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Abstract

An important consideration in the use of manipulators in Microgravity environments is the
minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the
manipulator on its base as it performs its tasks. One approach which has been proposed and
implemented is to use the redundant degrees of freedom in a kinematically redundant
manipulator 1o plan manipulator trajectories to minimize base reactions. In this paper we
develop a global approach for minimizing the magnitude of the base reactions for kinematically
redundant manipulators which integrates the Partitioned Jacobian method of redundancy
resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which
is the time-integral of the magnitude of the base reactions. We also compare the global approach
with a local approach developed earlier for the case of point-to-point motion of a three degree-
of -freedom planar manipulator with one redundant degree-of-freedom. The results of study
show that the global approach is more effective in reducing and smoothing the base force while
the local approach is superior in reducing the base moment.






1. Introduction
Recently there has been a lot of interest in the use of kinematically redundant manipulators for various

applications like obstacle avoidance and singularity avoidance [2-4]. In this paper we want 1o utilize the well-known
idea that kinematic redundancy provides the analyst or designer with additional degrees of freedom which can be
exploited for "useful” purposes. Specifically we are interested in the planning of trajectories for manipulators which
are used in space applications [1] and typically operate in microgravity environments,

An issue of considerable importance for manipulators used in Microgravity environments is the minimization
of the magnitudes of the dynamic reaction force and moment exerted by the manipulator on its base as it performs
its task. One reason for minimizing, and if possible eliminating base reactions, is that the base force and base
moment could disturb other tasks or experiments in the vicinity.

In this paper we address the issue of using kinematic redundancy to plan joint-space trajectories which
minirnize the reactions transmitted by the manipulator to the base. A local approach to this problem is described and
implemented in [8-9]: in this approach a performance index or cost function was minimized at each time segment.
One of the problems with the local approach was that it led to undesirable "peaks” in the base reactions as shown in
Fig.(8). In this paper, we propose and implement a global approach which is based on minimizing an integral
performance index over the entire end-effector trajectory.

The rationale which underlies our approach is as follows, The trajectory-planning problem for a manipulator
reduces to the problem of solving the inverse-kinematic problem for the joint-variables {or "joini-space” trajeciory )
given the specified trajectory in the 1ask space. In the case of a (kinematically) redundant manipulator the inverse-
kinematic problem has an infinile number of solutions. The basic idea is to pose an optimization problem of
minimizing the base reactions in order to obtain joint-space trajectories (which minimize base reactions). In this
paper we develop a global approach which iniegrates the Partitioned Jacobian method of redundant resolution, a
4-34 joini-trajectory representation {described in Section 3.3) and the minimization of a ¢ost function which is the
time-integral of the magnitude of the base reactions. We also compare the global approach with a local approach
developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one
redundant degree-of-freedom.

The contents of the paper are organized as follows, In Section 2 we develop a statement of the problem to be
addressed in this paper. In Section 3, we show how the Paritioned Jacobian method of resolving kinematic
redundancy can be used o develop a Global approach for minimizing the magniwde of the base reactions. In this
section we also briefly describe the local approach used in [8.9] since we are interested in comparing the two
approaches. The global and local approaches are then applied (Section 4) to obtain the optimal joint trajectories
which minimize base reactions for a redundant three degrees of freedom planar manipulator (with 1 redundant
degree of freedom for its intended task of moving from point-to-point in the workspace). A simple sensitivity study
is also carricd out in order to get some feel for the “goodness™ of the optimized trajectory. The results of the case
study {(of Section 4) are then discussed in some detail in Section 5. Finally, in Section 6 we summarize the work and
draw some conclusions.

2. Statement of the Problem

Consider an m degrees of freedom manipulator with m revolute or prismatic joints. Let q; denote the joint
variable at joint /, the joint variable of each joint is either an angle 8; {revolute joint) or a distance d, (prismatic
Joint), For an m degrees of freedom manipulator, the joint displacement vecior g can be defined as

4 =1{4q, 0..q,]" 0}
Let E be an arbitrary point on the end-effector as shown in Figure 1. The position of E can be represented with



reference Lo the coordinate frame (/) fixed in the base by
r=1f[xyz]}. {2)
The kinemalic equations reladng the end-effector position r and the joint variable vector q can be expressed as
follows:
r() = glqi), (3

where g is a vector of functions which are nonlinear in g(t).

The wrajectory planning problem for manipulators is to determine the joint variables q(t)} for a specified
end-effector trajectory r{t). For a redundant manipulator, the number of degrees of freedom, m is more than the
minimum number of degrees of freedom required 1o perform a task which is denoted by n. Therefore, from equation
{3) we can see that there are an infinite number of joint space solwtions q(t) for a specified end-effector position,
r(l}. This means that we can take advantage of the redundancy of (kinematically) redundant manipulators to
optimize some suitable dynamic criterion. The optimization of this dynamic criterion will then, in general, yield a
unigue (joint space} solution for the joint variables q{1).

An important problem which arises in the use of manipulators in space is the minimization of the magnitudes
of the reaction force and moment transmilted to the base of the manipulaior as the end-effector of the manipulator
follows a specified trajectory. Let F_ and N_, respectively, denote the force vector and moment vector (see Figure
) transmitted 10 the base of the manipulator and define

F,l=(F,TNT]. (4)
We will call Fy the base reaction vector. The dynamic equations relating the motion of the manipulator to the force
and moment transmitted to the base (in a microgravity environment) can be represented in the following form:

Fy, = My(Q) § +¥{(q.9), ()

where M (q) is a mass matrix and V(-} denotes all lerms which are nonlinear in q. (In Appendix 2 we give
¢xpressions for Fy,, My, and V for a planar 3 d.o.f. manipulator).

Since we are interested in minimizing the base reactions, we must select a cost function B which is an
appropriate function of the base reaction vector Fy, i.c.

B=f(F,). {6}

Since F,, is a function of (g, . ), B is also a function of (g, ¢, ). Therefore minimization of the magnitude
of Lhe base forces and base moments reduces to determining the joint space trajectory q(t) which will mimimize the
cost function B,

We are now in a position 10 stale the objectives of this paper:

1. Given a specified trajectory of the end-effector, use kinematic redundancy to develop an approach for
planning the corresponding joint-space trajectories q(t) in order to mimimize a cost function which is a
measure of the time-integral of the magnitude of the base reactions. This approach is called the Global
Approach.

2. Compare the global approach with the local approach developed in [8,9).

3. Study the sensitivity of the (global) cost function with respect to (small) changes in the joint
trajeclories.

In the next section we develop the global approach and very briefly describe the local approach.
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3. Description of Approach
The general problem of obtaining unique inverse kinematic solutions for redundant manipulators is termed

"redundancy resolution”, Even though there are a variety of approaches (which are mostly based on the pseudo-
inverse of the manipulator Jacobian) proposed for resolving the redundancy of redundant manipulators, relatively
few approaches [5,6,7,8,9] address the problem of utilizing redundancy for optimizing dynamic criteria such as
torque optimization [3,6,7] or base reaction minimization [8,9]. Hollerbach and Suh [5] investigated a few local
approaches based on the pseudo-inverse for optimizing joint torques. The resolts of their study show that the local
approach leads to "unstable" solutions for some trajectories. Nakamura [7] proposed a pseudo-inverse approach
based on the Ponirayagin's Maximum Principle for globally optimizing the energy used in performing task. Suh and
Hollerbach [6] investigated the problem of torque optimization using local and global approaches based on the
pseudo-inverse. Il was found that the global approach does not have a stability problem and outperforms the local
approach [5] at all times. However, the global approach proposed in [6,7] is complex to formulate and solve, and
limits on joint angle, joint velocity, and torques cannot be included in the optimization problem. The shortcomings
of the pseudo-inverse approach in general are clearly given in [14].

In contrast to the pseudo-inverse approach, we describe an altermative approach, based on partitioning the
manipulator Jacobian matrix [4], which is particularly well suited to the base reaction minimization problem. The
first application of the Partitioned Jacobian approach to the base reaction minimization problem was a local
approach described in [8,9]). The primary aim of this paper is to develop and implement a global approach which
utilizes the Parttioned Jacobian method of resolving redundancy. The global approach is described in Section 3.3
Since we also want to compare the global approach with the local approach, the local approach is described briefly
in Section 3.2. The Partitioned Jacobian method of resolving redundancy is explained in Section 3.1.

3.1. Redundancy Resolution
Consider an m degree-of-freedom redundant manipulator. If the velocity v of a reference point on the
end-effector is represented by an (nx?) column vector, then we can write the following relationship between v and

the (mx! ) column vector q of rates of change of joinr variables:

v = Ja)a, (7}

where J is an fnxm) manipulator Jacobian matrix. (g will be referred 1o as the joint "velocity” vector for short.)
Diflerentiating Eq. {7) with respect to lime, the acceleration of the end-effector is
v=Jg+1l1ig (8)

For redundant manipulators, the Jacobian mairix, J is not a square matrix. Therefore for a given end-effector

velocity v, the Jacobian cannot be inverted to obtain the corresponding joint "velocity” vector q. In order to obtain
joint space solution, we use the Partitioned Jacobian approach developed in [4]. Using this approach, the joint
variable veclor can be partitioned into,

9 =14, q" 1 )
where q_, an fm-n)x! column vector, is called the redundant joint vector and q_ ., an nx7 column vector, is called the
nonredundant joint vector.

Eq. (7) can then be written in the form

v=1,4a,,+]J 4. (10)



where J_, is an axn matrix corresponding 10 q,, and J_ is an nx(ri-n) maltrix corresponding to q,.

We have therefore pantitioned the Jacobian J as follows
J=11J,17 1] (1n

Comment It is always possible to find a vector of n non-redundant joint variables q . such that J _is an
invertible (i.e. non- singular} matrix except at a finite number of singularities.

Eq. (8} can be written as follows:

v=1J,4q,+J3 q +1, 4, +17J 4. (12}
Rearranging Eqs. (10) and (12), we have

U =3, (Vv -3, 4,) (13)

I, v -8 -0, 0, - 0,04 ) (14)

Uy
In the approaches described below, one specifies the redundant joint variable vector g, (1) 1o be a convenient
(vector) function of time from which q, (1) is readily obtained. Equation {13} can then be used (0 determine the

non-redundant joint variable velocity vector g (1); from the latter g, (t) can be obtained by integration.

3.2. Local Approach
In the local approach, the total lime of the task is divided into a number of time segments. For convenicnce,

assume that the duration for each time segment is the same. If q_ is the joint velocity vector of the redundant joints

at the start of any time-segment As and q, is the joint velocity vector of the redundant joints at the end of the time
segment, then we can write

EIr = Elra+ 'd":'lr’ (15)
where Aq, can be approximated by a linear combination of shape-function fi(t), i=1,2,,....k as follows

Az =y 1O +ep P+t o K0
A7 %=y LD+ P+ ot O D

Agmag (mm)1 A+ c(m)zfz(t) ot c(m_,,:,,,,}*(t). (16)

where Az}, i=(1,2, ..., (m-n)), is the it element of Aq,. The use of shape functions in oplimization of torques of
non-redundant manipulators is described in [13].

If C denotes the matrix of parameters Cij i=(1,...(m-n)), j=(1,2...k), and [t} is a column vector whose i*
element is (1), then Eq.(16) can be written in a more compact form

Ag, = CIG). an

Combining Eq.(15) and Eq.(17) we obtain



a, = 4,,+Cf). (18
For convenience, fi(t) is chosen to be polynomials 11, (i=1,2,...k) and therefore f{t) is given by
) = [ 1 1 & .. k1 )T, (19}

where k is the degree of the polynomial selecied for q,.
Substituting Eq.(18) in Egs.(13-14), they become
Goe = Jot [ ¥ - J @+ O] (20)

3 M v-d g +Cn-J 3 v-3 (g, +CD)-.Ci}. a1

Ein T

Now, we can compute the values of q, 4. and g as functions of the elements ¢;; of the C matrix for each time
segment. For an arbitrary manipulator configuration, the base reactions (F_ and N_) at the end of each time step are
therefore functions of the elements of the C matrix. In Section 3.4 {see Eq. 37) we will present a local cost function,
B(C) that is a measure of the magnitudes of the base force and base moment at the end of each time segment. Using
that cost function we can pose the inverse kinematic problem as an minimization problem which yields the optimal
C matrix for each lime segment. For further details refer to [8.9].

3.3. Global Approach

In contrast to the local approach where (he magnitudes of the base reactions at the end of each ime segment is
optimized, the global approach described below optimizes a cost function which is a time-integral of the magnitudes
of the base force and base moment over Lhe whole time interval, 1.

Using the redundancy resolution scheme developed in Section 3.1, the redundant joint trajectories are used in
the optimization of appropriate dynamic criteria such as the minimization of the magnitudes of the base reacuons.
The redundant joint velocity vector representation, Eq. (18) used in the local approach would be difficult to
implement for a time integral cost function. In the local approach, for each time segment we have (m-r)xk
parameters {i.e. the elements < of the matrix C). If the total time is divided into ! ime segments, then we would
have x{m-n)xk parameters to determine for global approach. To keep the number of paramelers required for the
representation of the redundant joint variables small, we use the simpler representation described below.

One of the intuitive requirements for the redundant joint trajectories is that the joint trajectories have to be
smooth. Also, the angular velocity and acceleration at both of the initial and final points of the redundant joint
trajectories should be zero. One way of representing this family of curves is the use of higher order polynomials
(splines) to sausfy the velocity and accelerations boundary conditions. Since very high otder polynomials exhibil
unpredicted behaviors, a popular methed is to break a joint trajectory into a number of segmenis which can be
represented by lower order polynomials such as third and fourth order ones. These segments will satisfy Lhe
boundary conditions and are contineous from one segment to another. The representation considered in this paper is
a three-segment method which consists of two fourth-order polynomials for the inittal and final segments and a third
order polynomial for the transition segment. This method is known as the 4-3-4 joinl trajectory representation. The
details of this representation can be found in [10]. As shown in Figure 2, a typical 4-3-4 joint trajectory for each
joint consists of three segments:an initial section (8,(1)), a transition section (8,(1)), and a final section (8,(1).
Basically, curves described by this method are functions of the initial and final joint points (6, and 0; ), the time
period of the transition segment(t,), the total time (1;} and the angular displacement traversed during the transition
period (3,). The expressions for 8,(t), 6,(1), and B,(1) arc given in Appendix 1.



6

‘\
final segment B3(1)

— transition segment  ©,(1)

-
|

1

initial segment 8, (t)

1o 1 tz =T

Fig.2 A Typical 4-3-4 Joint Trajectory

time



3.3.1. Three-parameter Joint Trajectory Representation
The 4-3-4 joint trajectory can be simplified by considering the following normalized parameters: (a) ime

factor, p(0<P < 1)
i

= —_— )
'tl +12+ 13
where 1;"s are time intervals for the three segmenis (see Fig. 2);
{b) angular displacement factor, o
8,
S — 23
OB 5,45, 23)
where 3;’s are angular displacements traversed during the ith ume interval {see Fig. 2),i=1,23.
For 1, = 15 and §, = &;, we have the following relationships:
8,=6,,0 24)
8,= Bfa i (25)
;=60 (26)
11 = Tfﬂ, (2?)
'rz = Tfﬁ (28)
t3 = Tfﬁ’, (29)

where 8;_ = 8 - 8., T is the total time of the task, & = (I - c}/2 and B’ = (1 - B)/2.

Note: the above variables, defined by Eqs. (24) through (29) are functions of a., T;, B,8,, and 6;. In general, for
the redundant manipulator inverse kinematic problem, the initial angular position{®;} for the redundant joint variable
and the total time of the task (ty) are usually specified. Therefore, there are only three unknown paremeters, namely
a, 8, and B for each degree of redundancy. Using these parameters, we obtain a three-parameler joint rajeclory
representation (based on the 4-3-4 joint trajectory representation) for the redundant joint variables. The j element
of the redundant joint velocity vector, g} can be expressed as

gl =0/(8) for 1Sty k=123 (30)

where 8,J(t) denotes the polynomial for the &% segment, (k=1,2,3), of the j redundant joint variable, j=1,2,..{m-n}
and ¢ 's are shown in Fig. 2.

Figure 3 illustrates the curves generated by different combinations of o and J. Note that these curves are
smooth and satisfy the boundary conditions.

In the next section, we show how the threc-parameter joint trajectory representation for redundant joint
variables can be used 1o find a joint space solution {i.¢. inverse kinematic solution} for the redandant manipulators.

3.3.2, Global Optimization Problem Formulation

For a redundant manipulator with (m-n) degrees of redundancy, the application of the thres-parameter scheme
to represent each of the {m-n) redundani joint variables yiclds q_ as a function of ix{m-n) number of parameters, o,
Bi, and 8/, j=1,2,..(m-n), which need to be determined. Using Eq. (13), g,,, can also be determined as a function of
these 3x(m-n) parameters. Let o, B, and O; denote (m-njx7 column vectors whose /M element is denoted,
respectively, by o, B, and Btj.



50.00

. 9
] o=05
40.00
30.00 3
20.00 3
10.00 3 f =02
OOO -"llllll1[1|'|TTr1l1T"l|Illl1i'|l|]'l'll]l]‘l]l]rI!'lr1l'|[]|1l][]T"[T‘|
0.00 0.20 0.40 0.60 0.80 1.00 1.20
{a) time (s)
50.00 4
.
7 B=05
40.00 3
30.00 -
]
;
20,00 —
10.00 7
000 0.20 0.40 0.60 0.80 1.00 1.20

(p) time (s)

Fig. 3 Curves Generated by Different Combinations of a and B {a) a fixed and (b) B fixed



10

The cost function B which is a function of the base reactions and therefore a function of g, q, g, can be
expressed as a function of ¢, B, and 6; (see procedure below for details). Therefore the optimization problem can be
pased as follows:

minimize B (o, B, 6;)
subject to the constraints
o <8i<ol

O<od<1,and
0<P<1,j=12,.(mn) (3h
For the global approach B is a time-integral cost function defined in Section 3.4 (Eg. 35) below, which is a measure
of the magnitude of the base reactions. Bimin and Bjmu are selected based on the information on the joint limits.

Fig. 4 depicts a simplified flow-chart which captures the essence of the the global approach. The procedure
for the global approach, corresponding to the flowchart in Fig. 4, is as follows:
1. Initialize the parameters vectors a, 8, and 6, .

2. Using the 4-3-4 redundant joint representation (Eq. (30) and Appendix 1) obtain q,, q,. and g, as
functions of o, B, and ; for the time interval ;.

3. Using Eq. {13) and (14), respectively, 1o determine ¢, and q,, as a function of ¢, 3, and 6.
4, Obtain the non-redundant joint variable vector q__by integrating q__(cbtained in Step 3). We now

have g, q, and q as a function of o, B, and 9.

5. Use the dynamic equations {Eq. (5)) and the results of Step 4 o determine the base reaction vector Fy,
as a function of @, B, and &y,

6. Define a suitable time-integral cost function B of the base reactions Fy, (se¢ Sections 3.4 and 4.2).

7. Combine the results of steps 5 and 6 1o obtain the cost function B as a function of o, B, and 8;.

8. Apply the Hooke and Jeeves optimization method [12], to update the parameter vectors ¢, B, and 6;.
9.

Repeat Sieps 2 through 8 until the parameters vectors converge to their optimal valoes Q. ﬁ E[
Once the optimal values of @, B, and 6; have been obtained, the optimal joint space trajectories vector q(t} arc
readily determined.

3.4. Cost Function

The selection of a suilable cost function is crucial in obtaining a joint space solution that minimizes base
reactions. In this section, we discuss the issue of selecting a proper cost function which can be used as a measure of
the magnitudes of the base reactions (F, and N_).

In general, the magnitude of the base force is given by

Fo=(F012+F022+F032)1a’ (32)
and the magnitude of the base moment is
No=(N, 2+ N2+ N 52, (33}

We introduce two weighting factors (w, and w,) that enable us 1o place appropriate weights on the base force
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and base moment components. The cost function B can be expressed as

B=w F,24w,N 2, for the local approach, and (34}
T
B=J. "w, F 2+w,N 2dt, for the global approach. (35)
0
Define
w1 0
Q=
0 wol |, (36)
We can wrile Eqs. (34) and (35) in a more compact matrix form as follows:
B=F,TQF, (37)
and
T
B=|{" FJ Q F, a. (38)
a

The weights w, and w, must be carefully chosen to : {1)appropriately scale the base reactions with respect to
a reference set of base reactions and (2)ensure that all quantities in the cost funclion are dimensionally
homogeneous. The choice of appropriate weights will be dealt with in Section 4.2

4, Illustrative Example

In this section we apply the basic approaches described in the paper io minimizing the base reactions of a
three degree-of-freedom planar manipulator. The task is a point-to-point motion of the end-effector from a specified
initial position 1o a specified final position. Using the above approaches, we would like to plan a trajectory in the
joint space (o minimize the magnitudes of the base reactions as the manipulator moves from the initial position
the final position.

In this problem, for the planar manipulator, m=3; since we are interested in the position of the end-effector,
n=2. Therefore we have (m-n)=1 degree of redundancy. The redundant link of this problem is chosen w0 be the first
link which is attached to the base {g,=q, ).

The base reactions dynamic equations of the 3 d.o.f. planar manipulator are in Appendix 2 and the link
dimensions and mass properties are given in Appendix 3.

We study the following four cases:
1. The minimizalion of the time-integral of the magnitude of the base moment only,

2. The minimization of the time-integrat of the magniwde of the base force only,

3. The minimization of the time-integral of an appropriately weighted combination of the magnitudes of
the base force and base moment. We use the results of cases (1) and (2) to show how the weights w,
and w, should be chosen.

4. A sensilivily analysis of the sensitivity of the cost function of Case (3} with respect (0 smali changes in
(the paramelers of) the joint space trajectories.
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4.1. End-effector Trajectory
The distance measured from the initial position along a straight line which connects the initial position and the

final position can be expressed as
T 2
o) = bt~ sin(), 39)
2m T
where b is an arbitrary constant and 1; is the total time of the task. The speed of the end effector is given by
2mt .
Wi} =b(1 - cos(—=). {40y
Fig. 5 shows the desired velocity and acceleration profiles of the end-effector.

The initial position of the end effector is (x,y) = (0.0, 1.2071) (m) which corresponds to an initial manipulator
configuration, q1=[45°, 45%,45°]. The desired final position is (x,y} = (0.3536, 0.8535) (m). The following valucs
are chosen for the trajectory;

T;=20s
b=0.25
d{t)=05m
At={0.1s.

4.2. Cost function [Case Studies 1 - 4]

To minimize the base reactions properly, it is important to sclect a suitable weighting matrix Q for the cost
function. Therefore, the choices of the 1wo weighting factors (w; and w,) are crucial. To understand the effects of
these weighting factors on the base reactions, three cases of different  matrices are studied. ‘We only show the cost
functions for the global approach. The cost function for the local approach can be obtained by Eq. (37).

{(a)Case Study 1

In this case study we select a cost function that only minimizes the magnitude of the base moment in order to
determine how small the magnitude of the base moment can be made. We simply choose w;=0 and w,=1 in Eq.
(36) 10 obiain the weighting matrix

0 0

Q=
: ' 41)

and the corresponding cost function (from Eq. 38)

T
B= jof N 2, “2)

(b) Case Study 2

In this case, we want 10 know the extent to which the magnitude of the base force component can be
minimized by choosing w,=1 and w,=0 in Eq. (36} to obtain the matrix
| S

Q.=
2 0 of, (43}

and the corresponding cost function (from Eq. 38) takes the form

.
B =J'0"F02m. (44)
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{c) Case Study 3

In general, we want (0 minimize the magnitudes of both the base force, F, and the base moment, N
transmitted to the base. Since F, and N are different physical quantties, we require a weighting matrix Q to
non-dimensionalize and to appropriately scale the base force and base moment components. The results of Case
studies 1 and 2 are important in this regard.

The average value of the base force (F) ransmitted to the base in Case Study 1, F,, is a measure of how
small we can make the base force. Similarly, the average value of the moment transmitted to the base in Case Study
2, N,y is 2 measure of how small we can make the magnitude of the base moment. We therefore choose,

2 2

<, f N

p=[ %+ @s)
0 favg N avg

The weighting matrix thereforg is given by

w)l 0
Q3=
0 wlli, 45)
where
oy @7
F 2
ai:g
W2= 7 (48:}
avg

Note that the above choices of w, and w, simultaneously achieve the desired scaling and non-
dimensionalization,

(dyCase Study 4 (Sensitiviry}

In practice, il is impossible o realize the exact optimal joint trajectories due 10 the errors in the control system
and noise and uncentainties in the system. Therefore, it is important to examine how sensitive the base reactions are
to the deviations of the joint trajectories from the optimal solution. The global approach provides us a simple means
of studying this issue. One way of studying this issug is to introduce perturbations about the optimal values of o, B,
and 6; obtained from Case Study 3. The following three cases in each of which one of the three paramelers is
increased by 20% were studied:

case a : the optimal value of «, viz & is replaced by 1.2 &

case b : the optimal value of §3, vizﬁ is replaced by 1.2 ﬁ

case ¢ :the optimal value of 6, viz é} is replaced by 1.2 ﬁf.

in the next section, the results of these case studies will be presented and discussed.

3. Discussions of Results

We are interested in the effectiveness of the proposed global approach in minimizing the magnitudes of the
basc force and base moment as well as in comparing this approach with the local approach. We therefore, plotted
the magnitudes of the base force and base moment {corresponding 1o the optimized trajectory) for each of three
cases enumerated in the previous section. From an examination of the results shown in Figs. 6 through 11, the
following important conclusions/points should be noted:
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(1)First consider the magnitude of the force transmitied to the base shown in Fig, 6(z) (for Case Swdy 1), Fig.
7(a) {for Case Study 2), and Fig. 8(a) (for Case Study 3). Each one of these figures has two plots corresponding 1o
the global and local approaches. As might be expecled, the magnitude of the base force is the lowest for Casc Study
2 where only the base force is being minimized (see Fig. 7(a)). Furthermore, as shown in Fig. 7(a), the giobal
approach "smpoths” oul the pegk in the magnitude of the force which is seen in the local approach at 1=0.8 sccond.

(2) Next consider the magnitude of the moment transmitted to the base as shown in Fig. 6(b) (for Case Study
1}, Fig. 7(b) {for Case Swudy 2) and Fig. 8(b) (for Case Study 3). Once again each one of these figures has 2 plots
corresponding 1o the local and global approaches. For the focal approach, Case Studies (1) and (3) yield very small
base moment, while Case Study (2) (base force minimization only) yields a relatively high base moment In
contrast, for the global approach, the magnitudes of the moment transmiued to the base is vinually independent of
the cost function {i.c. whether we are minimizing the magnitodes of the base force, the base moment or the
combination of the two). We also see (Figs. 6(b), 7(b}, and 8(b)} that the local approach is more effective than the
global approach in minimizing the magniludes of the base moment.

(3) We can summarize the conclusions in (1) and (2) above by the following two statements:

(a) The global approach is the better approach for reducing the magnitude
of the base force whereas the local approach is superior for reducing the
magnitude of the base moment.

{b) In the global approach it is sufficient 10 minimize the magnitude of the
base lorce.

(4) The second derivative of the joint variables (joint "accelerations™ for each one of the three joints arc
shown in Fig. 9, both for the local and global approaches: we observe that very similar acceleration profiles are
oblained for Lhese two approaches. The correpsonding manipulator configurations are shown in Fig. 10{a) (for the
local approach) and Fig. 10(b) {for the global approach). One should make careful note . both from Figs. 9 and 10,
of the “"sense” of motion of the three links. The results shown in Figs. 9 and 10 comrespond o Case Study 3.

(5) The results of the simple sensitivity study are shown in Figs, 11{a} (magnitude of the base force) and Fig,
11(b) (magnitude of the base moment) for the global approach and the cost function of Case Study 3. (The optimal
results are shown in dashed lines with the perturbed results shown in solid lines). The following two conclusions can
be reached from the results as shown in Fig. 11.
1. The magnitude of the base moment is relatively insensitive to small changes in the wajectory
{parameters). (Fig. 11 (b)).

2. The magnitude of the base force is quile sensitive 1o 6, the final position of the redundant link (Fig.
11{a}). (The "redundant” link was selected 10 be the link attached to the base in Fig. 10.}

6. Summary and Conciusions

In this paper we have developed a global approach for minimizing the base reactions of a kinematically
redundant manipulator used in microgravity environments. The global approach utilizes the Partitioned Jacobian
method of redundancy resolution, the 4-3-4 method of joint-trajectory representation and the minimization of a cost
function which is a time-integral of the magnitude of the base reactions. We also compared the global approach of
this paper with a local approach developed earlier.

The application of the global and local approaches to a planar 3 d.0.f. manipulator with 1 redundant degree of
frecdom demonstrated the effectiveness of the global approach in smoothing out undesired "peaks” in the force
ransmitied to the base which were observed in the local approach. We also learned that the global approach was
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more effective in reducing the magnitude of the base force while the local approach was more effective in reducing
the magnitude of the base moment. A simple sensitivity analysis performed on the optimal trajectory obtained for
the global approach revealed that the magnitude of the force transmitted to the base is more sensitive to the final
configuration of the links. We plan to do an extensive sensitivity analysis in the future.

The approach will be implemented on a 4 d.o.f. waction drive manipulator for space application which is
currently under construction.
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Appendix ! : Equations for 4-3-4 joint trajectory representation.

The equations for 4-3-4 joint trajectory representation can be found in [10], The equations of Bj(t}. =123 of
the threa-parameier representalion are:

For segment 1,

8,(1)= (8,0 —o? +a7 + 8, (49)

6,(1) = [4(8,,0 ~ o1’ + 35T/t (50}

8, (1)=[12(8 ;o —0)1* + 601}/, (51)
where 8, = initial joint position,

1=normalized time (0,1)=47,

o=flg

=20,0(6+2B 1B+ B/B)-6, B BO+B B)+20,,0 B /B
g=fB+3+3R/B

For segment 2:

B, (1)= (8,0 —v, 1, B-a; 17 B2/2) 13+ a 12 B2 24v T BT46 (52)
8,() = [3{8,a - 1B ~at B2yt v a 1A v B, (53)
0,(1) = (68,0 —v, T B-a, 1p*2) 144 17PI/1,° (54)
where
T={-T)¥1;
a,=0,(1)/(B1)?

For segment 3,
8y(1) = (96, & = dvy B a2, TR 2) 144 (86, a3, B e
A B2t 2+ vy BT 40, (55)
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83(0) = 14 (98,6’ ~4v B T, TP Y2)T" + 3 (86, 0+ 3%, B2+

a, B2 g +v,B ity (56)
§3(‘t) =[12(9 9{00'"4"25"‘;"“21 f2 B’2ﬁ)12+6(—86faa:+3v2[5' 'r.f) T+
ay B2 1Ay’ (57}

where
T={I-T;- T M1,

V2=39fw (Tfﬁ)—Zv]—al 'I:f|3f2
a,=66;, af{tfﬂ)z —-6v, /(th )-2a,

8,=0,(1).

Appendix 2 : Base Reaction Dynamic Equations

The following variables are defined
m, = total mass of the link {

{;=length of link i
1,; = distance measured from the axis of joint (i-1) to the centroid of link i

1, = moment of inertia about the centroid of link /

For the 3 d.o.f. planar manipulator studied in this paper, the base force vector has a x-direction component,
(F,), and a y-direction component, (Fo)y, and the base moment vector has only a z-direction component, (N_),. The
base reactions dynamic equations are given by

F, =M, § + Vig.q) {(58)
where Fy = [ (F), (g, (N, .

Let the elements of M, be mby,, (i=1,2,3) and (}=1,2,3). And for convenience, we denote cos(i+...+j) by S

and sin{i+...+j) by 5 We have the following equations

mb 1=l 4y S 1338 191 M8y =L (Mg +mp)s =l ymy 5
b 9= =l msS 5q—lamas =l M)y

mbyg=—I amac sy
by =l 30 g3+ gt ;g H Mmoo+ (mpbma o+ my e

b=l qfMa€ 1 g +lgMat 1 H o0 5

mbyy=l oy 9q
(3%
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2
L2l Zimg el o2t [ 2l 4+ 4

2 2
mbyy=l\ L 3ty + 2l amaeaHl maco+ il mycgtl o matlymy
+ g+

mbyy=l il amacostbyl amacytl gyt s
and the elements of V(.J denotedbyv,are

V=232 200,47, )2yt 3, 4 2 4o+ 1 M o€y 1057+ 20, @0+ @y Hpmy—
(@242, 40P W gmade 1y~ (@ Pty iy Hymyrg P ymy e
vy=-[52H( 20t )3+ 0, 2422180+ 81 Mgy 1 [0y 20 3y, g
~@P 423y M gl oy g, 2 g )]sy
V3= [+ 2@+ a3+ 32+ 201300 3~ 2y B+ gl e sy—
@+ 2,3 ) iy 53~y 2130 oS (60}

Appendix 3:Physical Dimensions and Mass Properties

The physical dimensions and the mass properties of the three degree-of-freedom planar manipulator are given
in Table 1. The link length, mass, and inertia of the link are denoted by {;m,, and f; respectively. The centroid of
the link is assumed to be at the center of the link.

Table 1: Simulation Data for 3 d.o.f. Manipulator

Tink 1 2 3
m (kg) 1.0 10 10
1.(m) 0.5 0.5 0.5

L(kg m2) 0.0208 0.0208 0.0208
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