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SCARF: A Color Vision System
that Tracks Roads and Intersections

Jill D. Crisman, Member, IEEE, and Charles E. Thorpe, Member, IEEE

Abstract—SCAREF is a color vision system that recognizes dif-
ficult roads and intersections. It has been integrated into several
navigation systems that drive a robot vehicle, the Navlab, on a
variety of roads in many different weather conditions. SCARF
recognizes roads that have degraded surfaces and edges with no
lane markings in difficult shadow conditions. It also recognizes
intersections with or without predictions from the navigation
system. This is the first system that detects intersections in
images without a priori knowledge of the intersection shape and
location. SCARF uses Bayesian classification, a standard pattern
recognition technique, to determine a road-surface likelihood
for each pixel in a reduced color image. It then evaluates a
number of road and intersection candidates by matching an ideal
road-surface likelihood image with the results from the Bayesian
classification. The best matching candidate is passed to a path-
planning system that navigates the robot vehicle on the road or
intersection. This paper describes the SCARF system in detail,
presents results on a variety of images, and discusses the Navlab
test runs using SCARF.

I. INTRODUCTION

CAREF is a color vision system that detects roads and

intersections for an intelligent mobile robot. To navigate
a mobile robot, a navigation system consists of perception
systems to sense the environment, path-planning systems that
decide on a pathway, and vehicle control systems that actuate
the motion of the robot. For road navigation, at least one
perception system must sense the location of the roads, and
the path-planning system must generate paths that keep the
robot in the proper lane while avoiding any obstacles. This
work focuses on the detection of roads and intersections in
color images for robot navigation systems.

Current road-detection systems perceive certain types of
roads under a limited conditions. Many systems detect high-
way lane markings but cannot perceive rural roads that do
not have painted lines. Some systems rely on detecting the
road edges but will often fail if these edges are degraded
and broken. Some systems rely on having a map to describe
the shape of the road and to predict when and where new
roads will appear. Many road-detection systems concentrate on
finding single roads in images and ignore intersections. This
specialization is due to the real-time nature of the task, often
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trading more general capabilities for vehicle speed. In general,
road-detection systems are specialized for specific scenarios.

This research focuses on detecting the most difficult road
scenario without giving up the capability of perceiving less
complex situations. In particular, we are able to navigate a
real robot vehicle on unstructured roads and intersections that
may have:

* no lane or edge lines painted on the road surface,

¢ degraded road edges,

* road surface scars,

* strong shadow conditions, and

* no map information.

These roads lack a clearly defined feature (such as road edge
lines), which can be used for their detection, making these
roads the most difficult to detect.

Specifically, this paper describes our unstructured road-
detection system, Supervised Classification Applied to Road
Following (SCARF). We first highlight, in Section II, the
capabilities and limitations of various road-detection systems
that can detect intersections. In Section III, we present the
implementation details of SCARF. We show, in Section IV,
results of this algorithm running on several unstructured road
and intersection sequences. Finally, in Section V, we discuss
this system and its contributions and limitations.

II. OVERVIEW OF INTERSECTION DETECTION SYSTEMS

There are many different road-detection algorithms, of which
only a few can also detect intersections. Many road-detection
methods rely on the presence of specific structured features
such as road edge lines or lane markings. These include
the General Motors Lanelok System [10], [11], the VaMoRs
System [5], [6], [16], [26], the Yet Another Road Follower
(YARF) System [12], and the Intelligent Car System [22].
These systems usually have very fast processing speeds and are
very well suited for navigation on structured roads. However,
since these systems rely on certain features of the road, they
are not directly applicable to unstructured roads.

A unique unstructured road navigation system, Autonomous
Land Vehicle In a Neural Network (ALVINN) [18], does not
explicitly detect the roads in the camera images. ALVINN is
a neural network that produces steering angles when shown
images of roads. With this input/output model, ALVINN does
not recognize intersections nor produce a confidence measure
of its performance.

Other structured road-detection systems explicily detect
either road edges or surfaces. One approach locates the road
edges in an image by examining gradient images [15], [25].
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These systems can process the images quickly but can often
fail if the road edges are degraded, partially occluded, or
if there are shadows present. Other systems identify road
surfaces using a histogram and threshold approach [9], [13],
[23], [24]. These systems are robust on certain unstructured
roads but can run into difficulty in shadows or degraded
road-surface conditions. The Shadow Boxing System [23] is
a two-dimensional classification approach that is much more
successful at handling shadow conditions, but it experiences
difficulties if the road surface is degraded or partially covered
by leaves.

Three unstructured road systems can also detect intersec-
tions: the Carnegie Mellon Sidewalk System [9], the FMC
System [14], and the University of Maryland System [25].
The Sidewalk system uses a histogram and threshold approach
to label pixels in the image as road and off-road. The road
pixels are collected into polygons. The edges of the polygon
are matched against road edges in a map to determine the
location of the intersection. The FMC System first locates the
candidate road edges in gradient images and uses constraints to
determine the road location. It then smooths over breaks in the
road edges to allow for lost edges. This system can sometimes
detect edges of intersection branches in the segmentation, but
the algorithm assumes that all breaks in road edges are a
result of broken road edges so the branches were ignored when
fitting the model. The University of Maryland System extracts
road boundary points, hypothesizes which points correspond
to road edges in a map, and then searches for the best match
of the points to the intersection model. In each of these
systems, a map is used to predict the location and shape of
the intersection.

These three systems all detect intersections, but they rely
on clean intersection images and a good prediction of the
intersection shape. The intersection predictions often come
from a map stored inside the navigation system. SCARF does
not rely on map information or a priori shape information.
Instead, it looks for all possible intersections that appear in the
image based on what the system has seen in previous images.

III. SCARF

SCAREF serves as a road and intersection detection module
for a mobile-robot navigation system. A color camera is
mounted on the top of our test vehicle, the Navlab [7], and is
tilted toward the ground so that approximately half of the area
of the image views the road. After SCAREF finds the roads in
the image, the center line of the roads are backprojected onto
the ground plane. The road locations (and possibly obstacle
locations from another preception module) are sent to a
planning algorithm. The position and velocity of the vehicle is
detected with optical encoders and with an inertial navigation
system. Using this estimated motion, the new locations of
roads and intersections can be predicted from prior predictions
as SCAREF digitizes a new image. This prediction is input to
SCARF and used to locate sample road and off-road pixels.
In most of our test runs, obstacle detection was not used, and
a pure-pursuit path-planning algorithm directed the vehicle to
stay on the detected roads. To simplify the system, the location
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Fig. 1. SCAREF block diagram.

of the previous road or intersection in the image was used as
a prediction for the next image. The initial road location is
selected by the user or detected by an unsupervised system
called the UNSCAREF algorithm [3].

SCAREF consists of two main functions: road-surface detec-
tion and interpretation generation. The road-surface detection
takes the input image and a prediction of the location of the
road and produces a road-surface likelihood image where each
pixel contains the likelihood that it belongs to the road surface.
The interpretation generation module matches a set of road
and intersection models to the road-surface likelihood image
to determine the most likely interpretation. This interpretation,
backprojected to the ground plane, and its confidence are then
used by the navigation system to guide the vehicle. Each of the
steps of the SCAREF algorithm are discussed in the following
sections, concluding with resuits of SCARF processing a
number of road-image sequences.

A. Road-Surface Detection

A block diagram of road-surface detection is shown in
Fig. 1. The preprocessing stage filters the input images to
reduce their size and the noise in the images. The color
model formulation module then uses the previous road or
intersection descriptions projected onto the image to determine
a set of Gaussian models for both the road and off-road colors.
SCAREF then compares the pixels in the reduced size images
with the road and off-road samples to determine the pixel’s
likelihood of being part of the road surface, thus forming a
road likelihood image. The interpretation generation (discussed
in the following section) uses ideal models of road-surface
likelihood images to select the most likely road or intersection
in the image.

1) Preprocessing: This module takes the full-resolution
input color image and produces a low-resolution color image.
This reduces the amount of data for faster processing of the
input image. The goal is to maintain information about the
original colors of the image while eliminating some of the
noise inherent in the imaging process. The reduction replaces
a block of pixels in the original image with one pixel in the
reduced image.
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There are several methods for using the multiple pixel
values in the high-resolution image to determine the low-
resolution pixel value. Subsampling, averaging, and median
filtering [1] have all been tried in SCARF. Subsampling picks
one of the multiple pixels to be the low-resolution pixel value.
This method is the fastest, but it is highly susceptible to noise,
since a noise pixel can be selected. Another technique is to
average the block of pixels to determine the resulting pixel
value. This is almost as fast and is effective at reducing noise in
the image. However, this also has the effect of blurring the data
in the image. The final technique, median filtering, selects the
median value of the multiple pixels to be the pixel in the low-
resolution image. This is the most computationally expensive,
but it is effective at reducing the image noise without blurring
the data. All of these techniques have worked with SCARF,
but we have empirically found that the best results are when
the image reduction is done by a combination of subsampling
and averaging. First the image is averaged over a 2 x 2
window and the resulting averaged image is then subsampled.
By choosing our averaging window to be small compared to
the distance between subsamples, the blurring effect of the
averaging is reduced, and the resulting computation is kept
relatively small.

Typically, the input color images are 480 x 512 pixels or
240 x 256 pixels of 3-band color data. This is reduced to 60
x 64 pixels or 30 x 32 pixels. This reduces the image data
size by a factor of 16, 64, or 256.

2) Color Model Formulation: This module derives models
for both road and off-road colors. Road and off-road are
both represented by multiple Gaussian color models thereby
allowing multiple colors to represent the road surface. These
multiple models are formed by first determining sample re-
gions in the image. Using the pixels from the road and off-road
sample regions, SCARF clusters the samples into sets of
similarly colored pixels. Then a Gaussian model is fit to each
set of road and off-road sample sets. These models are then
output to the classification module.

Regions of road samples and off-road samples are first
selected. The sample region of road pixels is selected to lie
well within the predicted location of the previously found
road in the image. Only pixels lying on the ground plane
(i.e., below the horizon) are considering during our region
formation. Initially, all of the pixels that lie on the predicted
road are assigned to the road sample region and all others are
assigned to the off-road sample region. Next, all pixels that lie
within a specified horizontal distance from the predicted road
edges are removed from the road and off-road sample regions.
This provides a margin for errors to allow for inaccurate
knowledge of vehicle motion and inexact fitting of shape
models. The pixels remaining in the road region form a road
sample region{z}oaq, and the pixels remaining in the off-
road regions are collected into an off-road sample region
{x}off-road-

Next, the pixels in the sample regions are separated into sets
having similar colors using a standard nearest mean clustering
method [8]. We found that four color classes for each road
and off-road gave us empirically the best results. All sample
road-region pixels are first arbitrarily assigned to one of the

four road color classes. The mean value of each class is then
computed. Next, each sample pixel is reclassified into the class
whose mean is closest to the sample pixel value. The “compute
means” and “reclassify” loop is repeated until none of the
pixels change their class. Typically this iteration converges
rapidly in a few steps, so we compute a fixed number of
iterations. An identical procedure is performed on the off-road
samples to obtain off-road sample sets.

The road and off-road sample sets are then used to compute
multiple-class Gaussian color models. A road class label w,
is assigned to each road sample set. Similarly, an off-road
label w, is assigned to each off-road sample set. Each class is
modeled by the mean color m; of a sample set, a covariance
matrix C; representing how the individual colors elements are
interrelated, and the number of samples N; used to form the
model. This results in a set of road classes represented by a
statistical model, and a set of off-road classes represented by
their statistical model

road < {w,|w, < (m,,C,, N,)}
off-road < {w,lw, < (m,,C,, N,)}.

The models are computed using standard statistical equa-
tions on the sample sets

mi=%Zzi

b zew;

1
C; = A Z z;z] — mymY.

¢ zTCwW;

3) Classification: This module takes the reduced color im-
ages and the color models and computes the probability that
each pixel z in the image is a road-surface pixel, based on
how well the color of the pixel matches the color model. Each
pixel is assigned the value P(road|z), the probability of road
for the pixel value z.

For each pixel in the reduced color image z = [R G B]7,
we compute P(road|z) using Bayes rule

p(z|road) P(road)

P(roadjz) = Pz)

where P(z) is calculated by
P(z) = P(z|road) P(road) + P(z|off-road) P(off-road).

The a priori probabilities P(road) and P(off-road) are com-
puted as the percentage of samples used to form the road and
off-road color models, respectively. These are effectively the
expected area of the road and off-road regions. Because of the
clustering formation of the classes, the road classes (or road
color models) w, are assumed to be nearly disjoint. Therefore,
the likelihood P(z|road) is found as the maximum of each of
the road’s color class probabilities

P(z|road) = max{P(w,)P(zjw,)}
where P(w,) is the percentage of road sample pixels used

to compute the color model for w,. Since each of the indi-
vidual road colors is represented by a Gaussian function, the
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likelihood can be characterized by its mean vector m,. and its
covariance matrix C,., so

P(z|road) = max {(27r)‘3/2\0rl_1/2 exp { - %(:c —m,)T

-C:l(z—mT)] }

We can find the maximum of this function by comput-
ing the maximum of its natural logarithm, which saves the
computation of the exponential function for each road class.
Therefore,

In(P(z|road)) = max {L, - %(z -m,)TC  (z - m,)}.
where

P

2

1s a constant that is calculated only once per image for each
road class.

Using this procedure, we label each pixel = with the
likelihood that it is a road pixel based on how well it matches
a multi-class Gaussian model for road and off-road colors.

4) Results and Discussion: The SCARF likelihood image
modeling is compared with other approaches in Fig. 2. The
top row of the figure shows a few different unstructured road
images. The second row displays the magnitude of the Sobel
edge operator [1] on the above images. The Sobel magnitude
images give an indication of the edge information available in
the images and show the difficulty of using road-edge-based
techniques on these unstructured roads. In the left image, the
edge response is very noisy in the leaves. In the middle image,
the edge response is strong on the right side of the road but
weaker in the shadow. In the third shadowed image, shadow
edges are much stronger than the road edges. The third row of
images are the results of a histogram-and-threshold approach
[1] using hand-selected thresholds. The left image shows that
only fragments of the road surface are apparent, and in the
shadowed images the histogram and threshold approach does
better at separating shadows from sunny regions rather than
road from off-road regions. The final row of images in Fig.
2 shows the road-surface likelihood images for SCARF. The
brighter the pixel is shown, the more likely it is to be road.
SCARF has a much better responses to all of the example
images than do other approaches.

This classification is effective since it used multiple color
classes for both road and off-road, and since it adapts these
color models for each input image. Four color classes were
chosen since this number seemed to give the best results. With
four road classes, we can allow for two different pavement
types as well as shadowed and nonshadowed conditions in one
scene. We have noticed, however, in a simple scene where
there are fewer than four road colors (or off-road colors),
some of the color models will drop out in the color model
formulation when the number of pixels assigned to the class
becomes too few to fit a Gaussian distribution. As we increase
the number of classes allowed, we also increase the amount
of computation required to form the Gaussian models and
to classify the image. We found that four classes was the

In[(2p)*|C, ]

Fig. 2. Comparison of various road detection approaches. The top row shows
three unstructured road image examples. The column of images under the
road examples show processing on the example images. The second row
shows the magnitude of the Sobel edge operator where the brighter pixels
represent stronger gradient magnitude. The third row shows the result of a
thresholding where a human selects the threshold value. The bottom row
shows the results of SCARF road surface identification. The intensity of the
pixel value corresponds to the likelihood of it being on the road surface.

smallest number of classes needed to model the scenes we
tested. Future work could include an analysis of the number
of classes required to more accurately represent the road scene.

B. Road Model Matching

In this module, SCAREF selects, from a candidate set of road
and intersection interpretations, the road or intersection that
best matches the road-surface likelihood image. This is done
using a matched filtering technique [2]. A binary image (or
mask) is created for each candidate road and intersection that
models how the candidate interpretation would ideally appear
in the image. The candidate interpretation is evaluated by how
well its mask compares with the road surface likelihood image
from the classification module of SCARF. The candidate
whose mask best matches the likelihood image is selected as
the interpretation.

We first describe the road and intersection models. Next, we
discuss how these models are used to generate the candidate
masks. We then describe in detail the candidate-matching
algorithm. Finally, we present our heuristic for limiting the
number of candidates that we test.
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Fig. 3. SCAREF intersection modeling.

1) Road and Intersection Modeling: The intersection model
for SCARF contains the following values:

intersection model: (B, kr, ke, {6s}, w, vr)

as shown in Fig. 3. There are B branches in the intersection
which all meet at the common point, or kernel location,
(kr,kc) in the image. The center lines of the branches are
represented by the angle at which the branch leaves the
intersection with respect the a vertical line. Therefore, the
intersection model keeps track of the number of roads in the
intersection B, the kernel position of the intersection (kr, kc),
and a set of angles {6}, one for the center line for each of
the adjoining roads. A width parameter w is used to describe
the constant horizontal road width in the image at the last row
br of the image, and the vr parameter specifies a constant
vanishing row in the image.

We assume that roads:

* are locally straight,

¢ have constant width, and

* are lying on a ground plane.

The ground plane assumption fixes the horizontal location of
the vanishing point in the image vr. The constant road width
sets w to be constant. Although these assumptions limit the
number of road possibilities that we model, we have found
that by sampling the road frequently these approximations
can still identify roads in the image well enough to navigate
the robot through hills, valleys, and winding curved roads.
These assumptions limit the dimensionality of the model and
therefore provide a better match than higher order models in
noisy images.

This model has a variable number of parameters depending
on the number of intersection branches. If B = 1 and the
kernel location is assumed to be the vanishing point in the
image, this represents a straight road and the model can be
reduced to:

straight road = {1, vr, ve, 0, w,vr}.

If there are two branches, i.e., B = 2, then the intersection
model represents a curving road in the image by a piecewise
approximation to the road shap:

curved road = {2, kr, kc, 8,602, w,vr}.

2) Candidate Generation: The candidate interpretation
masks are idealized binary road images containing 1 if the
pixel lies on the road surface of the candidate and 0 otherwise.

Fig. 4. Branch edge parameters.

This mask is used to match with the surface information
generated by SCARF as described in in the next section.

To start the mask generation, the candidate interpretation
mask is filled with O; then for each branch of the input
intersection model, the branch road edges and a cross section
of the branch are computed. The pixels lying within the branch
road edges and the branch cross section are then given the
value 1 in the candidate interpretation mask. After all of the
branches have been filled, the resulting mask will have a 1 at
every pixel location on the road of the interpretation; otherwise
the locations will have the value 0.

The end points (ar, ac) and (br, bc) of the cross section of a
branch, shown in Fig. 4, are given by the following equations:
if 0° < 6; < 180°:

ar = kr + Bwy,sin6; ac = k¢ — wg, cosb;

br = kr — awy, siné; be = ke + wy, cos §;

otherwise:

ar = kr + awg., sin 8; ac = ke — wyy co8b;

br = kr — fwy,sin6; be = ke + wg, cos 0;

where wyg, is the horizontal width of a vertical road at the
kernel location and is computed by

_ (kr—wr)

Whey = m’w

The parameters o and 3 are used to approximate the
perspective projection of distances in the image plane. These
parameters scale the horizontal width of the road to approxi-
mate the vertical road widths in the image. This approximation
was chosen since the calibration of many test sequences
were unknown. This approximation has been successful at
representing intersections in the test sequences as well as
intersections on vehicle tests. These scalings are assumed to
be constants for every row.

The orientations of the branch road edges are determined by
the vanishing point of the center line of the branch. Since all
lines parallel to the center in the ground plane will intersect at
the vanishing point (due to prospective projection), the branch
edge lines will intersect at the vanishing point. The vanishing
point (vr,vc) is determined from the branch center line. The
branch edges are determined from the vanishing point and the
cross section end points.

3) Candidate Evaluation: If the new intersection branch is
valid, or if there is only one branch in the intersection, then
a correlation between the candidate interpretation mask and
the road-surface likelihood image determines the discrepancy
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value 1 of the candidate interpretation. If the candidate in-
terpretation mask is ¢(r,c) and the input likelihood image is
p(r, c), then the correlation value is computed by the equation

1 R C
1= 55 2. 2 Ip(re) —a(r,0)l.

r=1c=1

This measures the difference between the candidate in-
terpretation mask and the likelihood image. The candidate
interpretation mask has the value of 1 inside the road surface of
the candidate interpretation, and a value of O otherwise. This
is an ideal road-surface likelihood image for the candidate
interpretation. The correlation compares the difference, pixel
by pixel, between the input road-surface likelihood image
and an ideal likelihood image for each interpretation. Since
the maximum difference between the images is equal to the
number of pixels in the image, and the correlation value is
normalized by the number of pixels in the image, a confidence
value p can be computed from p = 1.0 — 5. The confidence
p is a value between 0 and 1.

C. Limiting the Intersection Search Space

An exhaustive search of all road and intersection candidates
is computationally very expensive. To limit the number of
candidates, SCARF interpretation generation evaluates candi-
dates in a sequence. First, the best single road is found in the
road-surface likelihood image. By evaluating the confidence
p1 of this interpretation, SCARF determines if the main road
is believed to exist in the image. If the confidence falls below
a threshold T, no main road is found. If it exceeds the
threshold, the first branch is found that, when added to the
main road, forms the best y-shaped or A-shaped intersection.
(A y-shaped intersection consists of a main road with a branch
extending from the road where a A-shaped intersection has
a branch coming onto a main road.) This confidence ps is
compared with the confidence of the single road interpretation
of the image p;. If the confidence of the single road is larger,
the process exists with a straight-road interpretation of the
image. If p, is larger than p,, the intersection of the center
lines of the main road and the main branch determine the
kernel location (kr,kc) of the intersection in the image. In
the branch matching, an interpretation space for all possible
branches extending from the kernel location is computed.
The intersection construction then finds the best possible set
of branches to form the intersection interpretation and the
confidence p of the intersection reported by the system.

Each matching phase of the interpretation generation mod-
ule evaluates possible intersection interpretations using the
same evaluation procedure. This candidate evaluation is de-
scribed in the next section. Each interpretation matching phase
is then described, and the intersection model construction is
presented.

1) Main Road Matching: This matching phase finds the
best single road interpretation of the road-surface likelihood
image. A single road in the image can be represented by a
single branch intersection, i.e.,

intersection model of main road = {1, kr, k¢, 8, vr, w}.

For matching, we parameterize this road with the end points
of the center line, where the main road crosses the base row
of the image and crosses the vanishing row of the image:

main road = {vr,ve, br, be, w}.

This representation is easily converted into the intersection
model by selecting the kernel location to lie at the base row
of the image, i.e., (kr,kc) = (br,bc) and 6 = tan—'[(kc —
ve)/(kr — vr))]. Therefore, the road can be parameterized with
just two parameters and assuming a constant road width w:

main road = {vc, be}.

The candidate generation forms an intersection model for
each (vc,bc) pair and generates a candidate interpretation
mask. The candidate mask is compared with the road-surface
likelihood image. The main road with the highest confidence,
p1. is selected as the main-road interpretation.

2) Finding the First Branch: If a main road is found, we
can constrain the search for the best main branch. The center
line of the main branch must intersect the center line of the
road. Therefore, for any position along the main-road center
line, we can check for main branches extending from the center
line at a variety of angles.

The model for a main-branch interpretation is a three-road
intersection where the angles of the first two branches are
specified by the main road:

main branch interpretation
= (3, kr, ke, 01,0, + 180°, 05, vr, W)

where 6; is determined from the previous main-road search.
Since the intersection branch must intersect the main road
center line, the parameter kc can be computed for each value
of kr. We also assume that the branch will have the same
width as the main road w. Therefore, the problem of finding
a two-branch intersection has two parameters:

main branch = {kr, 0.}

since we are looking for only branches that extend from a
predetermined main-road line.

Again the candidate generation builds an interpretation mask
for possible intersections formed from the main road and a
candidate branch. These intersections appear y-shaped or A-
shaped. Each branch is first tested to be sure that it does not
excessively overlap the main road. The candidate intersections
with nonoverlapping branches are then assigned a confidence
by the candidate evaluation module using the interpretation
mask formed from the main road and the branch. The inter-
pretation with the highest confidence p; is selected as the best
interpretation. If this interpretation has a higher confidence
than the main road interpretation, the kernel location of the
intersection is used to find the additional branches of the
intersection.

3) Finding Additional Branches: If a main branch is found
by the previous step, the system searches for multi-branch
intersections. The locations of the main road and the first
branch determine the kernel position of the intersection. The
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intersection is built from a set of branches that are added
individually to the intersection model.
The model of an intersection is:

intersection = (B, kr, ke, {63}, vr, w).

The main road and the first branch have constrained kr and
kec. W and vr are assumed to be constants. Now we have
to determine the number of intersection branches B and the
angles {6} of these branches.

The confidence of each single-branch interpretation extend-
ing from the kernel location is collected in a one-dimensional
branch-interpretation space. The confidence peaks in this space
are detected and ordered by highest confidence to form a list of
the possible intersection branches. The branch with the highest
confidence is taken from the list to form the first branch of the
intersection. The next best branch is added to the first branch to
form a candidate intersection. If this interpretation produces a
better confidence from the candidate evaluation module, then
it is added to the intersection interpretation. Otherwise, the
next best branch is considered. One by one, new branches
are added to the intersection only if their inclusion provides
a better match between the interpretation and the road-surface
likelihood image.

4) Discussion: This section discussed how the multidimen-
sional intersection model matching was reduced using a series
of shape-matching steps. It first found the main branch of the
intersection and then used this branch as a constraint on the
kernel location of the intersection. The multiple branches of the
intersection were determined using the kernel location found
by previous steps.

The new intersection branch is tested to insure that it does
not excessively overlap the other branches already included
in the intersection. Each pixel on the line is located (using a
modified Bresenhams line drawing algorithm [17]) to count the
total number of pixels n, on the new branch center line that
overlap the road surfaces of the other branches. This algorithm
also computes the total length n of the center line appearing in
the image. The percentage of center line pixels contained in the
other branches n,/n must be less than some threshold while
the number of nonoverlapping pixels n — n, must be greater
than another threshold. If either of these tests fail, the new
intersection branch is not added to the candidate interpretation
and the overall interpretation likelihood is not effected. These
thresholds were determined empirically through testing.

To perform a exhaustive search of all road and intersection
candidates is computationally expensive. To locate a four-
branch intersection exhaustively, we would need to search
over six parameters (kr, kc, 01, 02, 03, 0,4). Allowing k possible
values for each of the parameters, we would then need to
compute k% candidate matches. Using our heuristic search
method, we still require two parameters to find the main road,
two parameters to find the first branch, and one parameter
to locate all intersection branches. Again allowing & possible
values for each of the parameters, we now need to test only
2k? + k candidate intersections. This is 210 candidates rather
than 10°® candidate matches for k = 10. The assumption
underlying the heuristic search is that we can find a good
match to a main road first and that this match will contain

Fig. 5. SCAREF detects unstructured roads in dark shadows: SCARF can
detect a road in widely fluctuating illumination. In all images (except the
fourth), the road is correctly identified. In the fourth image, the road detected
is not that far from the true road location so that the robot has no problem
remaining on the road. This sequence illustrates the difficulty with dark
shadows, since in the shadowed areas of the image it is difficult for a person
to distinguish between road and off-road.

the kernel location of the intersection. We also assume that
the main branch can correctly identify the kernel location
of the intersection. While these assumptions worked well on
the intersections in which we tested the algorithm, we can
envision scenarios, such as T-shaped intersections (y-shaped
intersections with parallel branches) where this heuristic may
fail.

Another difficulty with this matching procedure is the
limited field of view of the cameras. We had to limit our tests
to single-lane roads so that in the field of view we could get
enough pixels to form our off-road color models. Moreover, if
we would have switched to a fish-eye lens, we would introduce
distortion that would limit our straight-road modeling assump-
tion. Even with our normal lens, if the branches have curved
pavement around the junction of the branches, the whole image
could be composed of the intersection branch with no off-
road pixels to sample. Typically in this case, we retain the
off-road color models from the previous image. We also had
some difficulty with multiple intersection interpretations being
equally likely when the intersections are near the bottom in the
image. We have had to add constraints to track the intersections
from image to image, as the vehicle approaches, so that, by the
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Fig. 6. SCARF results on a y-shaped intersection: This intersection is
interesting in that the main road has a width of 3.1 m while the branch has
only a width of 1.7 m. While this intersection violates the assumption that the
roads must be the same width, SCARF can still detect it. A curve in the road
is initially detected as an intersection, but as the intersection becomes larger
in the image, SCARF correctly detects it and tracks its location.

time the intersection reaches the bottom of the image, only a
small number of branch angles around the previously detected
angle are considered. This was needed because the camera
field of view does not include much of an intersection at the
bottom of the image.

The limitations of the SCARF algorithm are emphasized by
the assumptions of the system:

* colors of the road differ from colors off-road:

* roads are locally straight, constant width, and planar; and

* the speed of processing is fast enough to sample the scene

for the vehicle speed.

SCAREF can have difficulties in the classification steps if there
are not distinguishable colors between road and off-road. If,
for example, there are scattered leaves on the road and mostly
leaves off-road, SCARF would have no difficulties since the
volume of leaf colors off-road will be much greater than those
on the road. Therefore, the statistical models of leaf color
will be much stronger for off-road. However, if the volume
of leaves on and off-road are identical, the color classification
algorithm cannot distinguish road and off-road leaves. Leaves
in this image will be assigned a 0.5 or “unknown” likelihood.
While we have been able to demonstrate robustness of the
SCAREF algorithm even though the road shape assumptions

Fig.7. SCAREF results on a A-shaped intersection: This shows the first branch
detection of a A-shaped intersection. This also shows the difficulties with
unstructured roads with the degraded road surface and rugged road edges. In
this case, the leaves on the off-road areas of the scene also cover part of the
road. The SCARF intersection models capture the shape of the intersection
well enough for vehicle navigation.

were violated, SCARF would fail to recognize a four-lane road
when the vehicle has been traveling on a two-lane road. We
have also noticed control instabilities as the speed increases,
especially around curves in our test site. This demonstrates
that the processing speed of the algorithm must be adequately
fast to permit the locally straight-road assumption to be valid.

IV. RESULTS

Results of SCARF processing several unstructured road and
intersections are shown in Figs. 5-9. The results are discussed
in the captions associated with each figure. Fig. 5 shows
SCARF’s processing in difficult shadows. SCARF locates the
road well enough to navigate through the sequence. SCARF
has succeeded in detecting this road as well as others in
difficult shadows. Figs. 6-8 show the results of SCARF on
some unstructured intersections. In all of these examples, we
show only the first branch of the detected intersection. Often
we used only the initial branch since this was sufficient to
navigate the Navlab through the test site. By not detecting
the location of all the branches, we saved computation time
and could therefore process images faster. An example of
multibranch detection is shown in Fig. 9. Detection of straight
roads takes SCARF 6 s running on a Sun 4. To detect
intersections requires 20 s on the average.

This sequence of figures is just an example of the flexibility
of the SCARF algorithm at recognizing unstructured roads and
intersections. We have tested this system extensively on our
test vehicle, the Navlab, on our primary test site (a winding
bicycle path in Schenley Park) in all seasons under all types of
weather conditions. It has successfully navigated during rainy




CHRISMAN AND THORPE: COLOR VISION SYSTEM THAT TRACKS ROADS AND INTERSECTIONS 57

Fig. 8. SCARF results on a Y-shaped intersection: The center of this
intersection is located on the top of a hill that defies the ground plane
assumption of the SCARF system. Yet, SCAREF still detects this intersection.
Also note that the right branch of the intersection is degraded and the color
of this branch appears different than the other road surfaces in the image. The
intersection detected in the last images of this sequence actually represent a
sharp curve in the road.

weather, when the images appear grey and colorless; on the
brightest sunny days, when the nearby trees cast extremely
dark shadows across the road; and in the fall, when leaves
cover the ground off-road and sparsely cover the road.

The SCARF system has been integrated into several road-
navigation systems including the Park I demonstration system
[21] and the Park II demonstration [20]. SCARF has been im-
plemented on the WARP Supercomputer [4] where it achieved
processing times as low as 3 s image. The increased processing
speed can be used to increase the speed of the robot vehicle
or it can be used to sample the environment closer in space
for more reliable predictions. SCARF has more recently been
integrated into the Autonomous Mail Vehicle [19]. SCARF has
proved useful for a number of navigation scenarios.

V. CONCLUSIONS

This paper described the SCARF road- and intersection-
detection system. This system specializes in detecing unstruc-
tured roads, the most difficult road-following scenario. This
is the first road-detection system that can detect intersections
without map shape and location information. Other systems
rely on knowing the angles and shapes of the intersection

A

Fig. 9. SCARF multibranch detection on a y-shaped intersection: This shows
the results of SCARF multibranch intersection detection. Note that in the
fourth image, a single road is detected. In the remaining images, however, the
intersection is correctly located. We have found that an intersection branch that
is matched near the top of the image is more susceptible to noise since there are
fewer intersection pixels in the image. Therefore, if using SCARF's results
to build a map, a navigation system should rely more on later intersection
branch locations.

branches. SCARF determines the branch angles strictly by the
color data in the input image. SCARF has successfully driven
the Navlab mobile robot on numerous occasions in a variety
of weather conditions. SCARF has also been integrated into
both mapped and unmapped navigation systems at Carnegie
Mellon.

The success of this system is due to several factors: a like-
lihood measure associated with classification, an area-based
matching technique, the straight-road model, and sampling
and adjusting the color models of road and off-road in each
image. The likelihood measure from the classification causes
shadowed pixels (whose color matches pretty well with both
shadowed road and shadowed off-road colors) to be weighted
less in determining the road location than those pixels having
distinctive road or off-road colors. The area-based matching
does not depend on the roads having clean edges. Also, since
more data points are used for locating the road, the area-based
technique is less sensitive to noise. The straight-road models
are also less sensitive when matching noisy data since there
are fewer parameters to the model. A curved road, if sampled
often, can be represented by a piecewise straight-road model.
Since SCARF adjusts the color model at each step of the
processing, it can adjust to changing illumination and current
road and off-road surface appearances.
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