame XbYbZb. It is the 

upper left 3x3 partitioned matrix of T4, and 

position vector which points from the origin of the base coordinate frame to the origin of the 

XqY& frame. 

p= 

The following shorthand notations of sine and cosine of joint variables will be used. 

Si = sin ( qi ), Ci = COS ( qi ), Sij = sin (Si + Si), Cij = COS (qi + qj) 

It can be shown that for this manipulator, the homogeneous transformation matrices (Ai, i=O,l ,..,4) are 

A0 = 

1 0 0 11 

0 1 0 0 

0 0 1 0 

0 0 0 1 
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A2 = 

A3 = 

0 

0 

- 1  

0 

0 

0 

1 

0 

0 

0 

1 

0 

-s4 

c 4  

0 

0 

-s 1 

C1 

0 

0 

s2 

4 2  

0 

0 

s3 

4 3  

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

0 :27 1 

0 :I 1 

0 

1 "I 
Performing matrix multiplications, T4 in Eqn. (A. l )  is given by 
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T4 = 

where 

qr = q l  

and the partitioned Jacobian matrices Jn and Jr are 
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(A.10) 
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