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Abstract 

An important consideration in the use of manipulators in Microgravity environments is rhe 
minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the 
manipulator on its base as it pe~orms  its task. One approach which has been proposed and 
implemented is to use the redundant degrees of freedom in a kinematically redundanr 
manipuiaior to plan manipulator trajectories to minimize base reactions. In this paper we 
develop a global approach for minimizing the magnitude of the base reactions for kinematically 
redundant manipulators which infegrates the Partitioned Jacobian method of redundancy 
resolution, a 4 - 3 4  joint-trajectory representation and the minimization of a cost function which 
is the time-integral of the magnitude of the base reactions. We also compare the global approach 
with a local approach developed earlier for the case of point-to-point motion of a three degree- 
of-freedom planar manipulator with one redundant degree-of-freedom. The results of study 
show that the global approach i s  more effective in reducing and smoothing the base force while 
the local approach is superior in reducing the base moment. 
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1. Introduction 
Recently there has been a lot of interest in the use of kinematically redundant manipulators for various 

applications like obstacle avoidance and singularity avoidance [24]. In this paper we want to utilize the well-known 
idea that kinematic redundancy provides the analyst or designer with additional degrees of ireedom which can be 
exploited for "useful" purposes. Specifically we are interested in the planning of trajectories for manipulators which 
are used in space applications [l] and typically operate in microgravity environments. 

An issue of considerable importance lor manipulators used in Microgravity environments is the minimization 
of the magnitudes of the dynamic reaction force and moment exerled by the manipulator on its base as it performs 
its task. One reason for minimizing, and if possible eliminating base reactions, is that Ihe base force and base 
moment could disturb other tasks or expenmenu in the vicinity. 

In  this paper we address the issue of using kinematic redundancy to plan joint-space majectories which 
minimize the reactions transmitted by the manipulator to the base. A local approach to this problem is described and 
implemented in [8-9]: in this apprmch a performance index or wst function was minimized at each time segment. 
One of h e  problems with the local approach was that it led to undesirable "peaks" in the base reactions as shown in 
Fig.(@. In this paper, we propose and implement a global approach which is based on minimizing an integral 
performance index over the entire end-effector trajectory. 

The d o n a l e  which underlies OUT approach is as follows. The trajectory-planning problem for a manipulator 
reduces to the problem of solving the inversekinematic problem for Ihe joint-variables (or "joint-space" mjectory ) 
given the specified trajectory in the usk space. In the case of a (kmematically) redundant manipulator the inverse- 
kinematic problem has an infinite number of solutions. The basic idea is to pose an optimization problem of 
minimizing the base reactions in order to obtain joint-space trajectories (which minimize base reactions). In this 
paper we develop a global approach which integrales the Partitioned Jacobian method of redundant resolution, a 
4-34 joint-trajectory representation (described in Section 3.3) and the minimization of a cost function which is the 
time-integral of h e  magnitude of the base reactions. We also compare the global approach with a local approach 
developed earlier for h case of point-topint motion of a three degree-of-freedom planar manipulator with one 
redundant degree-of-freedom. 

The contenu of h e  paper are organized as follows. In Section 2 we develop a statement of the problem to be 
addressed in this paper. In Section 3, we show how the Partitioned Jacobian method of resolving kinematic 
redundancy can be used to develop a Global approach for minimizing the magnitude of the base reactions. In this 
section we also briefly describe the local approach used in [8,9] since we are interested in comparing the two 
approaches. The global and local approaches are then applied (Section 4) to obtain b e  optimal joint uajectories 
which minimize base reactions for a redundant three degrees of freedom planar manipulator (with 1 redundant 
degree of freedom for ils intended task of moving from point-to-point in the workspace). A simple sensitivity study 
is also carried out in order to get some feel for the "goodness" of h e  optimized trajectory. The results of the case 
study (of Section 4) are then discussed in some detail in Section 5 .  Finally, in Section 6 we summarize the work and 
draw some conclusions. 

2. Statement of the Problem 
Consider an m degrees of freedom manipulator with m revolute or prismatic joints. Let qi denote the joint 

variable at joint i ,  the joint variable of each joint is either an angle 0, (revolule joint) or a disrance di @rismatic 
joint). For an m degrees of freedom manipulator, the joint displacement vector q can be defined as 

4 = [ 41, q,, .... I a, IT. (1) 
Let E be an arbitrary p i n t  on the end-effector as shown in Figure 1. The position of E can be represented with 
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reference to the coordinate frame {U) fixed in the base by 

r = [ x y z lT. (2) 
The kinematic equations relating the end-effector position r and the p i n t  variable vector q can be expressed as 
follows: 

r(I) = g(q(OL (3) 
where g is a vector of functions which are nonlinear in q(t). 

The uajectory planning problem for manipulators is to determine the joint variables q(tj for a specified 
end-effector trajectory r(t). For a redundant manipulator, the number of degrees of freedom, m is more than the 
minimum number of degrees of freedom required to perform a task which is denoted by n. Therefore, from equation 
(3) we can see that there are an infinite number of joint space solutions q(t) for a specified end-effector position. 
r(t). This means that we can take advantage of the redundancy of (kinematically) redundant manipulators u) 

optimize some suitable dynamic criterion. Tne optimization of this dynamic critwion will then, in general, yield a 
unique (joint space) solution for the joint variables q(t). 

An important problem which arises in the use of manipulators in space is the minimization of the magnitudes 
of the reaction force and moment transmitted to the base of the manipulator as the endeffector of the manipulator 
follows a specified trajectory. Let F,, and No, respectively, denote the force vector and moment vector (see Figure 
I )  transmitted to the base of the manipulator and defme 

FbT = [FoT N2). (4) 
We will call Fb the base reaction vector. The dynamic equations relating the motion of the manipulator to the force 
and moment transmitted to the base (in a micrograviry environment) can be represented in the following form: 

where Mb(q) is a mass matrix and V(.) denotes all terms which are nonlinear in q. (In Appendix 2 we give 
expressions for Fb, Mb and V for a planar 3 d.0.f. manipulator). 

Since we are interested in minimizing the base reactions, we must select a cost function B which is an 

B=J(F,). (6) 

Since Fb is a function of (4. q, q), B is also a function of (9. q, q). Therefore minimization of the magnitude 
of the base forces and base moments reduces to d-ining Ihe joint space trajectory q(t) which will mimimize the 
cost function E. 

appropriate function of the base reaction vector Fb. i.e. 

We are now in a position IO state the objectives of this paper 
1. Given a specified isajectory of the end-effector, use kinematic redundancy to develop an approach for 

planning the corresponding joint-space trajectories q(t) in order to mimimize a cost function which is a 
measure of the time-integral of the magnitude of the base reactions. This approach is called the Global 
Approach. 

2. Compare the global approach with the local approach developed in [8,9]. 

3. Study the sensitivity of the (global) cost function with respect to (small) changes in the joint 
uajecmries. 

In the next section we develop the global approach and very briefly describe the local approach. 
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I / T E fink rn+ 7 

Fig. 1 A m DOF Redundant Manipulator 



4 

3. Description of Approach 
The general problem of obtaining unique inverse kinematic solutions for redundant manipulators is termed 

"redundancy resolution". Even though there are a variety of approaches (which are moslly based on the pseudo- 
inverse of the manipulalor Jacobian) proposed for resolving the redundancy of redundant manipulators, relatively 
few approaches [5,6,7,8,9] address the problem of utilizing redundancy for optimizing dynamic criteria such as 
torque oplimization [5,6.7] or base reaction minimization [8,9]. Hollerbach and Suh [5] investigated a few local 
approaches based on the pseudo-invem for optimizing joint torques. The results of their study show that the local 
approach Leads to "unstable" solutions for some trajectories. Nakamura [7] proposed a pseudo-inverse approach 
based on the Ponmyagin's Maximum Principle for globally optimizing the energy used in performing task. Suh and 
HoUerbach [61 investigated the problem of torque optimization using local and global approaches based on the 
pseudo-inverse. I1 was found lhat the gloM approach does not have a srability problem and outperforms the local 
approach 151 at all times. However, the global approach proposed in [6,7] is complex to formulate and solve, and 
limits on joint angle, joint velocity. and torques cannot be included in the optimization problem. The shortcomings 
of the pseudo-inverse approach in general are clearly given in [141. 

In conuasi to b e  pseudo-inverse appmach, we describe an altemative approach, based on partitioning the 
manipulator Jacobian matrix [41. which is particularly well suited to the base reaction minimization problem. The 
f i t  application of the Partitioned Jacobian approach to the base reaction minimization problem was a local 
approach described in [891. The primary aim of this paper is to develop and implement a global approach which 
utilizes the Panitioned Jacobian method of resolving redundancy. The global approach is described in Seclion 3.3. 
Since we also want to compare the global approach with the local approach, the local approach is described briefly 
in Section 3.2. The Partitioned Jacobian method of resolving redundancy is explained in Section 3.1. 

3.1. Redundancy Resolution 
If the velocity v of a reference point on the 

end-effector is represented by an ( u l )  column vector, then we can write the following relationship between v and 

the (ml) column vector q of rates of change of joint variables: 

Consider an m degree-of-freedom redundant manipulator. 

v = Jtqlq, (7) 

where J is an ( u m )  manipulator Jacobian matrix. (q will be referred to as the joint "velocity" vector for short.) 

Difkrentiating Eq. (7) wilh respect to lime, the acceleration of the end-effmtor is 

i. = j ;1+ J a. 
For redundant manipulators, the Jacobian mamx. J is not a square matrix. Therefore for a given endeffector 

velocity v ,  the Jacobian cannot be inverted to o w n  the corresponding joint "velocity" vector q. In order to obtain 
joint space solution, we use the Partitioned Jacobian approach developed in (41. Using this approach. the joint 
variablc vector can be partitioned into, 

(9) 
where q,, an (m-n)xl column vector, is called the redundant joint vector and qn, an ul column vector, is called the 
nonredundanl joint vector. 

qT = [ 9,' q,7 I. 

Eq. (7) can then be written in the form 

v = J  nr 9, ' + J, 4,. 
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where J,, is an nxn maaix corresponding to q, and J, is an m0n-n) mamx corresponding to 9,. 

We have therefore partitioned the Jacobian J as follows 
J = I J,, J, 1 

Comment.lt is always possible to find a vector of n non-redundant joint variables q, such that J,, is an 
invertible (Le. non- singular) matrix except at a finite number of singularities. 

Eq, (8) can be written as follows: 

v = J  .w q., ' + J, '1, + J, in, + J, 6,. 

S, = Jn;' ( v - J, q7 1 

4, = J ~ - '  ( i. - .i, b, - jN &, - J, ii, 1. 

(12) 

Rearranging Eqs. (IO) and (12), we have 

(13) 

(14) 

In the approaches described below, one specifies the redundant joint variable vector q, (1) to be a convenient 

(vector) function of time from which q, (1) is readily obtained. Equation (13) can then be used to determine the 

non-redundant joint variable velocity vector qnr(l); from the latter qnr(t) can be obtained by integration. 

.. 

3.2. Local Approach 
In the local approach, the total time of the task is divided into a number of time segments. For convenience, 

assume that the duration for each time segment is the same. If q, is the joint velocity vector of the redundant joints 

at the stan of any time-segment AI and q, is h e  joint velocity vector of the redundant joints at the end of the time 
segment, then we can write 

where Aqr can be approximaled by a linear combination of shape-function P(t), i=l.2., ....A as follows 

&>*") = C ( - ) l A O  + C ( - , f 2 ( 0  + ... + C(-.)kP(f), (16) 

where Gj3 i=(1,2, ...., (m-n)), is the t* element of Aq,. The use of shape functions in optimization of torques of 
non-redundant manipulators is described in [13]. 

If C denotes the matrix of parameters cif i=(l,..,(m-n)), j=(1,2, ... k), and f(t) is a column vector whose i fh 
element is fi(t), then Eq.( 16) can be witten in a more compact form 

Aij, = Ct(1). (17)  

Combining Eq.(IS) and Eq.(17) weobtain 



6 

qr = b,,+Crg).  
For convenience, r'(t) is chosen to be polynomials ti-', (i=IA.,k) and therefore f(t) is given by 

f(t) = [ 1 1 t2 ... t - 1  IT, 

where k is the degree of the polynomial selected for 4,. 

Substituting Eq.(18) in Eqs.(13-14), they become 

Now. we can compute the values of q, q, and q as functions of the elements cij of the C matrix for each time 
segment. For an arbitray manipulator configuration. the base reactions (F, and NJ at the end of each time step are 
therefore functions of the elements of the C matrix. In Section 3.4 (see Eq. 37) we will present a local cost function, 
B(C) that is a measure of the magnitudes of the base force and base moment at the end of each time segment. Using 
that cost function we can pose the inverse kinematic problem as an minimization problem which yields the optimal 
C matrix for each time segment. For further details refer to [8.91. 

3.3. Global Approach 
In contrast to the local approach where the magnitudes of the base reactions at the end of each time segment is 

optimized, the global approach described below optimizes a cost function which is a time-integral of the magnitudes 
of the base force and base moment over the whole time interval. T~ 

Using the redundancy resolution scheme developed in Section 3.1. the redundanl joint trajectories are used in 
the optimization of appropriate dynamic criteria such as the minimization of the magnitudes of the base reactions. 
The redundant joint velocity vector representation, Eq. (18) used in the local approach would be difficult to 
implement for a time integral cost function. In the local approach. for each time segment we have (m-njxk 
parameters (Le. the elements eij of the mamx C). If the total time is divided into I time segmenrs, then we would 
have Ix(m-n)xk parameters to determine for global approach. To keep the number of parameters required for the 
representation of the redundant joint variables small, we use the simpler representation described bclow. 

One of the intuitive requirements for the redundant joint trajectories is that the joint bajectories have to be 
smooth. Also, the angular velocity and acceleration at both of the initial and final points of the redundant joint 
uajcctories should be zero. One way of representing this family of curves is the use of higher order polynomials 
(splines) to satisfy the velocity and accelerations boundary conditions. Since very high order polynomials exhibit 
unpredicted behaviors. a popular method is to break a joint trajectory into a number of segments which can be 
represented by lower order polynomials such as third and fourth order ones. These segments will satisfy the 
boundary conditions and are continuous from one segment to another. The representation considered in this paper is 
a three-segment method which consists of two fourth-order polynomials for the initial and fmal segments and a third 
order polynomial for the transition segment. This method is known as the 4 - 3 4  pint trajectory representation. The 
details of this representation can be found in [lo]. As shown in Figure 2, a typical 4 - 3 4  joint bajectory for each 
joint consisls of three segmentsm initial section (el@)), a transition section (e#)). and a final section (e,(t)j. 
Basically, curves descrikd by this method are functions of the initial and fmal joint points (ei and 9, ), the time 
period of the transition segment(r2), the total time (T~) and the angular displacement traversed during the transition 
period (%). The expressions for e,(tj, 02(t), and e&) are given in Appendix 1. 
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Fig. 2 A Typical 4-3-4 Joint Trajectory 
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3.3.1. Three-parameter Joint Trajectory Representation 
The 4-3-4 pint trajectory can be simplified by considering Lhe following normalized parameters: (a) time 

factor. p (0 < p < 1) 

72 

p = 7,+7.2+5j' 

where Ti's are time intervals for the three segments (see Fig. 2): 

(b) angular displacement factor, a 

62 
6,+  62+6,' a= 

where 8;s are angular displacements traversed during the ith time interval (see Fig. Z), i=1,2,3. 

For 7, = r3 and 6, = 6,, we have the following relationships: 
6, = a' (23) 

$=e,,a' 

7, = T,p' 

r2  = T,P 

T~=T,P'. 
where Bfo = Of - 8,. T~ i s  the total time of the task, a' = (1 - a)/2 and p' = (1 - P)D. 

Note: the above variables, defimed by Eqs. (24) through (29) are functions of a, T,, P.8,. and 8,. In general, for 
the redundant manipulator inverse kinematic problem. the initial angularposition(9,) for the redundant joint variable 
and the total time of the lask ( T ~ )  are usually specified. Therefore, there are only lhree unknown paremeters. namely 
a, e,, and P for each degree of redundancy. Using these parameters, we obtain a three-parameter joint trajectory 
representation (based on the 4-34 joint uajajectory representation) for the redundant joint variables. The j* element 
of the redundant joint velocity vBctor, 9,' can be expressed as 

q,'(r)=e,j(f) for tk-,5fctk &L23 (30) 
where 8>(t) denotes the polynomial for the k& segment, (k=1,2.3), of the,* redundant joint variable, j=l,2 ... (m-n) 
and c ' s  are shown in Fig. 2. 

Figure 3 illustrates the curves generated by different combinations of a and p. Note that these curves are 
smooth and satisfy the boundary conditions. 

In the next section, we show how the three-parameter pint trajectory representation for redundant joint 
variables can be used m find a joint space solution (Le. inverse kinematic solution) for the redundant manipulators. 

3.3.2. Global Optimization Problem Formulation 
For a redundant manipulator with (m-n) degrees of redundancy, the application of the three-parameter scheme 

to represent each of the (m-n)  redundant p i n t  variables yields q, as a function of 3xbn-n) number of parameters, a', 
@, and 8;. j=l,2,..(m-n), which need to be determined. Using Eq. (13), qnr can also be determined as a function of 
these 3Hm-n) parameters. Let g, e, and 3 denote (m-nJxl column vectors whose J* element is denoted, 
respectively, by aj, pi, and e i .  
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Fig. 3 Curves Generated by Different Combinations of a and p (a) a fixed and (b) p fixed 
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The cost function B which is a function of the base reactions and therefore a function of q. 4, G, can b? 
expressed as a function of a. e, and I& (see pmedure below for details). Therefore the optimization problem can b? 
posed as follows: 

minimize B @, B, 3) 

subject to the constraints 

Bj-  < e i  < @,,,- 

0 c aJ c 1. and 
0 c p’c 1, j=1,2,..(m-n). (31) 

For the global approach B is a timeintegral cost function defined in Section 3.4 (Eq. 35) below, which is a measure 
of the magnitude of the base reactions. and d,, are selected based on the information on the joint limits. 

Fig. 4 depicls a simplified flow-chart which captures the essence of the the global approach. The procedure 
for the global approach, corresponding to the flowcharl in Fig. 4, is as follows: 

1. Initialize the parameters vectors g g, and 3 .  
2. Using the 4-3-4 redundant joint representation (Eq. (30) and Appendix 1) obtain qr, qr, and q, as 

3. Using Eq. (13) and (14). respectively, lo determine qn, and q n ,  as a function of a, e, and 3 
4. Oblain the non-redundant joint variable vector q,, by integrating qnr (obtained in Step 3). We now 

functions of a, e, and gf for the time interval T~ 

have q. q, and q as a function of g. fi, and €& 

as a function of a, e, and 3. 
5. Use the dynamic equations (Eq. (5)) and the results of Step 4 to determine the base reaction vector F,, 

6. Define a suitable time-integral cost function B of the base reactions F, (see Sections 3.4 and 4.2). 

7. Combine the results of steps 5 and 6 to obtain the cost function B as a function of a, fi, and 

8. Apply the Hooke and Jeeves optimization method [12]. to update the parameter vectors a, e. and 3. 
9. Repeat Steps 2 through 8 unlil the parameters vectors converge to their optimal values g.  fi, 3. , - A  * 

Once the optimal values of a. e. and ef have been obtained, the optimal joint space trajectories vector q(t) arc 
readily determined. 

3.4. Cost Function 
The selection of a suilable cost function is crucial in obtaining a joint space solutim that minimizes base 

reactions. In this section. we discuss the issue of selecting a proper cost function which can be used as a measure of 
the magnitudes of the base reactions (F, and NJ. 

In general, the magnitude of the base force is given by 

F, = (FOl2 + FOz2 + Fo3z)’” , 
and the magnitude of b e  base moment is 

N, = ( ~ , , 2 +  N,; + ~ ~ ~ 2 ) l R  . 

We intrduce two weighting factors (wI and wz) that enable us to place appropriate weights on the base force 
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Fig. 4 Basic Algorithm For the Global Approach 



and base moment components. The cost function B can be expressed as 
B = w , F ~ + w p ~ ,  for the local approach, and 

B=ji’w, F 2 +  w z N 2 d t ,  for the global approach. 

Define 

Q =  [: 12j. 
We can write ws. (34) and (35) in a more compact matrix form as follows: 

B = F ~ T  Q F, 
and 

(34) 

(35) 

B=J~‘ FbT Q Fb dt. (38) 

The weights w, and w2 must be carefully chosen to : (1)appropriately scale the base reactions with respect to 
a reference set of base reactions and (2)ensure that all quantities in the cost function are dimensionally 
homogeneous. The choice of appropriate weights will be dealt w i ~  in Section 4.2. 

4. nlustrative Example 
In this section we apply the basic approaches described in the paper to minimizing the base reactions of a 

three degree-of-freedom planar manipulator. The tnsk is a point-wpoint motion of the end-effector from a specikd 
initial position IO a specified fmal position. Using the above approaches. we would like to plan a Vajectory in the 
joint space to minimize the magnitudes of the base reactions as the manipulator moves from the initial position to 
the final position. 

In this problem, for the planar manipulator, m=3; since we are interested in the position of the end-effector, 
n=2. Therefore we have (m-n)=l degree of redundancy. The redundant link of this problem is chosen to be the rust 
link which is atlached to the base (q,=q,). 

The base reactions dynamic equations of the 3 d.0.f. planar manipulaulr are in Appcndix 2 and h e  link 
dimensions and mass properties are given in Appendix 3. 

We study the following four cases: 
1. The minimization of the time-integral of themagnitude of the base moment only. 

2. The minimization of the time-integral of the magnitude of the base force only. 

3. The minimization of the time-integral of an appropriately weighted combination of the magnitudes of 
the base force and base moment. We use the results of cases (1) and (2) to show how the weights w, 
and w2 should be chosen. 

4. A sensitivity analysis of the sensitivity of the cos1 function of Case (3) with respect to small changes in 
(the pammelers of) the joint space uajecmies. 
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4.1. End-effector Trajectory 
The distance measured from he initial position along a straight line which connects the initial position and the 

final position can be exprcssed as 

'Tf . 2x1 
2x 7, 

d(f) = b(1 -- sm(-)), 

where b is an arbitrary constant and 'tTI is the total time of the task. The speed of the end effector is given by 
2n1 

=r 
v(r) = 6( 1 - cos(-)). 

(39) 

Fig. 5 shows the desired velocity and acceleration profiles of the endeffector. 

The initial position of the end effector is (x7y) = (0.0, 1.2071) (m) which corresponds to an initial manipulator 
configuration. qT=[45". 45",45°1. The desired final position is (x,y) = (0.3536, 0.8535) (m). The following valucs 
are chosen for the trajectory: 

T f =  2.0 s 
b = 0.25 
d(q) = 0.5 m 
A t = 0 . 1  s. 

4.2. Cost function [Case Studies 1 - 41 
To minimize the base reactions properly. it is important Lo select a suitable weighting m a a i x  Q for he wsI 

function. Therefore. the choices of the two weighting factors (w, and w2) m crucial. To understand the effects of 
these weighting factors on the base reactions, three cases of different Q matrices are studied. We only show the cost 
functions for the global approach. The cost function for the local approach can be obtained by Eq. (37). 

(a)Case Srudy I 

In this case study we select a cost function that only minimizes the magnitude of the base moment in order to 
detennine how small the magnitude of he base moment can be made. We simply choose w,=O and w2=l in Eq. 
(36) to oblain the weighting mamx 

Q I =  [: :] (41) 

and he corresponding cost function (from Eq. 38) 

@) Case Srudy 2 

In this case, we want to know the extent to which the magnitude of the base force component can bc 
minimized by choosing w,=l and w2+ in Eq. (36) to obtain the matrix 

Qr [: :] (43) 
and the corresponding cost function (from Eq. 38) takes the form 

E =  I,' 'F2dl (44) 
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Fig. 5 End-eflector Trajeclory Velocity and Acceleration Profiles 
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(c) Care Rudy 3 

In general, we want to minimize he magnitudes of both the base force, F, and the base moment, No 
transmitted IO the base. Since F, and No are different physical quantities, we require a weighting matrix Q LO 

non-dimensionalize and to appropriately scale the base force and base moment components. The results of Case 
studies 1 and 2 are imponant in this regard. 

The average value of the base force (FJ transmitted to the base in Case Study 1, Favg is a measure of how 
small we can make the base force. Similarly, the average value of the moment transmitted to the base in Casc Study 
2, N,,, is a measure of how small we can make the magnitude of the base moment. We therefore choose, 

The weighting matrix therefore is given by 

QF [ ld, 
where 

Note that the above choices of w1 and w2 simulmeously achieve the desired scaling and non- 
dimensionalization. 

(d)Case Study 4 (Semnsitivity) 

In practice, it is impossible to realize the exact optimal p i n t  trajectories due to b e  errors in the conml system 
and noise and uncenainties in the system. Therefore, it is important to examine how sensitive the base reactions are 
to the deviations of the joint trajectories from theoptimal solution. The global approach provides us a simple means 
of studying this issue. One way of studying this issue is to inuoduce perturbations about the optimal values of a. p. 
and Of oblained from Case Study 3. The following three cases in each of which one of the three parameters is 
increased by 20% were. studied: 

case a : the optimal value of a. viz 6 is replaced by 1.2 e 
case b : the optimal value of p, viz $ is replaced by 1.2 fi 
case c :the optimal value of Of. viz &f isreplaced by 1.2 & 

In the next section, the results of these case studies will be presented and discussed 

5. Discussions of Results 
We are interested in the effectiveness of the proposed global approach in minimizing the magnitudes of the 

basc force and base moment as well as in comparing this approach with he local approach. We therefore, plated 
the magnitudes of the base force and base moment (corresponding to the optimized mjectory) for each of three 
cases enumerated in the previous section. From an examination of the mulls shown in Figs. 6 through 11, the 
following important conclusionsfpints should be noted: 
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Fig. 10 Manipulator Configurations for the Exarnple,(a) local approach and (b) global approach. 
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Fig. 11 Base Reactions Profiles for Case Study 4,(a) Base Force and (b) Base Moment. 
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(1)First consider the magnitude of the force transmitted 10 the base shown in Fig. q a )  (for Case Study 1). Fig. 
7(a) (for Case Study Z), and Fig. 8(a) (for Case Study 3). Each one of these figures has  Iwo plols concspanding to 
the global and local approaches. As might be expected, the magnitude of the base force is the lowest for Casc Study 
2 where only the base force is being minimized (see Fig. 7(a)). Funhermore, as shown in Fig. 7(a). the glohal 
approach "smooths" out the peak in the magnitude of the force which is seen in the local approach at k0.8 second. 

(2) Next consider the magnitude of the moment transmitted to the base as shown in Fig. 6@) (for Case Study 
1). Fig. 7(b) (for Casc Study 2) and Fig. 8@) (for Case Study 3). Once again each one of these figures has 2 plots 
corresponding Lo the local and global approaches. For the local approach, Case Studies (1) and (3) yield very small 
base momenl, while Case Study (2) (base force minimization only) yields a relatively high base moment. In 
contrast. for the global approach, the magnitudes of the moment transmitted to the base is virtually independent of 
the cost function &e. whether we are minimizing the magnitudes of the base force, the base moment or the 
combination of the two). We also see (Figs. 6(b), 7@), and 8(b)) that the local approach is more effective than the 
global approach in minimizing the magnitudes of the base moment. 

(3) We can summarize the conclusions in (1) and (2) above by the following two statements: 
(a) The global approach is Ihe beuer approach for reducing the magnitude 
of the basc force whereas the local approach is superior for reducing the 
magnitude ol  the base moment. 

(b) In Ihe global approach it is sufficient to minimize the magnitude of the 
base force. 

(4) The second derivative of the joint variables (ioint "accelerations") for each one of the three joints arc 
shown in Fig. 9. both for the local and global approaches: we observe that very similar acceleration profiles arc 
obtained for lhese two approaches. The correpsonding manipulator configurations are shown in Fig. 1qa) (for the 
local approach) and Fig. IO@) (for the global approach). One should make careful note , both from Figs. 9 and IO, 
of the "sense" of motion of the three links. The results shown in Figs. 9 and 10 correspond to Case Study 3. 

(5) The resulls of lhe simple sensitivity study are shown in Figs. Il(a) (magnitude of the base force) and Fig. 
11@) (magnitudc of the base moment) for the global approach and Ihe cost function of Case Study 3. me optimal 
results are shown in dashed lines with the perturbed results shown in solid lines). The following two conclusions can 
be reached from the results as shown in Fig. 11. 

1. The magnitude of the base moment is relatively insensitive IO small changes in the mjectory 

2. The magnitude of the base force is quile sensitive IO 9,. the final position of the redundant link (Fig. 

(parameters). (Fig. 11 (b)). 

1 l(a)). (The "redundant" link was selected to k the link attached to the base in Fig. IO.) 

6. Summary and Conclusions 
In his paper we have developed a global approach for minimizing the base reactions of a kinemalically 

redundant manipulator used in microgravity environments. The global approach utilizes the Partitioned Jacobian 
method of redundancy resolution, the 4-3-4 method of joint-mjectory representation and the minimization of a cos[ 
function which is a time-integral of the magnitude of the base reactions. We also compared the global approach of 
this paper with a local approach developedearlier. 

The application of the global and local approaches to a planar 3 d.0.f. manipulator with 1 redundant degree of 
freedom demonsmtd the effectiveness of the global approach in smoothing out undesired '"peaks" in thc force 
lransmitted to the base which were observed in the local approach. We also learned that the global approach was 
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more effective in reducing the magnitude of the base force while the local approach was more effective in reducing 
the magnitude of the base moment. A simple sensitivity analysis pr lomed on the optimal trajectory obtained for 
the global approach revealed that the magnitude of the force isansmined to the base is more sensitive to the final 
configuration of the links. We plan to do an extensive sensitivity analysis in the future. 

The approach will be implemented on a 4 d.0.f. traction drive manipulator for space application which is 
currently under construction. 
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Appendix 1 : Equations for 4-3-4 joint mjectoly representation, 

The equations for 4-34  joint trajectory representation can be found in [IO]. The equations of Ej(t). j=1.2.3 or 
the three-parameter represenlalion are: 
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Appendix 2 : Base Reaction Dynamic F,qualions 

The following variables are defined 
mi = ]oral mass of the link i 

li = length of link i 

Ici = distance measured from the axis of join1 (i-1) to the centroid of link i 

li = moment of inertia about the centroid of link i 

For the 3 d.0.f. planar manipulator studied in this paper. the b m  force vector has a x-direction component. 
FJx and a y-direclion componenL FJY, and the base moment vector has only a z-direction component, p!&. The 
base reactions dynamic equations are given by 

Let the elcmenu of Mb be mb,, (i=1,2,3) and (i=1,2,3). And for convenience, we denote cos(i+ ...+j) by c ~ , . , ~  
and sin(i+ ...+ j) by si,,,j. We have the following equations 
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Appendix 3Physical Dimensions and Mass Properties 

The physical dimensions and the mass properties of the three degree-of-freedom planar manipulator are givcn 
in Table 1. The link length, mass, and inertia of the link are denoted by rim,, and Ii  respectively. The centroid ol 
the link is assumed 10 be at the center of the link. 

Table 1 : Simulation Data for 3 d.oJ Manipulator 

link 1 2 3 

mi@@ 1 .o 1 .o 1 .o 

I,@g m 3  0.0208 0.0208 0.0208 
0.5 0.5 0.5 
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