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Abstract

The factory is a complex dynamic environment and schedul-
ing operations for such an environment is a challenging prob-
lem. In practice, dispatch scheduling policies are commonly
employed, as they offer an efficient and robust solution. How-
ever, dispatch scheduling policies are generally myopic, and
as such they are susceptible to sub-optimal decision-making.
In this paper, we attempt to improve upon results of such
dispatch policies by introducing non-determinism into the
decision-making process, and instead using a given policy
as a baseline for biasing stochastic decisions. We consider
the problem of weighted tardiness scheduling with sequence-
dependent setups with unknown arrival times in a dynamic
environment, and show that randomization of state-of-the-art
dispatch heuristics for this problem in this manner can im-
prove performance. Furthermore, we find that the “easier”
the problem, the less benefit there is from randomization; the
“harder” the problem, the more benefit. Our method of ran-
domization is based on a model of the way colonies of wasps
self-organize social hierarchies in nature.

Introduction
In dynamic factory environments, dispatch scheduling poli-
cies provide a practical, robust basis for managing execu-
tion. Scheduling decisions are made in an online manner
only when needed, based on the current state of the factory.
Dispatch policies make use of information about jobs such
as expected processing time, setup time, due date, priority,
etc., and are typically designed to optimize a given perfor-
mance objective. Their virtue is their simplicity and insensi-
tivity to environmental dynamics and for these reasons they
are commonly employed. At the same time, the localized
and myopic nature by which decisions are made under such
schemes make them inherently susceptible to sub-optimal
decision-making. (see (Morton & Pentico 1993) for a thor-
ough review of dispatch scheduling).

In this paper, we explore the idea of randomizing dis-
patch policies to improve their performance. We start from
the perspective that a given dispatch policy provides a good
decision-making baseline, but it is not infallible and will
sometimes make suboptimal choices. Hence, instead of un-
conditionally following its decisions, we use the dispatch
policy to bias a stochastic selection process. Randomizing
heuristics to improve decision-making performance is not a
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Figure 1: This histogram partitions 1000 trials of a random-
ized version of the dispatch policy COVERT on an instance
of a weighted tardiness problem with sequence-dependent
setups. Each bucket contains the trials with results in a given
range of the weighted tardiness objective. COVERT pro-
duces a solution with weighted tardiness of 2654 for this
instance. 92.9% of the random trials gave better solutions.

new idea; but to our knowledge this is the first attempt to do
so in an online control setting.

Our approach hypothesizes that solution obtained using
a dispatch policy is surrounded by a neighborhood of po-
tentially “better” solutions. This hypothesis is based on a
couple of observations. First, dispatch policies in practice
tend to be quite sensitive to parameter settings and in fact
they are frequently tuned to individual problem instances in
experimental studies. (Such tuning is of course not possi-
ble in online settings.) Second, dispatch policies are of-
ten designed for idealized problems as they are adapted to
accommodate more complex constraints this can result in
more imprecise state estimation. Figure 1 shows the results
of 1000 trials of a randomized dispatch policy designed to
minimize weighted tardiness, partitionedaccording to ob-
served weighted tardiness. Of these trials, 92.9% produced
results better than the deterministic policy, giving empirical
evidence of the potential of randomization.

We focus specifically on a weighted tardiness scheduling



problem with sequence dependent setups. In our problem,
jobs arrive dynamically with specific due dates and priori-
ties, and the goal is to minimize average weighted tardiness.
The problem is further complicated by the fact that the ma-
chines used to process jobs, though they are multi-purpose,
require some nontrivial amount of setup time to change-over
from processing a job of one type to processing a job of an-
other type.

Two of the best regarded dispatch policies for the
weighted tardiness problem are COVERT (Vepsalainen &
Morton 1987) and R&M (Rachamadugu & Morton 1982).
Both are considered state-of-the-art (Morton & Pentico
1993); but neither were actually designed with sequence-
dependent setups in mind. In fact, we are aware of
only two reported dispatch heuristics for weighted tardi-
ness scheduling under sequence-dependent setups (Raman,
Rachamadugu, & Talbot 1989; Lee, Bhaskaran, & Pinedo
1997), both of which are derived by making (slightly differ-
ent) modifications to the R&M dispatch policy to account
for setup time.

In the remainder of this paper, we first review prior work
in heuristic-biased stochastic scheduling methods. We then
describe our approach of randomizing dispatch scheduling
policies based on a model of wasp behavior. The paper then
continues with a discussion of experimental results and con-
clusion.

Heuristic-Biased Search
Heuristic-biased random strategies have been used as effec-
tive iterative search strategies in a number of scheduling-
related contexts. In (Watsonet al.1999), Watson et al. study
the effects of problem structure on a number of scheduling
algorithms for the flow-shop problem. They argue that more
complex algorithms which work well on randomly gener-
ated benchmark problems often fail to live up to expecta-
tions when applied to real problems. The problem from their
point of view is that real problems often contain structure
of one sort or another that is not present in randomly gener-
ated benchmark problems. They hypothesize that more com-
plex, carefully crafted algorithms can become over-tuned to
the benchmarks. In their study, they compare a number of
scheduling approaches for the flow-shop scheduling prob-
lem and show that as real-world problem-inspired structure
is added to the problem, the faster and simpler stochastic al-
gorithms are superior to the more complex “state-of-the-art”
deterministic algorithms.

In (Bresina 1996), Bresina introduced a random restart
search technique called heuristic-biased stochastic sampling
(HBSS). HBSS performs a random search biasedaccord-
ing to a heuristic for the problem. Bresina considered the
scheduling of observations on a telescope. His approach be-
gan by ordering the observations according to a heuristic and
giving each a rank according to the resulting order. The next
observation would then be selected by a random process bi-
ased according to a function of these rankings. Different bias
functions lead to more or less biasing in favor of the heuris-
tic. So the choice of bias function depends on confidence in
the heuristic.

Oddi and Smith (Oddi & Smith 1997) explored a related
idea as the basis for solving a generalized job shop schedul-
ing problem. One important distinction in this approach is
acknowledgement of the fact that a heuristic may be more
or less informed in different decision-making contexts, and
hence the degree of confidence in the heuristic can vary
from decision to decision. Rather than rely on a static bias
function as is used in HBSS, Oddi and Smith define non-
deterministic variants of search control heuristics that vary
the degree of randomness as a function of how informed the
heuristic is. A variant of this idea is also exploited by Cesta
et al. (Cesta, Oddi, & Smith 2001) in solving a resource-
constrained project scheduling problem.

In this paper, we take a similar approach but our goal is to
make more effective control decisions rather than to broaden
a search process. We bias our random decisions not by a
function of a ranking given by the dispatch policy, but rather
by a function of the value of the dispatch heuristic itself.
In a control setting, it is particularly important to calibrate
the degree of randomness of a decision to some measure of
how discriminating the dispatch heuristic is in this decision
context. Since we are making online decisions, we want
nondeterminism when chances of finding a better solution
than that proposed by the heuristic are best.

Scheduling Wasps

Our approach to randomization derives from a naturally-
inspired computational model of the self-organization that
takes place within a colony of wasps. (Theraulazet al.1991;
Theraulaz, Bonabeau, & Deneubourg 1995; Bonabeauet
al. 1997). In nature, a hierarchical social order among the
wasps of the colony is formed through interactions among
individual wasps of the colony. This emergent social order
is a succession of wasps from the most dominant to the least
dominant (analogous to a prioritization of jobs on a set of
machines). In the model of Theraulaz et al., the results of
these interactions are determined stochastically based on the
“force” variables of the wasps involved. The probability of
wasp 1 winning a dominance contest against wasp 2 is de-
fined based on the force variables,F1 andF2, of the wasps
as:

P (F1; F2) =
F 2
1

F 2

1
+ F 2

2

(1)

This model can be directed mapped to the problem of
prioritizing jobs in a queue, and as such provides a natu-
ral basis for the randomization of dispatch policies. In our
“scheduling wasp” formulation, each job is represented by
a wasp and the concept of a force variable is used to de-
fine job priority (i.e., the value that the dispatch policy in
use assigns). The scheduling wasps then interact with each
other to prioritize the jobs in the queue. This framework
for dynamic scheduling was first introduced in (Cicirello &
Smith 2001), where we considered the problem of sequenc-
ing jobs to maximize throughput under different and dynam-
ically changing job mixes. Here we explore the use of this
wasp model on due date problems, where dispatch-based so-
lutions are more commonly employed.
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Figure 2: Scheduling wasps

To fully specify our scheduling wasp model for mini-
mizing weighted tardiness with sequence dependent setups,
we need to provide a definition of force. We will consider
two alternatives: 1) COVERT (Vepsalainen & Morton 1987)
and 2) R&M (Rachamadugu & Morton 1982). As men-
tioned earlier, neither of these dispatch policies was origi-
nally designed with sequence-dependent setups in mind. We
have here modified both COVERT and R&M to account for
setup time. The modification of R&M was made previously
in (Raman, Rachamadugu, & Talbot 1989) and we have here
made the equivalent modification to COVERT.

Noting this, the two alternative definitions of force are:
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whereT pw andT sw are the processing time and setup time of
waspw’s job,Dw is the duedate,Ww is the weight,Tnow
is the current time,T p is the average processing time, and
(A)+ = maxfA; 0g. The winner of a dominance contest in
this context is determined stochastically in the same manner
as in the model of real wasp behavior.

Dominance Tournaments
We have so far left open the question of what actually hap-
pens when a machine becomes available. In the typical dis-
patch scheduling approach, the job in the queue with the
highest value of the dispatch heuristic is chosen next. Given
the scheduling wasp formulation of the previous section, our
system instead chooses the next job based on a tournament
of dominance contests. We consider four dominance tourna-
ments which form a progression from the most randomized
to the least randomized. These four tournaments are:

1. Step-Ladder (W-V1): In this tournament, the scheduling
wasps are seeded based on their current position in the
queue. The last two wasps in the queue engage in a dom-
inance contest. The winner then engages in a dominance
contest with the next wasp and so forth along the length
of the queue. As this occurs, the jobs associated with

the winning wasps move closer to the front of the queue.
Whatever job is at the front of the queue when this process
completes is chosen next by the machine.

2. Single-Elimination (W-V2): In this tournament, the
scheduling wasps are seeded arbitrarily and take part in a
single-elimination tournament. At each level of the tour-
nament exactly half of the wasps are eliminated. This
style tournament is biased slightly more in favor of what-
ever dispatch heuristic is used as force when compared to
the previous. In W-V1, a job with a low force value at
the front of the queue can potentially get lucky and win
its only dominance contest; whereas in W-V2 winning a
single dominance contest is not sufficient (unless there are
only two jobs in the queue).

3. Double-Elimination (W-V3): This tournament is one step
less random then the previous. Again the wasps are
seeded arbitrarily. But this time, two simultaneous tourna-
ments alternate rounds. That is, the primary tournament
consists of undefeated wasps. The losers ateach round
move to the secondary tournament. In the secondary tour-
nament, losers are eliminated. The winner of the primary
tournament then gets two chances (has not lost yet) of
eliminating the winner of the secondary tournament. If
it is unsuccessful in both attempts then the winner of the
secondary tournament is chosen by the machine. In this
way, a wasp with a high force value that was unlucky and
lost early in the tournament still has a chance of winning.

4. One-More-Chance (W-V4): This method begins by con-
ducting a double-elimination tournament as in W-V3. If
the winner also happens to have the highest value of the
dispatch heuristic then it is chosen. Otherwise, it engages
in a final dominance contest with the wasp with the high-
est value. And the winner of this dominance contest is
taken next by the machine. So as you can see this is yet
another step in the less random direction.

Degrees of Randomness
In describing the dominance tournaments above, we stated
that the four models form a progression along a random-
ness scale beginning with the most random (W-V1) and end-
ing with the least random (W-V4). Deterministic dispatch
scheduling can be seen as a last step in this progression. To
illustrate this progression, consider two examples. In Exam-
ple 1 there are 4 jobs in the queue:A1; A2; A3; A4. Now
consider that we have a dispatch heuristicH that assigns
the following values to these jobs:H(A1) = H(A2) =

H(A3) = 1 andH(A4) = 3. Let the ForceF be defined
by this heuristic. In Example 2, everything is the same ex-
cept thatH(A4) = 1:1. In Table 1 we list the probability
that jobA4 is chosen next by the machine in each example
for each of the defined dispatching methods. In addition to
showing the progressive increase in randomness through the
wasp tournament variations, this Table illustrates the desired
general property that the more certain the dispatch heuristic
is, the less random the decision produced by our randomiza-
tion methods; and the less certain the dispatch heuristic is
the more random the decision.



Table 1: A couple examples of randomness progression.
Example 1 Example 2

Proulette(A4) 0.7500 0.2874
PW-V1(A4) 0.7920 0.2939
PW-V2(A4) 0.810 0.2998
PW-V3(A4) 0.9331 0.3197
PW-V4(A4) 0.9933 0.6922
Pdispatch(A4) 1.0 1.0

Experimental Design
All of the experiments that are presented here were per-
formed in a simulated factory environment implemented in
Java and executed on a Pentium III running Linux 5.2. We
consider factories that produce two products (henceforth,
Job Type A and Job Type B) as well as three products (Job
Type A, Job Type B, and Job Type C). All machines in the
factory are multi-purpose machines that can process any of
these types (only single stage jobs are considered here). Ex-
periments with one, two, and four machines are studied. In
all cases, setup time to reconfigure a machine for a different
job type is 30 time units.

In the two job type experiments, jobs are released to the
factory floor dynamicallyaccording to three different prod-
uct mixes. In each, arrival rates are defined by the proba-
bility a new job ofeach type is released during a given time
unit. The arrival rates for the one machine problems are as
follows:

� 50/50 mix: P(Job Type A) = 0.025, P(Job Type B) = 0.025

� 85/15 mix: P(Job Type A) = 0.04285, P(Job Type B) =
0.00715

� 100/0 mix: P(Job Type A) = 0.0665, P(Job Type B) = 0.0

Multiply these rates by 2 to get the arrival rates for the two
machine problems and by 4 to get the rates for the four ma-
chine problems.

In the three job type experiments, the arrival rates are de-
fined similarly for the one machine problem (make the same
appropriate adjustments as above for two and four machine
problems):

� 33/33/33 mix: P(Job Type A) = 0.0166, P(Job Type B) =
0.0166, P(Job Type C) = 0.0166

� 50/25/25 mix: P(Job Type A) = 0.025, P(Job Type B) =
0.0125, P(Job Type C) = 0.0125

These arrival rates correspond approximately to medium-to-
heavily loaded factories.

When a new job is generated, its process time is 15 plus
a Gaussian noise factor, its weight is drawn uniformly from
the interval[1; 20], and its duedate is drawn uniformly from
one of the following intervals (where P is process time, W is
weight, and T is current time):

� [T; T + 4P ] if W > 16

� [T; T + 6P ] if 12 < W � 16

� [T; T + 6:5P ] if 8 < W � 12

� [T; T + 8P ] if W � 8

Two sets of experiments were performed. The first us-
ing COVERT as the definition of the force variable for
the scheduling wasps (the second using R&M). In each set
of experiments, the four variations of the scheduling wasp
selection method were compared to the base determinis-
tic dispatch heuristic. For each combination of schedul-
ing method and job mix, 100 simulations with different ar-
rival sequences were performed and each simulation was at
least 1000 time units in length (jobs stop arriving at time
unit 1000 and simulation ends when all jobs have been pro-
cessed).

Experimental Results
In Table 2 we see the average weighted tardiness of 100 sim-
ulations for the one, two, and four machine problems with
two and three job types for various job mixes. The results
in this table compare the variations of the scheduling wasps
(using COVERT as force) with that of the dispatch heuristic
COVERT. You will first notice that for the 100/0 job mix and
for each of one, two, and four machines that COVERT per-
forms best. The result is statistically significant according to
an ANOVA with correlated samples. This is to be expected.
The 100/0 mix is a single job type problem and therefore
sequence-dependent setups are not an issue. This is what
COVERT was especially designed for (i.e., no setups) so
randomizing is almost certain to give us worse results. But
do note that as you scan across the rows corresponding to the
100/0 job mix that the less random the scheduling wasp se-
lection method, the closer the results are to that of COVERT.
In fact, the result of a Tukey HSD test show in all cases no
significance between W-V4 and COVERT.

Now turn your attention to the 85/15 job mix. This case is
slightly less like a one job type problem and the sequence-
dependent setups may play an active part. In the one, two,
and four machine problems, the best results are again to-
ward the COVERT end of the chart with W-V4 edging out
COVERT slightly in all but the two machine problem. How-
ever, the one machine result is not statistically significant
and in both the two and four machine case the pairwise re-
sult of W-V4 and COVERT is not significant according to
the Tukey HSD test.

Next, examine the 50/50 job mix results. In this case, min-
imization of setups is much more crucial to performance.
And in every case, we see that the most random of the wasp
variations (WV-1) performs best and in all but the four ma-
chine problem the result is statistically significant. In the
four machine problem, there are more degrees of freedom
for the system to work with. That is, if a machine M1 is
mislead by COVERT into taking a particular job J1 when
J2 would have been better, there are three other machines
M2, M3, and M4 that may finish whatever they are doing in
time to pick up job J2 before it sits around long enough to
cause any serious harm to the objective. In a sense the four
machine problem is “easier” than the one and two machine
problems and randomization seems to buy us less.

Based on the two job type problems using COVERT, it
appears that the trend is that the more sequence-dependent
setups are a factor to the problem, then the greater the ben-
efit of randomization. And alternatively, the less sequence-



Table 2: Average weighted tardiness for different job mixes. COVERT is used as the Force definition for all variations of the
scheduling wasp approach. The results are compared to COVERT. 95% confidence intervals and P-values from ANOVA tests
with correlated samples are shown. HSD is the absolute difference between any two means required for significance at the 0.05
level according to the Tukey HSD test.

One Machine Problem
W-V1 W-V2 W-V3 W-V4 COVERT P-value HSD

50/50 mix 2081.4�219.9 2242.9�267.2 2489.6�273.1 2636.9�290.5 2637.8�288.9 <0.0001 267.6
85/15 mix 699.2�108.7 661.5�95.0 667.0�106.7 650.7�99.8 660.7�115.1 0.3915 –
100/0 mix 214.3�31.0 200.3�28.1 188.8�26.2 176.3�24.2 172.5�23.8 <0.0001 7.1
33/33/33 mix 2834.5�217.1 2970.8�221.0 3174.9�257.0 3215.6�259.5 3307.4�274.8 <0.0001 251.6
50/25/25 mix 2582.4�226.1 2765.4�249.8 2667.5�253.9 2865.8�279.3 2912.6�299.3 0.0009 243.1

Two Machine Problem
W-V1 W-V2 W-V3 W-V4 COVERT P-value HSD

50/50 mix 1753.1�147.3 1986.2�209.1 2089.1�224.4 2138.3�235.0 2129.6�247.1 0.0001 287.3
85/15 mix 437.0�56.1 438.0�54.4 409.9�49.8 398.7�49.0 382.6�50.4 0.0013 44.1
100/0 mix 137.0�20.9 127.6�17.6 120.5�16.5 114.9�15.7 113.3�15.2 <0.0001 5.3
33/33/33 mix 2454.6�161.5 2666.6�168.7 2804.4�206.6 2808.4�214.1 2808.3�202.3 <0.0001 237.8
50/25/25 mix 2399.9�156.4 2391.5�176.9 2456.3�204.2 2670.0�218.0 2529.8�215.6 0.0024 218.2

Four Machine Problem
W-V1 W-V2 W-V3 W-V4 COVERT P-value HSD

50/50 mix 1490.5�118.3 1558.2�146.2 1682.0�170.8 1595.4�190.6 1540.0�186.4 0.3466 –
85/15 mix 343.7�38.0 316.5�35.5 307.8�35.7 291.5�34.2 303.6�37.9 0.0005 33.8
100/0 mix 81.6�10.4 76.7�8.9 73.8�8.4 72.1�8.1 70.8�8.0 <0.0001 2.3
33/33/33 mix 2512.0�140.4 2468.4�152.7 2529.3�173.2 2665.2�175.0 2703.1�194.1 0.0137 223.2
50/25/25 mix 2122.9�116.7 2093.0�140.7 2176.7�173.8 2388.6�173.4 2315.7�180.9 0.0001 205.6

dependent setups are an issue the less randomized the heuris-
tic should be. Also the more difficult the problem then the
more randomization is needed.

We now turn to the results of the three job type problems
(also appearing in Table 2) to see if this hypothesis holds. In
both the 33/33/33 and 50/25/25 job mix problems, sequence-
dependence should be more of an issue than the two job type
problems and thus the problems should be more difficult. All
results for both of the three job type mixes are statistically
significant according to an ANOVA with correlated samples.
Also for all numbers of machines and for all three job type
mixes, the best result is either W-V1 or W-V2 (the more
random end of the chart) with no significance between the
W-V1 and W-V2 results according to Tukey HSD tests.

In Table 3 we see the complimentary results using R&M
as the force value for the wasps as compared directly to
using the dispatch heuristic R&M. In all cases there is no
significant difference in the performance of R&M as com-
pared to COVERT (from the previously discussed results)
and there is also no significant difference between the best of
the scheduling wasp variations using either dispatch heuris-
tic as force. The overall trends seem to show the same
thing as well. The more difficult the problem and the more
that sequence-dependent setups are an issue, the more to be
gained by randomization. The“easier” the problem, the bet-
ter off is non-randomized dispatch scheduling.

Weighted Roulette Wheel
We have advocated our wasp model as a basis for random-
ization of dispatch policies. It is natural to ask whether or
not there is a simpler way to randomize dispatch schedul-
ing policies. One possibility that we consider is borrowed
from the evolutionary computation community. The genetic
algorithm (GA) selection strategy known as fitness propor-
tional selection allocates to each individual of thepopulation
a chunk of a roulette wheel in size proportional to its fitness
relative to the rest of the population. In a GA, this weighted
roulette wheel would be spunn times to choose then mem-
bers of the successive generation.

As an alternative to our wasp formulations, we use a
weighted roulette wheel. Each jobj in the queue is allocated
a portion of the wheel proportional to the square of its force
value (i.e.,F 2

j ). And when a machine becomes available this
wheel is spun once to select the next job from the queue. You
can think of this as a generalization of a dominance contest
between two wasps to that of a sort of “free-for-all” among
all of the wasps in the nest. In this case, the probability that
job j is processed by the available machine is given by:

P (Fj) =
F 2

jPn

k=1F
2

k

(2)

In Table 4, we see a comparison among W-V1 (using
COVERT as Force), COVERT, and the weighted roulette
wheel approach (Roulette) just described. We have chosen
W-V1 for this comparison because it is the best performer
overall from among the wasp variations. We can use this as



Table 3: Average weighted tardiness for different job mixes. R&M is used as the Force definition for all variations of the
scheduling wasp approach. The results are compared to R&M. 95% confidence intervals and P-values from ANOVA tests with
correlated samples are shown. HSD is the absolute difference between any two means required for significance at the 0.05 level
according to the Tukey HSD test.

One Machine Problem
W-V1 W-V2 W-V3 W-V4 R&M P-value HSD

50/50 mix 2133.5�234.2 2307.1�267.4 2372.3�250.0 2737.8�298.1 2636.6�295.4 <0.0001 258.8
85/15 mix 691.6�110.6 678.2�98.6 666.6�100.9 656.9�104.8 665.5�116.0 0.7284 –
100/0 mix 215.8�31.2 204.5�28.6 190.5�26.0 178.9�24.5 175.4�24.1 <0.0001 7.2
33/33/33 mix 2835.1�202.6 3013.9�235.3 3132.7�251.6 3220.6�264.9 3325.2�272.4 <0.0001 260.1
50/25/25 mix 2581.0�223.0 2785.8�251.6 2711.0�256.3 2887.3�281.4 2917.2�296.1 0.0011 245.9

Two Machine Problem
W-V1 W-V2 W-V3 W-V4 R&M P-value HSD

50/50 mix 1660.0�151.5 1979.3�209.1 2083.5�206.6 2118.0�230.3 2111.0�240.1 <0.0001 281.7
85/15 mix 446.1�55.4 429.5�50.4 419.4�53.6 393.8�53.2 386.4�50.0 0.0009 44.3
100/0 mix 139.7�21.1 130.8�17.8 122.7�16.4 116.2�15.5 115.3�15.3 <0.0001 5.4
33/33/33 mix 2554.5�168.7 2611.0�155.0 2674.6�209.2 2890.7�211.2 2760.8�199.5 0.0014 240.9
50/25/25 mix 2375.7�168.7 2409.7�183.0 2449.1�193.1 2645.0�215.1 2563.9�222.4 0.0035 219.1

Four Machine Problem
W-V1 W-V2 W-V3 W-V4 R&M P-value HSD

50/50 mix 1513.5�125.2 1518.0�159.6 1677.1�195.4 1559.7�173.5 1540.9�191.2 0.4074 –
85/15 mix 344.2�40.2 309.1�33.5 305.9�34.4 296.8�33.9 300.7�37.8 0.0010 34.0
100/0 mix 83.5�10.4 79.2�8.9 75.6�8.4 73.8�8.1 73.3�8.1 <0.0001 2.2
33/33/33 mix 2457.1�134.2 2534.1�161.0 2598.1�182.6 2684.9�191.0 2637.1�197.4 0.0415 218.6
50/25/25 mix 2086.1�125.6 2076.3�141.0 2185.3�165.2 2210.0�175.5 2170.5�164.3 0.2299 –

Table 4: Average weighted tardiness for different job mixes. COVERT is used as the Force definition for the W-V1 approach.
The results are compared to COVERT and the simpler randomizing scheme (Roulette). 95% confidence intervals and P-values
from ANOVA tests with correlated samples are shown. HSD is the absolute difference between any two means required for
significance at the 0.05 level according to the Tukey HSD test.

One Machine Problem
W-V1 Roulette COVERT P-value HSD

50/50 mix 2081.4�219.9 2192.2�236.7 2637.8�288.9 <0.0001 256.0
85/15 mix 699.2�108.7 704.8�103.7 660.7�115.1 0.1713 –
100/0 mix 214.3�31.0 224.8�33.6 172.5�23.8 <0.0001 9.9
33/33/33 mix 2834.5�217.1 3000.4�230.8 3307.4�274.8 <0.0001 214.5
50/25/25 mix 2582.4�226.1 2741.8�253.2 2912.6�299.3 0.0021 219.2

Two Machine Problem
W-V1 Roulette COVERT P-value HSD

50/50 mix 1753.1�147.3 1735.6�159.5 2129.6�247.1 <0.0001 219.3
85/15 mix 437.0�56.1 453.3�56.1 382.6�50.4 <0.0001 39.8
100/0 mix 137.0�20.9 144.0�22.0 113.3�15.2 <0.0001 6.9
33/33/33 mix 2454.6�161.5 2717.3�171.9 2808.3�202.3 <0.0001 191.5
50/25/25 mix 2399.9�156.4 2360.7�160.4 2529.8�215.6 0.0806 –

Four Machine Problem
W-V1 Roulette COVERT P-value HSD

50/50 mix 1490.5�118.3 1604.4�127.7 1540.0�186.4 0.4463 –
85/15 mix 343.7�38.0 339.1�35.9 303.6�37.9 0.0025 29.6
100/0 mix 81.6�10.4 86.2�11.1 70.8�8.0 <0.0001 3.1
33/33/33 mix 2512.0�140.4 2506.8�122.0 2703.1�194.1 0.0127 177.1
50/25/25 mix 2122.9�116.7 2170.7�114.2 2315.7�180.9 0.0225 170.5



Table 5: Average weighted tardiness for different job mixes. R&M is used as the Force definition for the W-V1 approach.
The results are compared to R&M and the simpler randomizing scheme (Roulette). 95% confidence intervals and P-values
from ANOVA tests with correlated samples are shown. HSD is the absolute difference between any two means required for
significance at the 0.05 level according to the Tukey HSD test.

One Machine Problem
W-V1 Roulette R&M P-value HSD

50/50 mix 2133.5�234.2 2128.8�236.6 2636.6�295.4 <0.0001 257.9
85/15 mix 691.6�110.6 689.5�100.3 665.5�116.0 0.6257 –
100/0 mix 215.8�31.2 226.7�32.7 175.4�24.1 <0.0001 9.3
33/33/33 mix 2835.1�202.6 3044.6�225.3 3325.2�272.4 <0.0001 217.9
50/25/25 mix 2581.0�223.0 2757.7�255.4 2917.2�296.1 0.0012 213.5

Two Machine Problem
W-V1 Roulette R&M P-value HSD

50/50 mix 1660.0�151.5 1804.2�157.4 2111.0�240.1 <0.0001 238.9
85/15 mix 446.1�55.4 474.4�62.5 386.4�50.0 <0.0001 40.0
100/0 mix 139.7�21.1 148.4�22.5 115.3�15.3 <0.0001 7.1
33/33/33 mix 2554.5�168.7 2741.6�171.0 2760.8�199.5 0.0222 193.4
50/25/25 mix 2375.7�168.7 2344.1�153.3 2563.9�222.4 0.0126 187.8

Four Machine Problem
W-V1 Roulette R&M P-value HSD

50/50 mix 1513.5�125.2 1597.3�123.8 1540.9�191.2 0.6257 –
85/15 mix 344.2�40.2 318.5�36.6 300.7�37.8 0.0039 30.6
100/0 mix 83.5�10.4 88.8�11.1 73.3�8.1 <0.0001 3.06
33/33/33 mix 2457.1�134.2 2482.6�133.9 2637.1�197.4 0.0446 183.3
50/25/25 mix 2086.1�125.6 2199.3�132.2 2170.5�164.3 0.1680 –

a point of comparison to determine if the more complicated
randomization scheme is doing anything purposeful. First
note that for the one machine problem, W-V1 always out-
performs Roulette. In the 100/0 job mix case, the difference
is statistically significant based on a Tukey HSD test. Also
in the 50/25/25 job mix, there is no pairwise significance via
the Tukey HSD test between W-V1 and Roulette; however,
there is significance between W-V1 and COVERT, but not
between Roulette and COVERT. In all other mixes for the
one machine problem, no pairwise statistical significance is
seen between W-V1 and Roulette. In contrast, other than the
85/15 mix there is always pairwise statistical significance
between COVERT and the others.

In the two machine problem W-V1 outperforms Roulette
with statistical significance in both the 100/0 mix and
33/33/33 mix. In the other three mixes, no pairwise sta-
tistical significance was seen between W-V1 and Roulette.
In the four machine problem, W-V1 again outperforms
Roulette with statistical significance in the 100/0 mix and
the 50/25/25 mix. The pairwise results in the other three job
mixes showed no statistical significance between W-V1 and
Roulette via Tukey HSD.

Overall, Roulette never does better than W-V1 with sta-
tistical significance and even in a couple cases when it does
better without statistical significance COVERT outperforms
both. W-V1, however, does outperform Roulette in a num-
ber of cases with statistical significance and in many of those
cases also outperforms COVERT. The equivalent results us-
ing R&M show essentially the same thing as can be seen in

Table 5. There is benefit to the “scheduling wasp model”
approach to randomization.

Conclusion
In this paper we have shown that randomization of heuris-
tics can be beneficial even in dynamic online situations.
For the difficult problem of weighted tardiness scheduling
with sequence-dependent setups, we have improved upon
the performance of state-of-the-art weighted-tardiness dis-
patch policies by making decisions stochastically biased by
the evaluations of these heuristics rather than using the dis-
patch policy directly. Our results show that the “easier” the
problem and the less that sequence-dependent setups come
into play, the less benefit is obtained through randomization.
And furthermore the more that sequence-dependence is an
issue and the more difficult the problem then the more ben-
efit there is to randomization.

In showing this, we have developed and evaluated a pro-
gression of randomization methods for dispatch heuristics
on a more/less random scale. These methods have at their
foundation a model of self-organized wasp social hierar-
chies. Given their differential performance across our exper-
imental design, one area of future research interest is to at-
tempt to map characteristics of the current state of the prob-
lem to a degree of randomness required in the decision. This
mapping can then allow us to incorporate a mix of the de-
scribed approaches to make some decisions in a more or less
stochastic manner. For instance, at some points in our simu-
lation all jobs may be of a single type in which case it might



be perhaps better to use the dispatch policy directly; while
at other points the mix might be closer to 50/50 (or some
equivalent for more than two types) in which case a more
random decision but biased by the heuristic might be better.
In this manner, we may be able to combine the strengths of
the deterministic and stochastic methods.

Another area we wish to explore is the use of our ran-
domization scheme as an iterative search strategy, in much
the same way as is done in (Bresina 1996; Oddi & Smith
1997) We are also exploring the application of our approach
to other scheduling problems in both online and offline en-
vironments.
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