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Abstract: 

This paper defines the Difference of Low-Pass (DOLP) transform and describes a fast algorithm for 
its computation. The DOLP is a reversible transform which converts an image into a set of band-pass 
images. A DOLP transform is shown to require O(N2) multiplies and produce O(N Log(N)) samples 
from an N sample image. When Gaussian low-pass filters are used, the result is a set of images which 
have been convolved with difference of Gaussian ( DOG) filters from an exponential set of sizes. 

A fast computation technique based on "resampling" is described and shown to reduce the DOLP 
transform complexity to O(N Log(N)) multiplies and O(N) storage locations. A second technique, 
"cascaded convolution with expansion", is then defined and also shown to reduce the computational 
cost to O(N Log(N)) multiplies. Combining these two techniques yields an algorithm for a DCLP 
transform that requires O(N) storage cells and requires O(N) multiplies. 

The DOLP transform provides a basis for a structural description of gray-scale shape. Descriptions 
of shape in this representation may be matched efficiently to descriptions of shape from other images 
to determine motion or stereo correspondence. Such descriptions may also be matched independent 
of their size or image plane orientation. 
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1 Introduction 

'l'hc Diffcrcncc of I.ow-Pass (Il0l.P) Transform is a rcvcrsiblc transform which coiiicrts ;in imagc into a 
sct of band-pass imagcs. l'hcsc band-pass imagcs comprisc a thrcc spiicc (rhc 1101 .P spacc) which scrvcs as 
tlic basis fur an cficicnt tcchniquc for matching dcscriptions of shapc [lo]. 

Thc band-pass imagcs which composc thc Il0I.P spacc arc c x h  cquivalcnt to a convolution of the image 
with a band-pass filtcr, b,. Fach band-pass filtcr is fomcd by a diffcrcnce of two sizc-scalcd copics of a 
low-pass filtcr, gk-, and g,. 

', = gk-1 - gk 
Each low-pass filtcr g, is a copy of thc low pass filter g,, scalcd largcr in sizc by a scalc factor. 

In the following scctions we motivate thc nccd for fast computation of a multi-rcsolution dcscription of 
imagc signals, and bricfly dcscribe a rcprcscntation bascd the DOLP transform. This reprcscntation is the 
topic of a companion paper [ll]. Wc thcn introduce two tcchniqucs for spccdiiig thc Computation of a DOLP 
transform. A fast algorithm bascd on thesc tcchniqucs is dcscribcd bclow. This algorithm reduces thc 
complexity of computing a DOLP transform from 0(N2) '  to O(N) multiplics and additions, whcrc N-is the 
numbcr of sample points in an image. 

1.1 Motivation:The Structural Description of Images 

Intcrprcting the patterns in an imagc requires some form of matching. If the interprctation is rcstrictcd to 
two-dimcnsional patterns, this matching is between dcscriptions of shapes in thc imagc and objcct models. If 
thc iiitcrpretation is in tcrms of thrcc-dimensional objects thcn tcchniqucs for matching among stcrco images 
or motion scqucnccs may be rcquircd. In cithcr case, thc marching problem is sirnplificd if dcscriptions are 
compared at multiple rcsolutions. 

Dctecting pcaks and ridgcs in a DOLP Transform provides a structural description of the gray-scale shapes 
in an image. Matching the structural descriptions of shapes in images is an cfficicnt approach to dctcrmining 
the three-dimcnsional structurc of objects from stereo pairs of imagcs and from motion sequences of images 
(131. Matching to a prototype dcscription of an object class is also uschl for rccognizing shapes in both 
two-dimensional image domains and threc-dimensional Sccne domains (31. Thc motivation for computing a 
structural description is to spend a fixed computational cost to transform the information in each image into a 
rcprcscntation in which searching and matching are more efficient In many cases thc computation involved 
in constructing a structural description is regular and local, making the computation amcnable to fast 
implementation in special purpose hardware. 

Several researchcrs have shown that the efficiency of searching and matching processes can be dramatically 
improvcd by performing the search with a multi-resolution liicrarchy. Moravcc [lS] has dcmonstrated a 
multi-resolution corrcspondcncc matching algorithm for objcct location in stcrco images. Marr and Poggio 
[13] have demonstrated correspondcnce matching using edges dctccted by a difference of Gaussian filters at 

h e  symbol O(.) is pronounced "ordcr of'. A hrnction. g(n) is said to be of Oan)) if there exists a constant. c. such bat g(n) c/(n) 
for all but some finite (possiblc empty) sct of nonnegative valucs for n [2). 
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four rcsolution. Roscnfcld and Vandcrbnig [2 1) hnvc dcscribcd a two s t a g  hicrarchicnl tcinplatc matching 
algorithm. I-IaIl has rcportcd using ;I inulti-rcsolutioil pyramid to dramatically spccd up corrclariun o f  acrial 
images [ 121. It  should also bc notcd tlnt 13iirt has rcccntly rcportcd using cascudcd CoiiLuliition of "Gussian- 
Likc" kcrncls to construct a form of 1lOL_P transform [4]. 

'll1crc is also cxpcrimcntnl cvidcncc that thc visual systcms of humans a n d  othcr mcimmals scparatc imngcs 
into a sct of "spatial frcqucncy" channcls as a first cncoding of visual in formation. This "multi-channcl 
thcory" is bascd on rncasurcrncnts of thc adaption of thc thrcshold scnsitivity to vertical sinusoidal functions 
of various spatial frcqucncics [7], [22]. Adaption to a sinusoid of a particular frcqucncy affccts only thc 
thrcshold scnsitivity for frcqucncics within onc octavc. This cvidcncc suggcscs chat mammalian visual systcms 
cmploy a sct of band-pass channcls with a band-width of about onc 6ctavc. Such a sct of channcls would 
carry information from diffcrcnt rcsolutions in the imagc. 'I'hcsc studics, and physiological cxpcrimcnts 
supporting thc conccpt of parallcl spacial frcqucncy analysis, arc rcvicwcd in [6] and [23]. 

1.2 The Structural Description of Shape Based on the DOLP Transform 

Thc DOLP transform provides the basis for a rcprcscntation in which two-dirncnsional gray scrtlc shape is 
describcd by a uce of symbols [lo]. A dcscription in this rcprescntation contains a small number of symbols 
at the root. Thcse symbols dcscribe the global (or low-frequency) structure of a shapc. Ac lower lcvcls. this 
trce contains an incrcasingly larger numbers of symbols which rcprcscnt more local cvents. Finding the 
correspondcnce betwccn symbols at one levcl in the trcc constnjns the possible set of corrcspondcnccs at the 
next higher resolution level. 

The dcscription is created by detecting local positive maxima and ncgative minima (pcaks) in each band- 
pass imagc of a DO19 transform. Local peaks in thc DOLB thrce-spacc dcfine locations and sizes at which a 
DOLP band-pass filtcr bcst'fits a gray-scale pattern. These points arc cncodcd as symbols which scrve as 
landmarks for matching the information in images. Pcaks of the same sign which arc in adjacent positions in 
adjacent band-pass images arc linked to form a tree. During the linking prtxcss, the largest peak along each 
branch is detected. This largest peak serves as a landmark which marks the position and s ix  of a gray-scale 
form (or shape). The paths of the other peaks which are attached to such landmarks provide a hrther 
description of thc shapc of the form, as well as a continuity with structural forms at ocher rcsolutions. Further 
information is encodcd by dctecting and linking two-dirncnsional ridge points in each band-pass image and 
three-dimensional ridge points within the DOLP three-space. 

1.3 A Fast DOLP Transform 

A full DOLP transform of an image composed of N samples, produccs K = Logs(N) band-pass images 
composed of N samplcs each, and requircs q N 2 )  multiplies and additions, where, S is a "Scale Factor" which 
is discusscd below. Two techniques can be used to rcducc the computational complcxity of the DOLP 
transform: "resampling" and "cascaded convolution with expansion". 

Resampling is based on the fact that the filters used in a DOLP transform are scaled copies of a band- 
limitcd filtcr. As the filter's impulse responsc bccomes largcr in the space domain, its uppcr cutoff frcquency 
decrcases, and thus its output can be resamplcd with coarser spacing witliuut loss of information. The 
exponcntial growth in the number of filtcr cocfficients which results from the exponential scaling of size is 
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otfsct by a n  cxponcntial growth in dishncc bctwccn points at which thc coniolution is computcd. 'I'hc result 
is chat cach bnnd-pass imagc may bc cotnputcd with thc snmc nuinbcr of niulriplicc~ions ;ind Lidditions. 
Rcsainpling cxl i  band-pass imagc also rcduccs thc total n~rinbcr of points in the 1101.P spncc from 
N Logs( N) samples to 3% samplcs. 

Cascaded contolution cxploits thc - fact chat dic convolution of a Gmssian fiitiction w i t h  itself produccs a 
Gaussian scalcd largcr in s i x  by d2 . This rncthod also cmpioys an opcrncion, rcfcrred to as "cxpnnsion". in 
which thc cocfficicnts of a filtcr arc rnappcd into a largcr samplc grid. thcrcby cxpanding thc sizc of thc filtcr. 
This opcration can bc uscd without introducing distortion under ccrtain conditions whcn ~Iic filtcr is band- 
limitcd. and is to bc convolvcd with a band-limitcd signal. 

1.4 Organization of this Paper 

Scction 2 dcfincs thc DOLP transform and shows that its computation rcquircs O(N2) multiplies and 
O(N Log(N)) storagc locations. h c h  of thc two fast computation tcchniqucs arc described and their 
complcxity is analyzcd in section 3. A fast algorithm bascd on both of thcsc tcchniqucs is thcn dcscribcd and 
shown to rcquirc O(N) multiplics and O(N) Storagc locations. An cxamplc is dicn prcscntcd of chc band-pass 
images that result from this fast algorithm in section 4. 

2 The DOLP Transform 

This section defines the DOLP transform and shows that its computation rcquircs O(N*) multiplies and 
O(N Loz(N)) storage locations. 'This is followcd by a dcscription of cach of the two fast computation 
tcchniques and an analysis of thc computational complcxity of the algorithms bascd on each tcchnique. A 
fast algorithm based on both of these techniques is then described and shown to rcquirc O(N) multiplies and 
O(N) Storage locations. 

2.1 The DOLP Transform Definition 

The DOLP transform expands an N x N image signal p(x,y) into Log,.(N) band-pass images 4Bk(xy). Each 
band-pass image is equivalent to a convolution' of the image M x y )  with a band-pass impulse response, 
bkhYI. 

%B~(X'Y) = MxY)* bk()syI (1) 
The DOLP transform is illustrated in the data flow graph shown in figure 1. 

For k = 0, the band-pass filter is formed by subtracting a circularly symmetric lcw-pass filter go(x,y) from a 

(2) 

unit sample positioncd over the centcr coefficient at the point (0,O). 

bo(xY) = W C Y )  - g*(nY) 

h e  filten described in this paper are all non-recursive finite impulse response ( F I R )  filters. Convolutions are cornputcd for each 
sample point in the image: whcn the filter coefficients extends beyond thc edge of the image. a default border valuc (typically 0 ) is 
supplied in place of the image value. 
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Figure 1: The Diffcrencc of Low-Pass (DOLP) Transform 

This data flow graph illustrates the computational process for a DOLP transform. The 
transform produces Log,(N) band-pass imagcs. Each band-pass imagc is produced by 
convolving thc image with a band-pass impulse responsc (filtcr) which is a size-scalcd 
copy. of a prototype filter. This prototype is formed from a difference of two size-scaled 
copies of a low-pass filter. 

The filter bo(xy) givcs a high-pass imagc, '?Bo(xy). This image is equivalent to the result produced by the 
edge dctection tcchnique known as "unsharp masking" [20]. 

'?Bo(XY) = p(x.u! * ( W G Y )  - g , ( . y )  1 
= d4.u) - (p(xr)* go(4Y)) 

(3) 

For band-pass levels 1 s k < K the band-pass filter is formed as a diffcrcnce of two size-scaled copies of the 
low-pass filter. 

bk(xY) = X&YI - g&Y) (4) 

Each low-pass filter, gdxy) is a copy of the circularly symmetric low-pass filter go(x,y) scaled larger in size 
by a factor raised to the k* power. Thus for each k, the band-pass impulse response, bk(x,y), is a size scaled 
copy of thc band-pass impulse response, bfl(xy). This propcrty is ncccssary for the configuration of peaks in 
a DOLP transform of a shape to be invariant to the size of the shape [lo]. 

The scale factor is an important parameter which affccts several aspccts of the DOLP transform. For a 
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- 
two-dirncntioniil 1101 .P transform. this scalc factor. dcnotcd S,, has a typicd vduc o f  4 2  . In thc cxc  of a 
onc-dimcnsional 1)OI.P transform. thc scalc factor is dcnotcd S , .  and has a typical valuc of 2. .l'his scale 
factor is discusscd iigain d t  thc cnd of this scction. 

For two-dimensional circularly symmctric filtcrs which arc dcl7ncd by sampling a continuous fiinction. size 
scaling can dcfincd as incrcasing the dcnsity of sample points ovcr a fixcd domain of thc function. In the 
Gaussian filtcr, this has thc cffcct of increasing thc standard dcviacion, 0,  rclativc to thc imagc sarnplc ratc. 

In  principlc the DOLP transform can be dcfincd for any numbcr of band-pass lcvcls K. A convcnicnt value 
of K is 

K = Log,(N) 

whcrc S is cqual to thc samplc distance S, for a onc-dirncnsional DOLP transform. or thc squarc of the 
snmplc distance S, for a cwo-dimcnsional DOLP transform. 

s = s, = S t  

This valuc of K is the numbcr of band-pass imagcs that rcsult if cach band-pass 'magc, gk, is rcsampled at 
a sampling distance of S!. With this resampling, the K* hagc  contains only one sample. 

Thc DOLP transform is rcvcrsible. The original imagc may be recovered by adding all of the band-pass 
imagcs, plus a low-pass residue. This low pass residuc. which has not been found to be useful for dcscribing 
the imagc, is obtaincd by convolving 

dxu) = (p(x.Y) .* s&..) + 

thc lowest frcqucncy (largest) low-pass filtcr, gdxy) with the image. 
K- 1 c %Bk(XY) (5 )  
k=O 

Revcrsibility proves that no information is lost by the DOLP Transform. 

Because convolution and subtraction are associative the DOLP transform may also be computed by 
convolving the original image with an exponentially size-scaled set of low-pass filtcrs and subtracting each 
low-pass image from the ncxt to form the set of band-pass images. This tcchniquc is illustratcd in figure 2. 
One of thc fast computational tcchniques for a DOLP transform which are dcscribcd below is bascd on the 
idea of computing the convolutions of the image with progrcssively larger low-pass filters which are 
implcmcntcd as a cascade of convolutions with small low-pass filters. 

2.2 Discussion: The Scale Factor 

The parameter S, uscd to dctermine the number of lcvcls, is crucial to both thc scaling of low-pass filters 
and resam?\ing of the band-pass and low-pass images. Thcse two ideas arc rclated when peaks and ridges 
from the LIOLP transform are to bc uscd to dcscribc the shape of a form so that it can matched indcpendent 
of thc size of thc form. In such an application it is important that thc dcnsity of sarnplcs be a fixcd fraction of 
the size of the band-pass impulse response. It is convenient to dcfine a single variable, S = Si = S, to 
simplify the expression for K as wcll as for some of thc analysis givcn bclow. 
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Figure 2: The Differencc Method for Computing 
the Diffcrence of Low-Pass (DOLP) Transform 

Because convolution and subtraction are associative thc DOLP transform may also be 
computed by convolving thc original image with an exponcntially size-scalcd sct of 
low-pass filtcrs and subtracting each low-pass image from the next to form the set of 
band-pass images. Thc data flow graph for this process shows thc reversibility of the 
DOLP transform. This approach is also the basis for a fast computation technique for 
the DOLP transform called "Cascaded filtering with expansion". With this technique 
the sequence of low-pass imagcs are obtained by repeated convolution with a small 
kernel filter. 

Marr [14] argues that a value of S,= 1.6 is "~pt imurn"~ for a difference of Gaussian band-pass filter. For 
two-dimensional signals the value S,= I/T has virtually the Samc effect,while providing somc additional 
benefits. 

'Marr calls this value optimum in the sensc that it simultaneously minimizes S2 while maximidng the energy in the filter. A cume of 
filtcr cncrgy with rcspcct to ntio of standard dcviations exhibits a "kncc" in the rcgion of 1.6. [14]. For smaller ratios thc encrgy of the 
resulting fillcr falls npidly. while for largcr valucs it is nearly cOnstanL 
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- - 
The most important bcncfit of using S,= d2 is that  \/2 is the - srnallcst nnt i i ra l ly  occuring rcsamplc 

distlncc un  tho-dimensional curtcsinn grid. Thus by using S, = \/2 wc czn rcsarnplc cclcli band-pass imagc 
at a distaricc chat is a constant fraction of the band-pass filtcr six.  This yields 3 configciracion of pcaks and 
ridges in a 1lOl.P transform that is invariant to thc sizc of  a shapc, except fur cyclic distortions duc to 
sampling cifccts. Such descriptions of shapes can bc matclicd independent uf  thc sizc of thc shapc. 

An additional bcncfit from using S,= d? corncs from thc Gaussian auto-convolution scaling propcrty. 
When - a Gaussian hnction is convolvcd with itsclf thc rcsult is thc Gaussian hnction scalcd larger in sizc by 
4 2 .  Wc will show bclow that this propcrty can be uscd to greatly rcducc thc computational cost of a DOLP 
transform, 

2.3 Complexity of DOLP Transform 

In this section we derive formulae for thc mcmory rcquircrncnts and computational costs o f  thc DOLP 
transform. A first stcp in obtaining thcsc quanutics is the calculation of thc nurnbcr of cocfticicnts in cach 
filter. Wc do this for both thc one and two-dirncnsional cats and then producc a gcncral rcsult that holds in 
both cases. 

Let R, rcfcr to the radius of thc filtcr, and let X, refcr to the number of coefficients. for both the one and 
two-dimcnsional cases. Also, let S,  refer to tlre size scaling factor for thc onc-dimcnsional filtcrs and S, refer 
to this factor for two-dimensional filters, as above. 

In the one-dimensional case, the number of coefficients is specified by the radius of the filter. 

X, = 2R, + 1 
The radii at each band-pass level k are related to the radius R, of the smallcst level by 

R, = R, S! 

Thus the number of coefficients for the k* band-pass filter is 

xk=(X,-1)si+l 

Since X, ;j 1 we can simplify the mathematics by using the approximation: 

x, t x, si 
In the case of the two-dimensional filters for images, the low-pass filter, g,(x. y), is specified to bc circularly 

symmetric. If the coefficients are nonzero for all points (x, y) such that x2 + y2 R: then, 

X, t n R: 
This approximation becomcs more accurate as R, increases. 

The band-pass filters for levels 1 through K-1 are specified to be sizc scalcd copics of the lcvel 0 filter. 
Each filtcr is to be scaled largcr in size by a factor of S,. mius R, is related to R, by 
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R, = R, S2 k 

As ;I rcsult thc nurnbcr ofcocfficicnts at lcvcl k is 
x, z x, s, 2k 

I f  wc dcfinc thc variable, S, such that S = Si = S,, as bcfore. thcn in both thc onc-dimcnsional and 
two-dimcnsional casc, 

x, = x, sk 
'This approximation bccorncs morc accuratc as k increases. 

As described abovc. the DOLP transform is dcfincd to producc band-pass lcvcls 0 through K-I, where K 
is 

K = Logs(N) 

Sincc thc DOLP transform produccs K band-pass imagcs of N samplcs each, the mcmory rcquircmcnt M is 

(6) 
M = N K = N L O g S ( N )  

The nurnbcr of rnultiplics for producing each band-pass image is proportional to the number of cocfficients 
in the film for that level. The total nurnbcr of multiplies for the convolutions, dcnotcd C (for cost), is given 
by: 

C = N Xo( l  + 1 + S + S2 +...+ SK-') 

K-1 

= X o N ( l + C  Sk) 
k=O 

SK-l) 
= X , , N ( l + -  - 

s - 1  

Using our typical value S = 2, 

SK-1 
1 + - = 2 K  

s - 1  
and the cost become: 

C Z X , N ~ ~  = X 0 N 2  b3 2 (N) 

and thus 

C = X o N 2  
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Sampled Cascaded Convolutior 

DOLP Transform with Expansion 

O(N Log(N) O(N Log(N) 

Cascaded Convolution 

with Expansion 

and Resampling 

O(N) 

Figure.3 
Techniques for Reducing the Cost of a DOLP Transform 

Two indcpcndent techniques can be used to reduce thc computational cost of a 
DOLP transform: Resampling and Cascaded Convolution with Expansion. These two 
techniques can be combincd to produce an algorithm which for computing a DOLP 
transform in O(N) multiplies which requircs O(N) storage cells. 
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3 Fast Computation Techniques 

Wc IiaLc dcvclopcd two indcpcndcnt tcchniqiics to rcducc dlc computi7tional cost of J 1101 .P Transform. 
Ex11 of dicsc tcchniqucs rcduccs thc nurnbcr o f  rnultiplics and ;idditioiis for &in N samplc I l0I .P  trmsform 
from O( N') rnultiplics to O( N I .ug( N )  ) rnultiplics and iidditions. Cumbincd. thcsc tcchniqiics allow the 
1lOI.P transform to bc cornputcd with O( N) rnultiplics and O(N) additions. 

'Thc two tcchniqiics are: 

0 Rcsampling: Computation of thc band-pass imagcs at rcsarnplc points which arc spaccd at a fixed 
fraction of thc tiltcr radius. 

0 Cascadc Convolution with Expansion: Use of the autoconvolution scaling propcrty of the 
Gaussian low-pass filtcr and a remapping of thc filtcr cocfficicnts to obtain thc impulsc rcsponse 
of a largcr filtcr from a cascadc of small filters. 

Thcsc two tcchniqucs may be applicd indcpendcntly to rcducc the computational cost of a DOLP transform, 
as illustratcd in figurc 3. Whcn combincd, thcsc two tcchniqucs providc an algorithm 5c hich will compute a 
DOLP transform in O(N) rnultiplics with a storage rcquircmcnt of O(N) cclls. In thc following sections we 
dcscribc algorithms for computing a DOLP transform bascd on each of thcsc techniques scparatcly. We thcn 
dcscribc thc algorithm which crnploys both tcchniqucs. 

- 
This scction begins with a discussion of rcsampling a cartcsian two-dimcnsional signal at a distance of 42. 

A lincar systcms rnodcl for such rcsampling is prescnted. We then dcscribc thc Sarnplcd DOLP transform, 
and show that with d? rcsampling. a DOLP transform can bc computcd with O(N Log(N)) rnultiplics and 
that this DOLP transform can bc storcd in O(N) storagc cells. 

We then discuss the scaling propcrty of the Gaussian filter, and show that a Gaussian impulse response of 
size Sd? can be formed by convolving a Gaussian filter of size S with itsclf. This technique is refcrrcd to as 
cascaded convolution. A second scaling operation known as thc expansion operator is thcn introduced. We 
show that a combination of expansion and cascaded convolution can also be used to compute a DOLP 
transform of an N samplc image in O(N Log(N)) multiplics. 

Finally, thcse two techniques are combined to produce an algorithm which will compute a DOLP 
transform which rcquircs O(N) samples in O(N) multiplies. This tcchnique is referred to as "Cascaded 
Convolution with Expansion and Resampling. 

3.1 Resampling 

The number of samples that is ncedcd to represent a discrete signal is determined by the frequency content 
of that signal. As Nyquist dcrnonstratcd, [16], a signal which has becn convolved with a filter which 
attenuates the higher frcqucncy componcnts may be rcprcsented by a smallcr nurnbcr of samples. Vcry little 
information is lost whcn a band-lirnitcd signal is rcsamplcd bccause the original samples may be recovered by 
intcrpolation. In this scction we dcscribe thc d? sampling operation 3nd thcn prcscnt the algorithm for the 
samplcd DOLP transform. 
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3.1.1 Sampling at d? 

Figure 4: Examplc of Sfi{p(x,y)} ( Circles) 
and S f i P f i ( ~ ( x , ~ ) l l  ( Squares) 

Applied to a Cartesian Samplc Grid ( Do& ) 

- Thc smallest distance between sample points on a two-dimcnsional Cartesian grid which is larger than 1 is 
4 2 ,  thc distance between diagonally adjaccnt elements. A two-dimensional signal may be rcsampied at this 
sample distance by removing evcry other diagonal, as illustrated by the circlcs in Figure 4. We refer to this 
process as d? sampling, dcnotcd Sfi{}.  d? sampling rcduces the number of samplc points in a two- 
dimensional signal by 112. A second application of d2 'sampling will producc a two-dimensional signal 
which has samples spaced at a distance of 2 on the original grid, as shown by the boxes in figure 4. 

The points on the I/T sample a d  may be detected by a simple test using the modulus function ( denoted 
here as "mod" ). Sample points on the I/? grid are thosc points, (x,y) which satisfy the relationship 

xmod2 = ymod2. 

This is the sample function applied to level 2 of the sampled DOLP transform. A second application of 
d? sampling produces a sample grid with a minimum distance of 2 between samples. Thcse points are those 
for which 

x m o d 2 = 0  and y m o d 2 = O  

This is the sample grid for level 3 of the sampled DOLP transform. 

In general, each level k, for 2 < k < K-1, of the sampled DOLP transform will have a sample grid 
produced by k-1 applications of ?? sampling. Those levels for which k is even will have sample points 
defined by 

( k - W  - - 2(k-1)/2 x mod 2 

Those levels for which k is odd will have points which are given by 
( k - W  = 0 x mod 2 



Such sampling may bc donc for any valuc S which is a distance bctwccn points on  thc original sarnplc grid. 
For cxamplc. i f  wc SClcct points that arc scparatcd by ;1 distance in r.hc x dirncnsion of 2 and in thc y 
dimension of 1. thcn our rcsamplc distancc is S 2  = d G  = 45. ] f a  two-dimcnsional scalc factor other 
than S, = is used, t h ~  valuc S = S i  must bc substitutcd for thc 2 in thc abovc cxprcssions. In this casc 
thc s i x  of thc 1 o w - p ~ ~  filters should bc scalcd by this samc factor if thc 1101.P transform is to bc used to 
product a description of shapc that can bc matchcd at any size. 

- 2 

3.1.2 Linear Systems Model for Resampling 

U 

Figure 5: Nyquist Boundaries for Successive applications of 47 ReSampling 

The effkcts of resampling are best describcd in the spatial frequency domain. Let us dcscribe the transfer 
function ( Discrete Time Fourier Transform ) of a two dirncnsional function, h(x,y) as [17] 

0 0 0 0  

u=-00 y = - a  

The continuous variables u and v are referred to as the spatial Frequency variables. Figure 5 shows the the 
range of unique spatial fiequcncy components in the (u, v) plane that is generatcd by the transfcr hnction of 
a two-dimensional signal. A two-dimensional function samplcd on a cartcsian grid has a transfer function 
which is uniquc within the square region of thc (u, v) planc bounded by ( 2~n, f ~ n  ). Thc boundaries of this 
region are rcferrcd to as the Nyquist boundarics. Thc resampling operation Sf i { . }  gencratcs a new Nyquist 
boundary, shown by the diamond shaped rcgion in Figurc 5.  The d? rcsampling opcration has the effcct of 
"folding" or aliasing any signal cncrgy outside this new Nyquist boundary. This foldcd signal cncrgy is added 
to the signal, and appears as encrgy at a lowcr frcquency. Such a distortion is not revcrsible and will 
introduce errors whcn used with tcchniques which are bascd on detccting peaks and ridges. 
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Aliasing is minirnizcd by filtcriny rhc two-dimcnsionnl scqucncc so tha t  dicrc is vcry lirrlc sign'il cncrgy 
outside chc C'yquisc boundary whcn clic signal is rcsamplcd.' '11iis m i n t m i m  thc rcflcctcd signal cncrgy that 
rcsirlts in diasing. ~V~athcmarically. thc opcration is modcllcd as first convulving tlic signal with a band- 
limiccd filrcr. and thcn sclccring only thc stibsct of points at which chc filccr signal is rcsamplcd. For 
implcincntntion on a scrial proccssor. thc computirional cost may bc rcduccd by only cvaluating thc 
convolution cxprcssion at thosc points whcrc thc Altcr is ccntcrcd ovcr chc rcsamplc points. This "rcsamplcd 
convolution" is illustrntcd by the function S f i { )  placcd in boxcs adjaccnt to thc convolution boxcs in E'igurc 
6. 

3.1.3 Complexity of the Sampled DOLP Transform 

A convolution may be cxprcsscd as a scqucnce of inncr products of the filtcr cocfficicnts w i t h  
neighborhoods of thc signal. By only computing thcsc inncr products 'for the instanccs whcrc thc filtcr is 
ccntcrcd ovcr rcsamplcd points. it is possiblc to rcducc thc computational cornplcxity of a DOI-P transform to 
O(N I.og(N) ). In such a Sarnplcd DOLP transform. the distancc bctwccn rcsamplc points incrcasc by the 
same scale factor as the band-pass filtcrs. The computational cornplcxity and memory rcquircmcnts for the 
Samplcd DOLP Transform may be evaluatcd by considcring the stcps in thc algorithm. In this scction we 
prescnt such an analysis for any valuc of S .  

The band-pass sigiiiils. %,(x,y) and 9l1(x,y), are computed as dcscribcd for the DOLP transform. rcquiring 
X,N ctnd S X, N multiplies rcspcctivcly. 4B2(x,y) is computcd only for sample points in p(x,y) on altcrnate 
diagonals. Thc convolution at levcl 2 is with a filtcr with X, S2 cocfficicnts. Howcvcr, the convolution is only 
evaluated at the N/S samplc points on altcrnatc diagonals. Thus the cost is S X, N multiplics, as it was with 
level 1. At level 3. the band-pass irnpulsc rcsponse is computed for samplc points spaccd at a distance of Si. 
There are N/S2 such points and thc filter has X, S3, so the cost is S X, N multiplies. 

In gencral at each level k , for 2 k ,< K-1, the band-pass filtcr has X, Sk coefficients, and the 
convoiution is computed at N/S('-') sample points, for a cost of X, S N multiplies and additions at each 
band-pass level. Since there are K = Log,(N) band-pass levels, the total cost is 

(9) C = X, N ( S ( Log,(N) - 1 ) + 1 ) multiplies and additions 

Band-pass levels 0 and 1 each have N samples. For levels 2 through K-1 the number of mcmory cells 
requircd drops by a factor of S for each level. 

M = N (1 + 1 + vs + us2 + 11s' +...) 

K- 1 

= N( 1 + >: L) 
k=O sk 

41t is impossible to filter a sequence with a finite duration filtcr so that a frequency region of any finite size is identically zcro 118). 
Howcver. a signal o n  be filtcrcd so that thcre is an arbitrarily mall rcsponsc to a range of frcqucncies 



Figure 6: Data Flow Graph for Algorithm for Computing Kcsampled DOLP Transform 

The boxes markcd with St/r[k][.] following each convolution indicate that the 
convolution is computed only for resamplc points specified by dT resampling at levcl 
k. ( See text ) 

1 
= N ( l + - )  

1 - s" 
For our typical value of S = 2, 

M = N (1 + 1 + 1/2 + 1/4 + 118 +...) 
2:3N 
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3.2 Cascaded Convolution w i t h  Expansion 

Xlucti of thc cost of a I IOI~I~  transform rcsults from tlic hrgc numbcr o f  cocfficicnts in tlic filters for largcr 
valucs o f  k. Ilcsampling compcnsnrcs for thc cxponcntial incrcnsc in thc filtcr si/c by an cxponcntial incrcasc 
in thc spacc bctwccn samplc points. I\ sccond tcchniquc for rcducing thc coinplcxit) o f a  1101-P transform to 
O(N I.og Y )  multiplies is rcfcrrcd to as "cnscadcd convolution wi t l i  cxpansion". This mcthod cxploits two 
rnatiicmatical propcrtics: (1) thc six-scaled rcplication of tlic Giiussian hnctional form as chc rcsult of the 
convolution of a Gaussian function with itself. (2) a scaling opcration that is bascd on remapping the 
cocfficicnts of a filtcr into a ncw sarnplc grid. leaving zcro or Lindcfincd sarnplcs bctwccn thc samplcs of the 
rcmappcd filcr. 

In thc following sections wc first discuss thc two-dirncnsional circularly syrnmctric Gaussian filtcr, and its 
propcrties undcr convolution. We thcn dcscribc the c'xpansion opcrator and chc algorithm for cascaded 
convolution with cxpansion. togcthcr with an analysis of its complexity. 

3.2.1 The Two-Dimensional Circularly Symmetric Gaussian Filter 

In cascadcd convolution, an impulsc rcsponsc covcring a large support is obtaincd by rcpcatcdly 
convolving thc signal with copies of an irnpulsc rcsponsc ovcr a smallcr suppon. This algorithm will-only 
produce s i x  scaled copics of thc low-pass impulse rcsponsc if Gaussian low-pass filtcrs arc uscd. This may be 
shown by thc Gaussian autoconvolution scaling property, dcscribed below. 

Thc Gaussian hnction is most commonly known in its onc-dimcnsional form 

where I( is refered to as the mean and u as the standard deviation. 

The term l / a d z  scales the Gaussian hnction so that it has unit area. 

A discrete two-dimensional Gaussian filter may be obtained by assuming a zero mean and applying the 
substitution 

R2 
at =-, and 

2 a  
The coeficicnts are thcn obtained by sampling the continuous hnction at the points given by the discrete 

variables x and y where t2 = x2 + y2 5 R2. 

Implicit in this filter is multiplication by a uniform circular window (or apcrture or support), the disk 

1 for ~ ~ + y ~ i ~ ~  
0 otherwise 



To control thc filtcr gain. tlic filter cocfficicnts arc normnlizcd so that thcy sum to 1.0. I'his is done by 
summing thc cocfficicnts ;md tlicn dividing cad1 coct'ficicnc by thc sum. 

Thus  thc normalizcd two-dirncnsional Gaussian low-pass filter dcfincd ovcr a circular suppon is givcn by: 

Whcrc A is J gain facror given by 

I d l R  l Y l 9  
Thc circularly symmctric tinction cR(x,y) has a transfcr fiinction [19] 

where JL(') is the first order Bcsscl function. 

Thc Ghussian filter g,(x.y) has a transfer hnction which is a Gaussian hnction convolved with the transfer 
hnction of its apcrture (or support) (191. 

1 da- -R2(u2+v5/4a 

A R d w  
~ , ( u , v )  = -c,(u,v) * (-1 e 

An experimental procedure has shown that the paramcters R=4.0 and a = 4.0 work quite well for 
cascaded convolution with expansion[lO]. With these parameters, the transfer hnction of the impulse 
response has its first zero crossing .in a circle of radius approximately equal to n. This gives a fiIter with a 
pass-band and transition region which just fits within the Nyquist boundary. 

The Gaussian is the only two-dimensiond hncrion which is both circularly symmetric and scparablc into 
one-dimensional components. If the Gaussian kernel is multiplicd by a squarc suppon rather than a circular 
disc, then thc entire impulse response can be scparated into a cascade of one-dimcnsional components. In 
this case, the corrclation opcration can be implcmenred with significantly fcwer multiplics by replacing the 
convolution with a (2R+ 1) x (2R+ 1) circular filter by two convolutions with 2R + 1 point onc-dimensional 
filters ( one for each dimension). This requires a total of only 4R + 2 multiplications for cach picture point 
instead of 4R2+4R+1 multiplications[17]. The square support degrades the circular symmetry of the 
function. The result is some additional aliasing along the axes when the filtcred sequence is rcsampled. 

3.2.2 Cascaded Convolution 

It can be easily shown that a Gaussian finction convolved with itsclf yields a Gaussian hnction whose 
standard deviation is q? largcr than the original hnction. For example, in one dimension, the convolution 
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may also bc cxprcsscd as thc product of Fouricr transforms 

The invcrse Fouricr transform of this product is 

o2Vn 

Returning to standard form rcquircs the substitution 
- 

2 2 al = 2a or o1 = 4 2  a. 

Thus thc standard dcviation, and hence the function width. have been cxpanded by a factor of 47, Note 
also that autoconvolution prcscrvcs thc unit area normalization; the arnplitudc has bccn multiplied by a factor 
of Vd?. The discrcte Gaussian filter is of finitc cxtcnt, and thus is not an exact Gaussian. For this rcason 
the Gaussian scaling property only holds as an approximation for the discrcte Gaussian filter. 

Cascaded convolution provides an inexpensive method to obtain the convolution of an image with g,(x,y). 
That is, low-pass image 1 is obtaincd from low-pass imagc 0 by a second convolution with g,(x,y), yielding the 
effective filter, 

g[(x.Y) = g.a(x*Y) * g,(X*Y) 

However, low-pass imagc 2 then requires two additional convolutions with go(xty), and low-pass image 3 
requires four more such co_nvolutions with g,(xy). This exponential growth may be averted by rcsampling 
each low-pass image by q2 before the next convolution, or by expanding the g0(xy) onto a larger sample 
grid with the 47 expansion operator. 

3.2.3 The Expansion Operator 

In addition to cascaded convolution we also employ a technique refered to as "expansion" in the algorithm 
described below. Expansion is possible because we are using low-pass filtcn that are designed with a high- 
frequency stop band. These filters attcnuatc the spurious high- frequency signals created by the "cxpansion" 
operation. 

The expansion opcration is a spatial remapping of the samples of a filter so that the distance between 
samples is altered. This remapping docs not affect the number of samplcs in a filter or the values of these 
samples. Algorithm arc described below in which expanion is used as a method of scaling the impulse 
response larger in size by a factor of d2 . Expansion by 4 2  is ncccssary in order to convolve a filter with an 
image which has been r c m p l e d  to a 4 2  sample grid, as is required when cascaded convolution is used with 
I/? resampling. Howcvcr, it is also possible to use this expansion to sizc-scale a filtcr which is to be 
convolved with a conventional Cartesian grid. The only rcstriction is that thc high ficqucncy energy generated 
by expansion must be attcnuatcd by othcr filters in the cascade. 

- 
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7.11~ cxpansion opcration may bc modclcd as n spatial scaling foilowcd by a rcsainpling. A siinplcr analysis 
can be pcrformcd by considcring thc spacing bctwccn cocfficicnrs. I3oth anal>sis producc thc samc result: 
'I'hc trmsfcr function of thc filtcr is scnlcd smallcr in frcqucncy by thc Cxpi\IISion. and copics of  thc trnnsfcr 
function appcnr rcflcctcd o\cr n ncw Syqiiist boundary irnposcd by thc spncc bctwccn sainplcs. lhc 
conditions undcr which cxpansion can bc uscd without distorting thc imagc arc always thc samc. Ihc 
compositc cnscadc filtcr must havc a vcry high nttcnuation cvcrywhcrc outsidc of thc ncw Nyquist boundary 
of tlic samplc grid onto which thc filtcr cocfficicno; arc rnappcd. 

.~ 

Let us dcfinc (x,y) as points - in thc cartcsian grid in which a filtcr is dcfincd, and (xc,y,) as the 
corresponding points in a d2 grid onto which thc filtcr is rcmappcd. A singlc application of the 
d5 cxpansion - opcration maps cach row from a filtcr on a carrcsian samplc grid into cvcry othcr diagonal of 
the d? grid. This mapping takcs cach cocfficicnt from point (x.y) of  a filter g(x.y) and placcs it at point 
(x-y,x + y )  of a filtcr ge(xe.ye). Points of g,(x,,y,) which rcccive no cocfficicnt undcr this mapping arc'dcclared 
to bc undcfincd or zero. 

Let us dcfinc this mapping as thc function E f i  {.}. Since 

x e = x - y  
Y e = x + Y  

we obtain 

-x  + y  

2 
Y =  e 

Thus this function may be defincd by 

This mapping is illustrated by Figure 7. This figure shows the corrcspondcnce between points in the 
mapping. The dashcs ("-") indicate the points which are not defined in the new filter. 

- 
The algorithm for cascaded filtcring with expansion employs recursive application of the q 2  expansion 

operation. Each expansion enlargcs the smallcst distance between samples by d? and altcrnatcs the 
direction of that smallest distancc between 545" and Oo,900. For this, we can dcfine a more general 
expansion opcrator: EfikI.}. This more gencral opcrator expands thc filter to the Samc grid as an image 
which has been d? sampled k times. 

Each application of the dT expansion operation rotates the filtcr by 45". For a circularly symrnctric filter 
this rotation has no effect and we can express an expansion of d2 as k recursive applications of the 
47 cxpansion. 

-k 



maps into 

. ( I 4  
.(OJ) - .(LO) 

4-1.1) - .(O,O) - .&-I) 
.(-LO) - .(O,-l) 

.( - 1, - 1) 

Figure 7: Examplc of mapping given by E f i I . 3  

- 
The gcncral d2 expansion operation, Efik{g(x.y)), may be cxprcssed informally as follows. For each 

point (x.y) at which the filter g,-,(x,y) is dcfincd, dcfine a new point in g,(x,y) at (x-y, x+y)  and copy the 
value from gk-,(x,y> into the point. 

This mapping may be expresscd more formally as follows: W h e n  k is odd, thc filter is mapped onto a grid 
whose axes are +45', and whose smallst distance between samples is 2&12. The points on this grid are those at 
which 

x mod 2(&+1)/2= y mod 2(kf1)/2 = 0. 
e e 

For even k. the expanded filter will be mapped onto a grid whose axcs are at 0' and 90". The distance 
betwccn samples along these axes will also be 2k/2.  The mapping EGk{g(x,y)} may be dcfined as: 

For even k: 

undefined otherwise 

For odd k 

undefined Otherwise 
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- 
3.2.4 Frequency Domain Effects of d2 Expansion 

- 
- The 42 cxpansion opcrator has a wcll dcfincd cffcct on thc trsnsfcr function of - its urgurncnt. A s  with 

d2 sampling, a ncw Nyquist boundary is crcatcd which is a 45' rotation and a V2 shrinking of thc old 
boundary. Insidc - this ncw Nyquist boundary is a copy of thc old transfcr function scalcd srnallcr in siLc by a 
factor of 4 2 .  Outsidc this ncw Nyquist boundary is a rcflcction of thc scalcd transfcr function. This is 
illusuatcd by Figurc 8 bclow, which shows thc 3 dB contour of .I low-pass filtcr bcforc and aftcr thc expansion 
opcration. Figurcs 9 and 10 show plots of thc transfcr fhctions of thc Gaussian low-pass filtcr ( R  =4, a =4), 
bcforc and aftcr thc cxpansion opcration. .Notc thc four lobcs in thc corncrs of Figurc 10. -1hcsc arc the 
rcflcctions of thc pass rcgion. If these wcrc to show up in thc compositc filtcr thcy could caiisc a large 
stop-band rcsponsc, which would altcr thc locations of pcaks and ridgcs. in thc rcsulung band-pass images. 

3dB Contour V I  

> U 

Figure 8: Effect on Transfer Function of E f i  Expansion 
Operator 

b 

Efi{.} scales the size of the transfcr function by d so that it approximates the larger Gaussian filter, 
g,(xy) within the new smaller Nyquist boundary. That is 

3Efi{go(X.Y)33 = 3bl(X.Y)3 
within 
II 

Where 4) is the transfer function [17]. 
I u + v I n The new Nyquist boundary. 

For the parameter values R=4,  a=4 the pass-band is welt within this new Nyquist boundary, and the 
reflection of the p,ass-band falls into the stop-band of the prcvious filter. That is, outside of the new Nyquist 
boundary, 
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- 
Figure 9: Transfer Function Go(u,v) for R = 4.0, a = 4.0 Bcfore 1/2 Expansion 

f l ' gO(X.Y)  * go(x.Y)) 

will be very small (Le. less than -60 dB where the reflected nodes are presenc for R = 4 ,  a=4) and thus the 
product 

will also be veG small outside the new Nyquist boundary. As a result, the impulse response at low-pass level 
2 is approximated by 

* 
Figure 11 is a plot of the cransfcr hnction of the levcl2 low-pass filter. As can be seen the response in the 

comers is so small that it does not register in this plot. The filter was constructed by convolving go(x,y) with 
itsclf ( Q =4, R = 4), and then convolving an expandcd version go(x.y) with this compositc filter. Thus this is 
the same impulse responsc which would occur at low-pass level 2 of a DOLP transform computcd using 
cascadcd convolution with expansion. A logarithmic plot of thc amplitude of G2(u,v) is shown in Figure 12. 
This.plot spans 120 db in amplitudc wirh the vertical marked on the left at intervals of 10 db. Thc response in 
the comer regions arc attenuated more than 100 dB from the peak. 
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Figurc 10: Transfer Function G,(u,v) of filter Aftcr I/: Expansion 

Notice - that thc pass region at the center of the Nyquist plane has been scalcd smaller 
by 4 2  . Tl~c comers of the Nyquist plane contain copies of the size-scaled pass region. 
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Figure 11: Filtcr G2(u,v) for R = 4.0, a = 4.0 
%(X*Y) = BO(X*Y) * go(x.Y) * Efi{go(x.Y)1 
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Figure 12: Plot of 20 LogldG2(u,v)] 
Scalc (shown at left) spans -120 dB. 
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3.2.5 Complexity Analysis of Cascaded Convolution with Expansion 

Tlic algorithm for cascadcd convolution with expansion is illustraced by tlic flow graph in Figurc 13. Its 
computational cornplcxity may bc sccn by an analysis of thc stcps in thc nlgorithm. 

Low-pass imagc 0, L,(x,y) ,is produccd from thc original imagc, p(x.y) ,by convolution with g,(x.y). 

L.(X.Y) = d.w) * g,(x.v) 

Band-pass lcvcl0, 5BB.(x.)% is thcn produccd by Subtracting Lo(x.y) from p(x.y). 

3 .(X.Y) = d x . ~ )  - I. .(X.Y) 

Thc convolution requires N X, multiplies and additions, and chc subtraction rcquircs an additional N 
additions. 

Low-pass lcvcl 1 is then formed by convolving low-pass levcl 0 with the low-pass filter. 

L,(xy) = L,(XY)* g,(xu! 

%,(X.Y! = L,(x.Yl - Ll(X’YI 

Band-pass levcl 1 is thcn Formed by subtracting low-pass lcvel 1 from low-pass level 0. 

As with band-pass levcl 0, the convolution requires N X, multiplics and additions while the subtraction 
requires an additional N additions. 

Low-pass level 2 is then formed by convolving low-pass level 1 with - an expanded version of the low-pass 
filter. The expansion operation scales the filter larger by a factor of g2 without increasing the number of 
coefficicnts. 

q x Y 1  = +Yl* E f i { g e ( x Y 1 I  

4B2(x.Y1 = Ll(XYl - Lzcxul 

Band-pass level 2 is then Formed by subtracting low-pass level 2 horn low-pass level 1. 

Since expansion does not alter the number oFcoefficients this convolution also requires N X, multiplies and 
additions and thc subtraction requires an additional N additions. 

Low-pass level 3 is then formed by convolving low-pass level 2 with a twice expanded version of the 
low-pass filter. Two applications of the expansion operation scales the filter larger by a factor of 2 leaving the 
original filter coefficients on a grid with every ocher row and column set to zero. 

I . 3 h ! !  = +Y) 46 E@{g,(sYll 

93(XY! = L ~ ( X Y )  - q . . . Y )  

Band-pass level 3 is then formed by subtracting low-pass levcl 3 from low-pass level 2 

Since expansion does not alter the number of cocfficicnts this convolution also requires N X, multiplies and 
additions and the subtraction requires an additional N additions. 

In a similar manner, each band-pass image k is produccd by first creating low-pass imagc k by convolving 
low-pass imagc k-1 with a copy of the low-pass filter which has becn expanded k-1 timcs. 

, 
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Figure 13: Data Flow Graph for Cascadcd Convolution with Expansion 
- 

This fast algorithm uses cascaded convolution and v2 expansion to compute a 
DOLP transform in O(N Log(N)) multiplies 
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Lk(%.L) = L,-,(X.)t) * E f i ( k - l ) k o ~ . C Y ~ 1  

%kw) = q&.YI - L,(X.Y) 

Low-pass irnngc k is thcn subtractcd from low-pass imagc k-1 to producc band-pass imagc k. 

Sincc cxpansion docs not altcr thc numbcr of cocfficicnts cach convolution rcquircs N ,Yo multiplics and 
additions and c x h  subtraction rcquircs an additional N additions. 

Sincc thcrc arc K = Log,(N) band-pass imagcs, the total cost is 

C = X, N Log,(N) multiplicsand 
(Xo + 1) N Logs(N) additions. 

Sincc cascadcd convolution docs not involvc rcsampling the any of thc irnagcs. thc mcrnory costs for 
computing a DOLP uansform in this manncr arc not affcctcd. As with cquation (6) ,  the memory 
rcquirerncnts arc 

M = N Log,(N) rnemorycells 

3.3 Resampling and Cascaded Convolution with Expansion 

The computational cost and memory requircmcnts for a DOLP transform can be rcduccd substantially by 
rcsampling cach low-pass imagc before each cascadcd convolution. The savings in computational complexity 
result bccausc there rcsampling reduces thc nurnbcr of points at which thc convolution is cvaluatcd for cach 
new level. while cascadcd convolution holds the nurnbcr of filtcr cocfficicnts constant. In this fast algorithm 
rccursive expansion of thc low-pass filter is not necdcd. In the odd number levcls, expansion is given 
implicitly by the resampling. In the even numbercd levels, a' single dT expansion is needed to place the filter 
coefficients on the same sample grid as the data. 

3.3.1 The Algorithm and Complexity Analysis 

The algorithm for rcsampling and cascadcd convolution with expansion is illustrated in the data flow graph 
shown in Figure 14. This algorithm runs as follows. Low-pass and band-pass levels 0 and 1 are computed as 
described above for cascadcd convolution with expansion. That is, low-pass level 0 is constructed by 
convolving the picture with the low-pass filter g,(xy). 

Lo(&Y! = dw!! 46 gQ(XY1 

fBo(x,Y) = dul- L O ~ X Y !  

bO(XYJ = WXY) - t?O(XY! 

Band-pass lcvel0, fBO(xy), is then produced by subtracting L0(x,y) from dx,y) .  

Thus the band-pass impulsc response at level 0 is 

Low-pass level 1 is then formed by convolving low-pass level 0 with thc low-pass filter. 

+.Yl = Lo(x,Y! * g o b ! !  

Band-pass lcvcl 1 is then formed by subtracting low-pass level 1 from Ibw-pass level 0. 
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Figure 14: Data Flow Graph for Composite Fast Algorithm Using 
Rcsampling and Cascaded Convolution with Expansion 
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‘k(’*)!! = ‘k-I(xy) * E f i ( g , ( x * Y ) )  

In  both cascs thc band-pass image is then formed by subtracting the result of the convolution from‘ the 
prcvious low-pass image. 

For S, = d?, each resampling reduces the number of Sample points by 2, and thus reduces the number of 
multiplics and additions by a factor of 2. Thus the total number of multiplies and additions is given by 

C = Xo N ( 1 + 1 + 1/2 + 114 + 118 + ...) 

and 
= 3 N X, multiplies 

3 N ( X ,  + 1 ) additions. 

As with the resampling algorithm described above, the total number of memory cells required is 

M = 3 N  

3.3.2 The Impulse Responses for Cascaded Convolution with Expansion and Resampling 

In the cascadcd filtering algorithms described above, the band-pass imagcs arc formed by subtracting 
adjacent low-pass images. The band-pass impulse rcsponses arc thus equal to a difference of low-pass impulse 
responses which are produced by cascaded filtering. Bcd3usc a finite impulse rcsponsc Gaussian filtcr is only 
an approximation of the Gaussian function, the low-pass impulse responses for levels 1 through K are only 
approximations of scaled copies of the level 0 low-pass impulse Fesponse. 

The low-pass impulse response at level 1 is 

- 
Thus at low-pass lcvel 1, a v2 scaling in size of g,(x,y) is approximated by the simple cascadcd convolution 
ofgo(x,y). 
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- 
Low-pass lcvcl 2 is formcd by rcsampling low-pass lcvcl 1 at a sample distance of d2 and thcn convolving 

with an cxpandcd vcrsion of thc low-pass filtcr g,(x,y). 

Tllc low-pass imagc from lcvcl2 is then rcsarnplcd at a distancc of v'y for a sccond tirnc, which placcs it on 
a samplc grid with a unit distance of 2. 'fhis low pass imagc is thcn convolved with thc low pass fltcr g,(x,y). 
The resampling providcs a remapping of t h ~  filtcr cocffcicnts and so no expansion is nccdcd at this level. 
'Thus the s i x  scaling of go by a factor of 2 4 2  is approximatcd ky 

In gcncral. the impulse rcsponsc at low-pass level k, from k = 2  to K-1 is given by thc following recursive 
rclationships dcpcnding on whcthcr k is cvcn or odd: 

For even k: 

And for odd k: 
gk(XY) = E f i { g , h y ) l  * S f i { g & U I 3  

r3k(x'YI = go(xY) * S f i k & Y ) l  

3.3.3 The Size of the Impulse Responses 

Size scaling the kernel low-pass impulse responsc by rcsampling the continuous Gaussian hnction at a 
denser samplc rate would yield a sequence of radii R, given by 

The sequence of radii is somewhat differcnt with cascaded filtering. In this casc, the expansion operation 
maps the hrthest coefficien4 at say, (R,o), to a new point at (R,R). This gives an incrcase in radius of ~ 5 .  
Convolution with the composite low pass filtcr then adds this new size to that of the composite filter. 

That is, at level 0 the radius is R,. At levcl 1 the composite filter is thc auto-convolution of go(x,y), and its 
radius is thus 2R0-1. The level 2 composite filter is formed by convolving the level 1 composite filter with an 
d? expanded vcrsion of g,. The radius of the level 2 composite filter is thus 2R, + 42 R, - 2. A general 
formula for the radius at any level k > 0 is 

&-I) 

R, = Re - k + Rex (q:>.-l 
n =O 

4 An Example of the  DOLP Transform 

Figure 15 shows a rcsamplcd DOLP transfonn of an image of a teapot chat was produccd using the fast 
computation techniqucs. In this Figure the image at the lower right is thc high frequency image, aO(xy). 
The upper left comcr shows the lcvel 1 band-pass image, %l(x.y~. while thc upper right hand corner contains 
the level 2 band-pass image, '3$(xly). Undcrncath the levcll Band-pass image are levels 3 and 4, then 5 and 6, 
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Figure 15: The Resampled DOLP Transform of a Teapot Image 
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Figure 16: Levek 5 Though 13 of the Resampled DOLP Transform of a Teapot Image 
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ctc. Figurc 16 shows an  cnhrgcd vicw of band-pass lcvcls 5 through 13. This cnlargcrncnt illustratcs the 
uniquc pcaks in thc low frcqucncy imagcs chat oxcur for c x h  gray-scale form. 

l'hcsc imagcs wcrc formcd using both rcsmpling and cnsczdcd convolution with cxpansion. Each band- 
pass - impulsc rcsponsc is composcd of a diffcrcncc of Gaussian low-pass filtcrs with a ratio of scalcs of s, = 
V'Z . lhcsc band-pass imagcs wcrc computcd by forming low-pass images with thc cascaded convolution 
with cxpansion tcchniquc and thcn subtracting to form thc [kind-pass imagcs. 1Xc USC of t /2  rcsampling is 
apparcnt from thc rcduction in sizc for cach i m s c  from lcvcl 3 to 13. In thc cvcn numbcrcd irnagcs. on the 
right of cach pair. thc imagc is actually on a d2 samplc grid. To display thcsc I/? imagcs, cach pixcl was 
ptintcd twicc. crcating thc intcrlocking brick tcxturc cvidcnt in Figure 16. 

- 

5 Summary and Conclusions 

This papcr has dcfincd the Diffcrencc of Low-Pass ( DOLP ) transform. The DOLP transform is a 
revcniblc transform that scparatcs a signal into a sct of band-pass components. The DGLP transform s e m s  
as thc basis for a rcprcscntation for two-dimensional shapc that is described in a companion papcr [ll]. The 
DOLP transform is shown to require O(N2) multiplies and producc O(N Log(N)) samples. 

I h c  DOLP transform is interesting bccausc shapcs ( and signals ) which are represcntcd by cncoding peaks 
and ridges ( or zero-crossings ) in the DOLP transform can bc matched efficiently dcspitc changes in size, 
oricntauon, or position, and dcspitc corruption by imagc noisc. One of the biggest obstacles to usc of the 
DOLP transform for describing and matching shapcs in images was the apparent computational and memory 
costs. In this paper we have describcd two indcpendcnt tcchniques which may be used to reduce the 
computational complexity and storage costs of a DOLP transform. The tcchnique of resampling is shown to 
rcducc the computational complcxity of a DOLP transform to O(NIag(N)) multiplies and the storage 
requirements to O(N) samples. The technique of cascaded convolution with expansion is also shown to 
reduce the computational cost of a DOLP transform to O(NLog(N)) multiplies, but does not affect the 
storage requirements. It is thcn shown that these .two techniques may be combined to produce a DOLP 
nnsfonn in O(N) multiplies that requires O(N) samples. 

Cascaded convolution has been investigated rcccntly as a technique for efficicntly realizing large digital 
FIR filters[l]. In particular, Burt[S] has employed a cascaded convolution of a kcrnel which is an 
approximation to a Gaussian to obtain larger "Gaussian-like'' filters. Such a_proccss requires a doubling in 
the number of convolutions with the fixed s i x  kcrncl for each increase of 4 2  in filtcr sizc. Our use of the 
expansion function, however, pcnnits a compositc Gaussian film of size Sd? to be formed From a composite 
Gaussian of size S by one convolution of the kcrnel filter. This tcchnique is general and should be of benefit 
whenever low-pass kerncl filters are cascaded to form larger impulsc responses, 

The scale factor of d? for filter size results naturally from both fast techniqucs. In resampling, it occurs 
because it is the smallest distance larger than one bctwecn samplcs on a Cartesian grid. It is the smallest rate at 
which a two-dimensional discrete sequence can be rcsamplcd without intcrpolation. The factor d2 also 
occurs with cascaded filtering. It is the increasc in sizc scalc provided by convolving a Gaussian low-pass filter 
with itsclf. This happy coincidence indicatcs that dy is a vcry convcnicnt value for the scalc factor for a 
DOLP transform that is to be uscd to rcprcsent images for matching; And, indccd, this factor turns out to 
work quite well [lo] for rcprescntation and matching with the DOLP transform. 

- 
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'lhc most important rcsult of this work is that it mnkcs available thc rcprescntationd powcr of thc Il0L.P 
transform witlioiit a prohibitivc cost in computation. For 3 256 by 256 irnagc. if thc scpxablc form of thc 
Gaussian filtcr is uscd. tlic total cost of computation for thc 16 band-pass images is 

C = 3 x 18 x 256' = 3.538 million rnultiplics 

cornparcd to 

C = 18 x 256' = 77,309.41133 million rnultiplics 

without thc tcchniques of cascadcd convolution with cxpnnsion and rcsarnpling. Thus, thc calculation of a 
DOLP transform in undcr a sccond is rnadc possiblc by irnplcmenting thcsc fast tcchniqucs on cornmcrcially 
available high-spccd vcctor proccssing pcriphcrals. 



34 

References 

l91 

Abramntic, J. F. and 0. I). Faugcrns. 
Scqucntial Convolution ‘I-cchniqucs for Image Fittcring. 
IEEE Trans. o)t Acous. Speech and Sipial Processing ASSP-30( 1): 1-10, February, 1982. 

Aho, Alfred V . ,  John E. Hopcroft. and Jcffcry D. Ullman. 
Cornpurer Science arid I) formation Processing: The Design and Aiialysis of Cornpurer Algorithms 
Addison Wcslcy, Reading ,Massachusetts, 1974. 

Binford, Thomas 0. 
Survcy of Modcl-hscd Irnagc Analysis Systems. 
Roborics Research 1( 1): 18-64, Spring, 1982. 

Burt, Peter J. 
Fast, Hierarchical Correlations wirh Gaussian- Like Kern&. 
Tcchnical Report TR-860, Computer Vision Laboratory, University of Maryland, January, 1980. 

Burt, Pcter J. 
Fast Filter Transforms for Image Processing, 
Cornpuler Graphics arid Image Processing 16:tO-51,198 1. 

Campbell, F. W. 
The Transmission of Spatial Information through the Visual System. 
In F. 0. Schrnitt and F. G> Worden (editor), The Neurosciences: Third Srudy Program, . MIT Press, 

1974. 

Campbell, F. W. and J. G. Robson. 
Applications of Fourier Analysis to the Visibility of Gratings. 
Journal of PhysioIogy :551-566.1971. 

Crowley, J. L. and A. C. Parker. 
The Analysis, Synthesis, and Evaluation of Local Measures for Discrimination and Segmentation of 

In Conference on Pariern Recognilion and Image Processing, pages 372-378. IEEE Computer Socicty. 
Textured Regions. 

June, 1978. 

Crowley, J. L. and A. C. Parker. 
Transfer Function Analysis of Picture Processing Operitors. 
In Robert M. Haralick and J. C. Simon (cditor), Issues In DigilaZ Image Processing, chapter 1, pages 

3-30. Sijthoff & Noordhoff, 1980. 

Crowley, James L. 
A Represen ralion for Visual Informalion. 
PhD thcsis, Carnegie-Mcllon Univcrsity, November, 198 1. 



35 

Crowlcy, 1. L. 
A Rcprcscntation for Shapc nascd on Pcaks and Ridges in tlic Diffcrcncc of Low-Pass l'ransfom. 
To be Subinitred to IEEl; Trotis. on P.A.'\[.I. , 1982. 

Hall, E. L., Rougc, Lt. J. and Wong, R. Y. 
Hicrarchical Scarch for lrnagc Matching. 
In Proc. 1976 IEEE Cor$ oti Decision and Control. pagcs 791-796. IEEE, Dcccmbcr, 1976. 

Marr, D. and Poggio, T. 
A Computational Theory of Human Vision. 
Proc. R. Soc. Lond B , 1979. 

Man,  D. L., and Hildrcth, E. 
Theory of Edge Detection. 
Technical Report A.I. Memo 518, M.I.T., April, 1979. 

Moravec, H. P. 
Obstucle Avoidance and Navigation in the Real World by a Seeing Robot Rover. 
PhD thcsis, Stanford University, September, 1980. 

Nyquist, H. 
Certain Factors Affecting Telegraph Speed. 
Bell Systems Tech Journal 3(2):324-346, April, 1924. 

Oppcnheim, A. V. and Schafcr, R. W. 
Digital Signal Processing. 
Prentice-Hall inc., Englcwood Cliffs, N. J., 1975. 

Paley R.EA.C. and N. Wiener. 
Fourier Transfonns in ihe Complex Domain 
American Mathematical Society Coloquium, 19, New York, 1934. 

Papoulis, A. 
Systems Sciences: Systems and Transfonns wiih Applications in Optics 
McGraw-Hill, New York, 1968. 

Pratt, William K. 
Wiley- Interscience: Digital Image Processing 
John Wiley & Sons, 1978. 
page 322. 

Rosenfcld A. and Vanderbrug, G. i. 
Coarse-Fine Template Matching. 
IEEE Trans on Man. Systems and Cybernetics SMC-7(2):104-107, Feb., 1977. 



36 

[22] Sachs. M. , J. Nachinias, and 1. G. Robson. 
Spatial-l-.rcqucncy CIianncls in Human Vision. 
Jourtinlof the OpticalSociety of ,.imerica61:1176-1186, 1971. 

[23] Thomas. J. P. 
Spacial Rcsoiution and Spatial Interaction. 
In E. C. Cartcrcttc and M. P. Friedman (cditor), Handbook of Perceprion. Vol V: Seeing. . Acadcmic 

Press, New York. 1975. 


