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Abstract:

This paper defines the Difference of Low-Pass (DOLP) transform and describes a fast algorithm for
its computation. The DOLP is a reversible transtorm which converts an image into a set of band-pass
images. A DOLP transform is shown to require O(N2) muitiplies and produce O(N Log(N)) samples
from an N sample image. When Gaussian low-pass filters are used, the result is a set of images which
have been convolved with difference of Gaussian ( DOG) filters from an exponential set of sizes.

A fast computation technique based on "resampling” is described and shown to reduce the DOLP
transform complexity to O(N Log(N)) multiplies and O(N) storage locations. A second technique,
"cascaded convolution with expansion”, is then defined and also showi to reduce the computational
cost to O(N Log(N)) multiplies. Combining these two techniques yields an algorithm for a DCLP
transform that requires O(N) storage cells and requires O(N) muitiplies.

The DOLP transform provides a basis for a structurai description of gray-scale shape. Descriptions
of shape in this representation may be matched efficiently to descriptions of shape from other images
to determine motion or stereo correspondence. Such descriptions may also be matched independent
of their size or image plane orientation.
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1 Introduction

‘The Difference of Low-Pass (1DOL.P) Transform is a reversible transform which converts an image into a
sct of band-pass images. These band-pass images comprise a three space (the DOILP space) which serves as
the basis for an efficient technique for matching descriptions of shape [10].

The band-pass images which composc the DOI.P space are cach equivalent to a convolution of the image
with a band-pass filter, b,. Each band-pass filter is formed by a difference of two size-scaled copies of a
low-pass filter, g, , and g,.

b= 8- 8
Each low-pass filter g, is a copy of the low pass filter 8k scaled larger in size by a scale factor.

In the following scctions we motivate the need for fast computation of a multi-resolution description of
image signals, and bricfly describe a representation based the DOLP transform. This representation is the
topic of a companion paper [11]. We then introduce two techniques for speeding the computation of a DOLP
transform. A fast algorithm based on thesc techniques is described below. This algorithm reduces the
complexity of computing a DOLP transform from O(Nz)l to O(N) multiplics and additions, where N'is the
number of sample points in an image.

1.1 Motivation:The Structural Description of Images

Interpreting the patterns in an image requires some form of matching. If the interpretation is restricted to
two-dimensional patterns, this matching is between descriptions of shapes in the image and object models. If
the interpretation is in terms of three-dimensional objects then techniques for matching among sterco images
or motion scquences may be required. In either case, the matching problem is simplified if descriptions are
compared at multiple resolutions.

Detecting peaks and ridges in a DOLP Transform provides a structural description of the gray-scale shapes
in an image. Matching the structural descriptions of shapes in images is an cfficient approach to detcrmining
the three-dimensional structurc of objects from stereo pairs of images and from motion sequences of images
[13]. Martching to a prototype description of an object class is also uscful for rccognizing shapes in both
two-dimensional image domains and threc-dimensional scene domains [3]. The motivation for computing a
structural description is to spend a fixed computational cost to transform the information in each image into a
representation in which searching and matching are more efficient. In many cases the computation invaolved
in constructing a structural description is regular and local, making the computation amcnable to fast
implementation in special purpose hardware.

Several researchers have shown that the efficiency of scarching and matching processes can be dramatically
improved by performing the search with a multi-resolution. hicrarchy. Moravec [15] has decmonstrated a
multi-resolution correspondence matching algorithm for object location in sterco images. Marr and Poggio
[13] have demonstrated correspondence matching using edges detected by a difference of Gaussian filters at

1'l‘he symbol O() is pronounced “order of". A function, g(n) is said to be of O(fn)) if there exists a constant, ¢, such that g(n) < ¢ffn)
for all but some finite (possible empty) set of nonnegative values for n [2).






four resolution. Rosenfeld and Vanderbrug [21] have described a two stage hicrarchical template matching
algorithm. Hall has reported using a multi-resolution pyramid to dramatically speed up correlation of acrial
images [12]. It should also be noted that Burt has recently reported using cascaded convolution of "Gaussian-
Like™ kernels to construct a form of DOLP transform [4].

There is also experimental evidence that the visual systems of humans and other mammals scparate images
into a sct of "spatial frequency” channels as a first encoding of visual information. This "multi-channel
theory™” is based on measurements of the adaption of the threshold sensitivity to vertical sinusotdal functions
of various spatial frequencies [7), [22). Adaption to a sinusoid of a particular frequency affects only the
threshold sensitivity for frequencies within one octave. This evidence suggests that mammualian visual systems
cmploy a sct of band-pass channcls with a band-width of about one octave. Such a set of channcls would
carry information from different resolutions in the image. These studies, and physiological experiments
supporting the concept of parallel spatial frequency analysis, arc reviewed in [6] and [23].

1.2 The Structural Description of Shape Based on the DOLP Transform

The DOLP transform provides the basis for a representation in which two-dimensional gray scale shape is
described by a trce of symbols [10]. A description in this representation contains a small number of symbols
at the root. These symbols describe the global (or low-frequency) structure of a shape. At lower levels, this
tree contains an increasingly larger numbers of symbols which represent more local events. Finding the
correspondence between symbols at one level in the tree constrains the possible set of correspondences at the
next higher resolution level.

The description is created by detecting local positive maxima and negative minima (pcaks) in cach band-
pass image of a DOLP transform. Local peaks in thc DOLP three-space define locations and sizes at which a
DOLP band-pass filter best ‘fits a gray-scale pattern. These points are encoded as symbols which serve as
landmarks for matching the information in images. Peaks of the same sign which are in adjacent positions in
adjacent band-pass images are linked to form a tree. During the linking process, the largest peak along cach
branch is detected. This largest peak serves as a landmark which marks the position and sizc of a gray-scale
form (or shape). The paths of the other peaks which are attached to such landmarks provide a further
description of the shape of the form, as well as a continuity with structural forms at other resolutions. Further
information is encoded by detecting and linking two-dimensional ridge points in each band-pass image and
three-dimensional ridge points within the DOLP three-space.

1.3 A Fast DOLP Transform

A full DOLP transform of an image composed of N samples, produces K = Logs(N) band-pass images
composed of N samples each, and requires O(Nz) multiplics and additions, where, S is a "Scale Factor” which
is discussed below. Two techniques can be used to reduce the computational complexity of the DOLP
transform: "resampling” and "cascaded convolution with expansion”.

Resampling is based on the fact that the filters used in a DOLP transform are scaled copies of a band-
limited filter. As the filter’s impulse response becomes larger in the space domain, its upper cutoff frequency
decrcases, and thus its output can be resampled with coarser spacing without loss of information. The
exponcntial growth in the number of filter cocfficients which results from the exponential scaling of size is



offsct by an cxponential growth in distance between points at which the convolution is computed. The result
is that cach band-pass image may be computed with the same number of multiplications and additions.
Resampling cach band-pass image also reduces the total number of points in the 1DOIP spacc from
N Logs(;\') samples to 3N samples.

Cascaded convolution exploits the fact that the convolution of a Gaussian function with itselt produces a
Gaussian scaled larger in size by V2. This mcthod also employs an opcration, referred to as “expansion”, in
which the cocfficients of a filter arc mapped into a larger samplc grid. thereby expanding the size of the filter.
This operation can be used without introducing distortion under certain conditions when the filter is band-
limited, and is to be convolved with a band-limited signal.

1.4 Organization of this Paper

Scction 2 defines the DOLP transform and shows that its computation requires O(N?) multiplies and
O(N Log(N)) storage locations. Each of the two fast computation techniques are described and their
complexity is analyzed in section 3. A fast algorithm bascd on both of these techniques is then described and
shown to require O(N) multiplics and O(N) Storage locations. An example is then presented of the band-pass
images that resulit from this fast algorithm in section 4.

2 The DOLP Transform

This section defines the DOLP transform and shows that its computation rcquircs O(Nz) multiplies and
O(N Log(N)) storage locations. This is followed by a description of cach of the two fast computation
techniques and an analysis of the computational complexity of the algorithms based on each technique. A
fast algorithm based on both of these techniques is then described and shown to requirc O(N) multiplies and
O(N) Storage locations.

2.1 The DOLP Transform Definition

The DOLP transform expands an N x N image signal p(x,y) into Logs(N) band-pass images B es y). Each
band-pass image is equivalent to a convolution? of the image p(x,y) with a band-pass impulse response,

b (x.3).
Bxy) = p(xy)* bfxy) oY)
The DOLP transform is illustrated in the data flow graph shown in figure 1.

For k=0, the band-pass filter is formed by subtracting a circularly symmetric lew-pass filter g,(x,») from a
unit sample positioncd over the center coefficient at the point (0,0).

bo(xy) = 8(x.y) = go(x.y) ¥}

Zh'u.: filters described in this paper are all non-recursive finite impulse response (FIR) filters. Convolutions are computed for each
sample point in the image: wilen the filter coefficients extends beyond the edge of the image, a default border value (typically 0 ) is
supplied in place of the image value.
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Figure 1: The Difference of Low-Pass (DOLP) Transform

This data flow graph illustrates the computational process for a DOLP transform. The
transform produces Logs(N) band-pass images. Each band-pass image is produced by
convolving the image with a band-pass impulse response (filter) which is a size-scaled
copy- of a prototype filter. This prototype is formed from a difference of two size-scaled
copies of a low-pass filter.

The filter b,(x.y) gives a high-pass image, B,(x,y). This image is equivalent to the result produced by the
edge detection technique known as "unsharp masking” [20].

Bo(xy) = p(xy)* (8(x,y) = 8(x3)) )]
= p(xy) - ((xy) * g,(x.)) '

For band-pass levels 1 < k < K the band-pass filter is formed as a difference of two size-scaled copies of the
low-pass filter.

bu(xy) =8 (xy) - 8 (%)) “)
Each low-pass filter, g,(x.y) is a copy of the circularly symmetric low-pass filter g,(x,y) scaled larger in size
by a factor raised to the k™ power. Thus for each k, the band-pass impulsc response, b (x.y), is a size scaled

copy of the band-pass impulse response, b,. {x.y). This property is necessary for the configuration of peaks in
a DOLP transform of a shape to be invariant to the size of the shape [10].

The scale factor is an important parameter which affects several aspects of the DOLP transform. For a



two-dimensional DOL.P transform. this scale factor, denoted Sz. has a typical value of V2. In the casc of a
one-dimensional DOLL.P wransform, the scale factor is denoted S,. and has a typical valuc of 2. 'lhis scale
factor is discussed again at the end of this section.

For two-dimensional circularly symmetric filters which are defined by sampling a continuous function, size
scaling can defined as increasing the density of sample points over a fixed domain of the function. In the
Gaussian filter, this has the cffeet of increasing the standard deviation, o, relative to the image sample rate.

In principle the DOLP transform can be definced for any number of band-pass levels K. A convenicent value
of K is

K= LogS(N)

where S is cqual to the sample distance S for a one-dimensional DOLP transform, or the square of the
samplc distance S2 for a tiwo-dimensional DOLP transform.

- = Q2
S=§ =

This valuc of K is the number of band-pass images that result if cach band-pass image, €B is resampled at
a sampling distance of Sk With this resampling, the K® imagec contains only one sample.

The DOLP transform is reversible. The original image may be recovered by adding all of the band-pass
images, plus a low-pass residue. This low pass residue, which has not been found to be useful for describing
the image, is obtained by convolving the lowest frequency (largest) low-pass filter, g (%) with the image.

K-1

Hx) = () * glxy)) + 2 B (%) s)
k=0

Reversibility proves that no information is lost by the DOLP Transform.

Because convolution and subtraction are associative the DOLP transform may also be computed by
convolving the original image with an exponentially size-scaled set of low-pass filters and subtracting each
low-pass image from the next to form the set of band-pass images. This technique is illustrated in figure 2.
One of the fast computational techniques for a DOLP transform which are described below is based on the
idea of computing the convolutions of the image with progressively larger low-pass filters which are
implemented as a cascade of convolutions with small low-pass filters.

2.2 Discussion: The Scale Factor

The parameter S, used to determine the number of levels, is crucial to both the scaling of low-pass filters
and resamnling of the band-pass and low-pass images. These two ideas are rclated when peaks and ridges
from the 1*OLP transform are to bc used to describe the shape of a form so that it can matched independent
of the size of the form. In such an application it is important that the density of samples be a fixed fraction of
the size of the band-pass impulse response. It is convenient to define a single variable, S = S2 = S to
simplify the expression for K as well as for some of the analysis given below.
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Figure 2: The Difference Method for Computing
the Diffcrence of Low-Pass (DOLP) Transform

Because convolution and subtraction are associative the DOLP transform may also be
computed by convolving the original image with an exponcntially size-scaled sct of
low-pass filters and subtracting each low-pass image from the next to form the set of
band-pass images. The data flow graph for this process shows the reversibility of the
DOLP transform. This approach is also the basis for a fast computation technique for
the DOLP transform called "Cascaded filtering with expansion”. With this technique
the sequence of low-pass images are obtained by repeated convolution with a small
kernel filter.

Marr [14] argues that a value of SZ= L6 is "optimum"3 for a difference of Gaussian band-pass filter. For
two-dimensional signals the value Sz= V2 has virtually the same effect, while providing some additional
benefits.

3Marr calls this value optimum in the sensc that it simultaneously minimizes S, while maximizing the energy in the filter. A curve of

filter energy with respect o ratio of standard deviations exhibits a "knee” in the region of 1.6. [14]. For smaller ratios the encrgy of the
resulting fiiter falls rapidly, while for larger values it is nearly constant.



The most important benefit of using Szz V2 is that V2 is the smallest naturally occuring resample
distancc on a two-dimensional cartesian grid. Thus by using 52= V2 we can resample cach band-pass image
at a distancc that is a constant fraction of the band-pass filter sive. This yields a configuration of peaks and
ridges in a IDOL.P transform that is invariant to the size of a shape, except for cyclic distortions due to
sampling cffects. Such descriptions of shapes can be matched independent of the size of the shape.

An additional benefit from using 52= \/5 comes from the Gaussian auto-convolution scaling property.
When a Gaussian function is convolved with itsclf the result is the Gaussian function scaled larger in size by
V2. We will show below that this property can be used to greatly reduce the computational cost of a DOLP
transform,

2.3 Complexity of DOLP Transform

In this section we derive formulae for the memory requirements and computational costs of the DOLP
transform. A first step in obtaining these quantitics is the calculation of the number of cocfficients in cach
filter. We do this for both the one and two-dimensional cases and then produce a general result that holds in
both cases.

Let Rk refer to the radius of the filter, and let Xk refer to the number of coefficients, for both the one and
two-dimensional cases. Also, let S; refer to the size scaling factor for the onc-dimensional filters and SZ refer
to this factor for two-dimensional filters, as above.

In the one-dimensional case, the number of coefficients is specified by the radius of the filter.
Xy =2R +1
The radii at each band-pass level k are related to the radius R, of the smallcst level by

= k
R, =R, sk

Thus the number of coefficients for the ki band-pass filter is

X, =(X,-1)S}+1

Since X, > 1 we can simplify the mathematics by using the approximation;
- k
In the case of the two-dimensional filters for images, the low-pass filter, g,(x, y), is specified to be circularly
symmetric. If the coefficients are nonzero for all points (x, y) such that X+ y2 < Rz, then,
Xo=m R%
This approximation becomes more accurate as R, increases.

The band-pass filters for levels 1 through K-1 are specified to be size scaled copies of the level 0 filter.
Each filter is to be scaled larger in size by a factor of Sz- Thus Rk is related to R, by



As a result the number of cocfficients at level k is
- 2k
Xk =X, S2

If we define the variable, S, such that S = S% = Sl’ as before, then in both the onc-dimensional and
two-dimcensional case,

~ |3
X, =X,S

This approximation becomes more accurate as k increases.

As described above, the DOLP transform is defined to produce band-pass levels 0 through K-1, where K
is
K = Logg(N)

Since the DOLP transform produccs K band-pass images of N samples each, the memory requircment M is

(6)
M =NK = NLogS(N)

The number of multiplicS for producing each band-pass image is proportional to the number of cocfficients
in the filter for that level. The total number of multiplies for the convolutions, denoted C (for cost), is given

by:
C=NX,1+1+S+8*+..+5%Dh

K-1

=X, N1 + 2 sk
k=0

sk.
=X, N(1+20)
S-1

Using our typical value S=2,

and the cost becomes:
C=X,N2K = X, N2Lg,M™
and thus

C =X, N? (D .
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Figure 3:
Techniques for Reducing the Cost of a DOLP Transform

Two independent techniques can be used to reduce the computational cost of a
DOLP transform: Resampling and Cascaded Convolution with Expansion. These two
techniques can be combined to produce an algorithm which for computing a DOLP
transform in O(N) multiplies which requircs O(N) storage cells.



3 Fast Computation Techniques

We have developed two independent techniques to reduce the computational cost of a DOT.P Transform.
Fach of these techniques reduces the number of multiplics and additions for an N sample DOLP transform
from O(N?) multiplics to O(N Log(N) ) multiplics and additions. Combined. these techniques allow the
DOI.P transform to be computed with O(N) multiplies and O(N) additions.

The two techniquecs are:

e Resampling: Computation of the band-pass images at resample points which are spaced at a fixed
fraction of the filter radius.

e Cascade Convolution with Expansion: Use of the autoconvolution scaling property of the
Gaussian low-pass filter and a remapping of the filter cocfficients to obtain the impulse response
of a larger filter from a cascadc of small filters.

These two techniques may be applied independently to reduce the computational cost of a DOLP transform,
as illustrated in figure 3. When combincd, these two techniques provide an algorithm which will compute a
DOL.P transform in O(N) multiplics with a storage requirement of O(N) cells. In the following scctions we
describe algorithms for computing a DOLP transform bascd on each of these techniques separately. We then
describe the algorithm which employs both techniques.

This scction begins with a discussion of resampling a cartesian two-dimensional signal at a distance of V2.
A lincar systems modcl for such resampling is presented. We then describe the Sampied DOLP transform,
and show that with V2 resampling, a DOLP transform can be computed with O(N Log(N)) multiplies and
that this DOLP transform can be stored in O(N) storage cells.

We then discuss the scaling property of the Gaussian filter, and show that a Gaussian impulse response of
size SV/2 can be formed by convolving a Gaussian filter of size S with itself. This technique is referred to as
cascaded convolution. A second scaling operation known as the expansion operator is then introduced. We
show that a combination of expansion and cascaded convolution can also be used to compute a DOLP
transform of an N samplc image in O(N Log(N)) multiplies.

Finally, these two techniques are combined to produce an algorithm which will compute a DOLP
transform which requires O(N) samples in O(N) multiplies. This technique is referred to as "Cascaded
Convolution with Expansion and Resampling.

3.1 Resampling

The number of samples that is nceded to represent a discrete signal is determined by the frequency content
of that signal. As Nyquist demonstrated, [16], a signal which has been convolved with a filter which
attenuates the higher frequency componcents may be represented by a smaller number of samples. Very little
information is lost when a band-limited signal is resampled because the original samples may be recovered by
interpolation. In this scction we describe the V2 sampling operation and then present the algorithm for the
sampied DOLP transform. '
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3.1.1 Sampling at V2

Figure 4: Examplc of Sﬁ{p(x,y)} { Circles)

and S\/Z-{S\/;{p(x,y)}} ( Squares )
Applied to a Cartesian Sample Grid ( Dots )

The smallest distance between sample points on a two-dimensional cartesian grid which is larger than 1 is
V2, the distance between diagonally adjacent elements. A two-dimensional signal may be resampled at this
sample distance by removing every other diagonal, as illustrated by the circles in Figure 4. We refer to this
process as V2 sampling, denoted S,/ {}. V2 sampling rcduces the number of sample points in a two-
dimensional signal by 1/2. A second application of V2 ‘sampling will produce a two-dimensional signal
which has samples spaced at a distance of 2 on the original grid, as shown by the boxes in figure 4.

The points on the \/-2- sample grid may be detected by a simple test using the modulus function ( denoted
here as "mod" ). Sample points on the V2 grid are those points, (x,y) which satisfy the relationship

. xmod 2 = ymod 2.

This is the sample function applied to level 2 of the sampled DOLP transform. A second application of
V2 sampling produces a sample grid with a minimum distance of 2 betwcen samples. These points are those
for which

xmod2=0 and ymod2=0
This is the sample grid for level 3 of the sampled DOLP transform.

In general, cach level k, for 2 € k < K-~1, of the sampled DOLP transform will have a sample grid
produced by k-1 applications of V2 sampling. Those levels for which k is even will have sample points
defined by

xmod 2612 = y mog 212
Those levels for which k is odd will have points which are given by

xmod 262 = g
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and

ymod 2% 2 =10

Such sampling may be donc for any value S which is a distance between points on the original sample grid.
For cxample. if we sclect points that are scparated by a distance in the X dimension of 2 and in the y
dimension of 1. then our resample distance is S% = V2241 = V5. Ifa two-dimensional scale factor other
than 52 = v/2 isused, the value § = S% must be substituted for the 2 in the above expressions. In this case
the size of the low-pass filters should be scaled by this same factor if the 1DOL.P transform is to be used to
producc a description of shape that can be matched at any size,

3.1.2 Linear Systems Model for Resampling

. Sl
/Sﬁ“{}

—_— U

Figure S: Nyquist Boundaries for Successive applications of V2 ReSampling

The effects of resampling are best described in the spatial frequency domain. Let us describe the transfer
function ( Discrete Time Fourier Transform ) of a two dimensional function, h(x,y) as [17]

[o ] (o ]
Huv) = 20 2 hxy)eiwedw @®)
U=-00y=-00

The continuous variables u and v are referred to as the spatial frequency variables. Figure 5 shows the the
range of unique spatial frequency components in the (u, v) plane that is generated by the transfer function of
a two-dimensional signal. A two-dimensional function sampled on a cartesian grid has a transfer function
which is unique within the square region of the (u, v) planc bounded by ( =#, £# ). Thc boundaries of this
region are referred to as the Nyquist boundarics. The resampling operation S\/‘z‘{.} gencrates a new Nyquist
boundary, shown by the diamond shaped region in Figure 5. The V2 rcsampling operation has the effect of
"folding" or aliasing any signal encrgy outside this new Nyquist boundary. This folded signal energy is added
to the signal, and appears as encrgy at a lower frequency. Such a distortion is not reversible and will
introduce errors when used with techniques which are based on détccting peaks and ridges.
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Aliasing is minimized by filtering the two-dimensional scquence so that there is very little signal energy
outside the Nvquist boundary when the signal is rcsumplcd.4 This minimizes the reflected signal energy that
results in aliasing.  Mathematically, the opcration is modelled as first convolving the signal with a band-
limited filter. and then selecting only the subsct of points at which the filter signal is resampled.  For
implementation on a scrial processor, the computational cost may be reduced by only cvaluating the
convolution expression at those points where the filter is centered over the resample points. This "resampled
convolution” is illustrated by the function S\/E{} placed in boxes adjacent to the convolution boxces in Figure
6.

3.1.3 Complexity of the Sampled DOLP Transform

A convolution may be expressed as a scquence of inner products of the filter cocfficients with
ncighbarhoods of the signal. By only computing these inner products for the instances where the filter is
centered over resampled points, it is possible to reduce the computational complexity of a DOLLP transform to
O(N Log(N) ). In such a Sampled DOLP transform. the distance between resample points increasc by the
same scale factor as the band-pass filters. The computational complexity and memory requirements for the
Sampicd DOLP Transform may be evaluated by considering the steps in the algorithm. In this scction we
present such an analysis for any valuc of S.

The band-pass siguals, B4(x.y) and B,(x,y), arc computed as described for the DOLP transform, requiring
XN and S X, N multiplies respectively. EBZ(x.y) is computed only for sample points in p(x,y) on alternate
diagonals. Thc convolution at level 2 is with a filter with X, S2 coefficients. However, the convolution is only
evaluated at the N/S sample points on alternatc diagonals. Thus the cost is S X, N multiplics, as it was with
level 1. Atlevel 3, the band-pass impulse response is computed for sample points spaced at a distance of S%.
There are N/S% such points and the filter has X, S3, so the cost is S X, N multiplies.

In gencral at each level k , for 2 < k < K-, the band-pass filter has X, SK coefficients, and the
convolution is computed at N/S®1) sample points, for a cost of Xo S N multiplies and additions at each
band-pass level, Since there are K = Logs(N) band-pass levels, the total cost is

C=X,N(S( LogS(N) - 1) +1) multiplies and additions 9)

Band-pass levels 0 and 1 each have N samples. For levels 2 through K-1 the number of memory cells
requircd drops by a factor of S for each level.

M=N0+1+1L/S+1/8+1/83+.)

K-1
=N(1+ 25
Sk

k=0

4 . . .
It is impossible to filter a sequence with a finite duration filter so that a frequency region of any finite size is identically zero [18).
However, a signal can be filtered so that there is an arbitrarily small response to a range of frequencies.
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Figure 6: Data Flow Graph for Algorithm for Computing Resampled DOLP Transform

The boxes marked with S\/—[k][] followmg each convolution indicate that the
convolution is computed only for resample points specified by V2 resampling at level
k. ( See text)

1 .
- (10)
1-8
For our typical value of S = 2,
M=NQAQ+1+1/2+1/4+1/8 +..)
=3IN

=N(1+
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3.2 Cascaded Convolution with Expansion

Much of the cost of a DOLLP transform results from the large number of cocfficients in the filters for larger
values of k. Resampling compensates for the exponential increase in the filter size by an exponential increase
in the space between sample points. A sccond technique for reducing the complexity of a DOILP transform to
O(N log N) multiplics is referred to as "cascaded convolution with cxpansion”. This mcthod cxploits two
mathematical propertics: (1) the size-scaled replication of the Gaussian functional form as the result of the
convolution of a Gaussian function with itsclf. (2) a scaling operation that is based on recmapping the
cocfficients of a filter into a new sample grid. Icaving zcro or undefined samples between the samplces of the
remapped filer.

In the following sections we first discuss the two-dimensional circularly symmectric Gaussian filter, and its
properties under convolution. We then describe the cxpansion operator and the algorithm for cascaded
convolution with expansion, togcther with an analysis of its complexity.

3.2.1 The Two-Dimensional Circularly Symmetric Gaussian Filter

In cascaded convolution, an impulse response covering a large support is obtained by repeatedly
convolving the signal with copies of an impulse response over a smailer support. This algorithm will.only
produce size scaled copics of the low-pass impulse responsc if Gaussian low-pass filters arc uscd. This may be
shown by the Gaussian autoconvolution scaling property, described below,

The Gaussian function is most commonly known in its onc-dimensional form

) & —etw e’
oV2n

where u is refered to as the mean and o as the standard deviation.

The term 1/0V2# scales the Gaussian function so that it has unit area.

A discrete two-dimensional Gaussian filter may be obtained by assuming a zero mean and applying the
substitution

RZ
o? =—, and

2a
The coefficients are then obtained by sampling the continuous function at the points given by the discrete
variables x and y where t? = x* + y? < RZ

Implicit in this filter is multiplication by a uniform circular window (or aperture or support), the disk

cp(xy) = { 1 for x2-+-y2_<_R2
0 otherwise
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To control the filter gain, the filter cocfficients arc normalized so that they sum to 1.0. This is done by
summing the cocfficients and then dividing cach cocfficient by the sum.

Thus the normalized two-dimensional Gaussian low-pass filter defined over a circular support is given by:

2 2
go(x.y) = (1/A) CR(X'Y) e-a(x +Y2)/R

Wherce A is a gain factor given by

A=20 2o cpxy) grot +y VR

<R <R
The circularly symmetric function cR(x,y) has a transfer function [19]

_ 2RI (RVuI+vT)

Ve +v2

CR(u,v)
where J l(') is the first order Besscl function.

The Gaussian filter g,(x,») has a transfer function which is a Gaussian function convolved with the transfer
function of its aperture (or support) [19].

1 Va | g2 2
Gouy) = —C,(u,v) * (—=) € U +v)éba
AR RV

T

An cxperimental procedure has shown that the paramcters R=4.0 and a = 4.0 work quite well for

cascaded convolution with expansion [10). With these parameters, the transfer function of the impulse

response has its first zero crossing .in a circle of radius approximately equal to #. This gives a filter with a
pass-band and transition region which just fits within the Nyquist boundary.

The Gaussian is the only two-dimensional function which is both circularly symmetric and scparable into
one-dimensional components. If the Gaussian kernel is multiplicd by a squarc support rather than a circular
disc, then the entire impulse response can be separated into a cascade of one-dimensional components. In
this case, the corrclation opcration can be implemented with significantly fewer multiplics by replacing the
convolution with a (2R +1) x (2R +1) circular filter by two convolutions with 2R +1 point onc-dimensional
filters ( one for each dimension). This requires a total of only 4R +2 multiplications for cach picture point
instead of 4RZ+4R +1 multiplications {17]. The square support degrades the circular symmetry of the
function. The result is some additional aliassing along the axes when the filtered sequence is resampled.

3.2.2 Cascaded Convolution

It can be easily shown that a Gaussian function convolved with itself yields a Gaussian function whose
standard deviation is V2 larger than the original function. For example, in one dimension, the convolution
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U’ 1 2042
—_—F€ * €

oV2nw oV2w

may also be cxpressed as the product of Fourier transforms

e-czwz/Z ° e-02w2/2 = e-azwz

The inverse Fourier transform of this product is

1 e-(2/4 dz

a2Vw
Returning to standard form rcquires the substitution

ai = 202 oro, = V2oe.

Thus the standard deviation, and hence the function width, have becn expanded by a factor of V2. Note
also that autoconvolution preserves the unit area normalization; the amplitude has been multiplied by a factor
of 1/V/2. The discrete Gaussian filter is of finite extent, and thus is not an exact Gaussian. For this reason
the Gaussian scaling property only holds as an approximation for the discrete Gaussian filter.,

Cascaded convolution provides an inexpensive method to obtain the convolution of an image with gl(x,y).
That is, low-pass image 1 is obtained from low-pass image 0 by a second convolution with g,(x,y), yiclding the
effective filter,

8(xy) = 8a(x%y) * go(x.3)

However, low-pass image 2 then requires two additional convolutions with g,(x,y). and low-pass image 3
requires four more such convolutions with g,(x,y). This exponential growth may be averted by resampling
each low-pass image by V2 before the next convolution, or by expanding the g,(x.y) onto a larger sample
grid with the V2 expansion operator.

3.2.3 The Expansion Operator

In addition to cascaded convolution we also employ a technique refered to as "expansion” in the algorithm
described below. Expansion is possible because we are using low-pass filters that are designed with a high-
frequency stop band. These filters attenuate the spurious high-frequency signals created by the "expansion”
operation.

The expansion operation is a spatial remapping of the samples of a filter so that the distance between
samples is altered. This remapping docs not affect the number of samples in a filter or the values of thcse
samples. Algorithm arc described below in which expansion is used as a method of scaling the impulse
response larger in size by a factor of V2. Expansion by V2 is necessary in order to convolve a filter with an
image which has been resampled to a V2 sample grid, as is required when cascaded convolution is used with
V2 resampling. However, it is also possible to use this cxpansion to size-scale a filter which is to be
convolved with a conventional cartesian grid. The only restriction is that the high frequency cnergy generated
by expansion must be attcnuatcd by other filters in the cascade.
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"The cxpansion operation may be modcled as a spatial scaling foilowed by a resaimpling. A simpler analysis
can be performed by considering the spacing between cocfficients.  Both analysis produce the same result:
The transfer function of the filter is scaled smailler in frequency by the expansion, and copies of the transfer
function appear reflected over a new Nyquist boundary imposed by the space between samples.  The
conditions under which cxpansion can be used without distorting the image arc always the same. The
composite cascade filter must have a very high attenuation everywhere outside of the new Nyquist boundary
of the sample grid onto which the filter coefficients are mapped.

Let us dcfine (x,y) as points in the cartesian grid in which a filter is defined, and (xc,ye) as the
corresponding points in a V2 grid onto which the filter is remapped. A single application of the
V2 expansion operation maps cach row from a filter on a cartesian sample grid into every other diagonal of
the V2 grid. This mapping takes cach cocfficient from point (x.y) of a filter g(x,y) and places it at point
{(x-y.x+y)ofa filter ge(xe,ye). Points of gc(xe,ye) which receive no cocfficient undcr this mapping arc declared
to be undefined or zero.

Let us definc this mapping as the function E\/f {}. Since

X, =X-=y
Yo =X+Y
we obtain
= XetYe
2
and
y=-x +y
2

Thus this function may be defined by

E\/;{g(x,y)} 2 g(Xo¥) = { g(-x +y /2, (x,+y)/2) Forx,Mod2 =y Mod2
undefined otherwise

This mapping is illustrated by Figure 7. This figure shows the correspondcnce between points in the
mapping. The dashes ("-") indicate the points which are not defined in the new filter.

The algorithm for cascaded filtcring with expansion employs recursive application of the V2 expansion
operation. Each expansion enlarges the smallest distance between samples by V2 and alternates the
direction of that smallest distancc between *45° and 0°90°. For this, we can define a more general
expansion opcrator: E\/Z-k{.}. This more gencral operator expands the filter to the same grid as an image
which has been V2 sampled k times.

Each application of the %) expansion operation rotates the filtcr by 45°. For acircularly symmetric filter
this rotation has no effect and we can express an expansion of V2 K as k recursive applications of the
V2 cxpansion.
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LL1) (01) (1,1)
(-1.0) (0,0) (1,0)
L-1,-1) (0,-1).(1,-1)

maps into

(L1)
01 - (L0
L) - 00 - 40D
(10) - (0-D)
(11

Figure 7. Example of mapping given by E\/Z'{'}

The general \/ 2 cxpansion operation, E\/-k{g(x y)}, may be cxpressed informally as follows. For each
point (x,y) at which the filter 2. l(x y) is defined, define a new point in gk(x y) at (x-y, x+y) and copy the
value from g - I(x y) into the point.

This mapping may be expressed more formally as follows: When & is odd, the filter is mapped onto a grid
whose axes are +45°, and whose smallest distance between samples is 22 The points on this grid are those at
which

X, mod 2+ D22 y mod 2+ 172 = g,

For even k. the expanded filter will be mapped onto a grid whose axes are at 0° and 90°. The distance
between samples along these axes will also be 2¥/2, The mapping E\/f k{g(x,y)} may be dcfined as:

Foreven k:
Eyz kexn} =g (x5 = g(—k/% Ek/_z) for (x,mod 2) = 0and (y,mod 2) = 0

undefined otherwise

For odd k:

X, * Y, X k+1)72 (k+1)72
= = e e -
E 7 Hg(xy)} = g (x,v,) { &( T 2(l¢+1)/2) for x, mod 2 y, mod 2

undefined Otherwise
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3.2.4 Frequency Domain Effects of V2 Expansion

The \/-?? cxpansion operator has a well defined effect on the transfer function of its argument. As with
\/5 sampling, a ncw Nyquist boundary is crcated which is a 45° rotation and a V2 shrinking of the old
boundary. Inside this new Nyquist boundary is a copy of the old transfer function scaled smaller in size by a
factor of V2. Outside this ncw Nyquist boundary is a rcflection of the scaled transfer function. This is
illustrated by Figure 8 below, which shows the 3 dB contour of a low-pass filter before and after the expansion
operation. Figures 9 and 10 show plots of the transfer functions of the Gaussian low-pass filter (R =4, a =4),
before and after the expansion operation. Note the four lobes in the corners of Figure 10. These are the
reflections of the pass region. If these were to show up in the composite filter they could cause a large
stop-band responsc, which would alter the locations of peaks and ridges.in the resulting band-pass images.

3dB Contour
E«rg‘ / AN

= | O

Figure 8: Effect on Transfer Function of E\/; Expansion
Operator

V')
.

\ 4

E\/g{.} scales the size of the transfer function by V2 so that it approximates the larger Gaussian filter,
g/(x.y) within the new smaller Nyquist boundary. That is

AE /7 {8.(xy)}} = Ag,(x.v)}

within

m < | u+v | < = The new Nyquist boundary.
Where 7{} is the transfer function [17].

For the parameter valucs R=4, a=4 the pass-band is well within this new Nyquist boundary, and the
reflection of the pass-band falls into the stop-band of the previous filter. That is, outside of the new Nyquist
boundary,
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Figure 9: Transfer Function G,(u,v) for R = 4.0, a = 4.0 Before \/5 Expansion

Ago(x.y) * go(x.)}

will be very small (i.e. less than -60 dB where the reflected nodes are present, for R=4, a=4) and thus the
product

- AE\7{8o(x)}} Hga(x.y) *84(x.y)}

will also be ver} small outside the new Nyquist boundary. As a result, the impulse response at low-pass level
2 is approximated by '

8,(%¥) = 8o(x.y) * go(x.y) * E, ;7 {8.(x.¥)}

Figure 11 is a plot of the transfer function of the level 2 low-pass filter. As can be seen the response in the
corners is so small that it does not register in this plot. The filter was constructed by convolving g.(x,y) with
itself ( @ =4, R = 4), and then convolving an expanded version g ,(x.y) with this composite filter. Thus this is
the same impulse response which would occur at low-pass level 2 of a DOLP transform computed using
cascaded convolution with expansion. A logarithmic plot of the amplitude of Gz(u,v) is shown in Figure 12.
This.plot spans 120 db in amplitude with the vertical marked on the left at intervals of 10 db. The response in
the corner regions arc attenuated more than 100 dB from the peak.
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Figure 10: Transfer Function G,(u,v) of filter After 23 Expansion

No_ticc that the pass region at the center of the Nyquist plané has been scaled smaller
by V2. The corners of the Nyquist planc contain copies of the size-scaled pass region.
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~~

(%) = 8o(x.y) * go(x.y) * E, /5 {8,(x.y)}

Figure 11: Filter Gz(u,v) forR =40, a = 4.0
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Figure 12: Plotof 20 Loglo[Gz(u,v)]
Scale (shown at left) spans -120 dB.
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3.2.5 Complexity Analysis of Cascaded Convolution with Expansion

The algorithm for cascaded convolution with cxpansion is illustrated by the flow graph in Figure 13. Its
computational compicexity may be scen by an analysis of the steps in the algorithm.

Low-pass image 0. £ ,(x.y) .is produccd from the original image, p(x.)) .by convolution with g,(x.) .

Lo(xy) = p(xy) * go(x.y)
Band-pass level 0, B ,(x,3), is then produced by subtracting L ,(x,y) from p(x.3) .
B(xy) = Kxy) = Lo(xy)

The convolution requires N X, multiplies and additions, and the subtraction requires an additional N
additions.

Low-pass level 1 is then formed by convolving low-pass level 0 with the low-pass filter.

Lixy) = Lo(xy)* go(x))
Band-pass level 1 is then formed by subtracting low-pass level 1 from low-pass level 0.
Byxy) = Lo(xy) = Ly(xy)

As with band-pass level 0, the convolution requires N X, multiplics and additions while the subtraction
requires an additional N additions.

Low-pass level 2 is then formed by convolving low-pass level 1 with an expanded version of the low-pass
filter. The expansion operation scales the filter larger by a factor of V2 without increasing the number of
coefficicnts.

Lyxy) = L (xy) * E, ;7{8.(xy)}
Band-pass level 2 is then formed by subtracting low-pass level 2 from low-pass level 1.
Byxy) = Li(xy) - Lo(xy)

Since expansion does not alter the number of coefficients this convolution also requires N X, multiplies and
additions and the subtraction requires an additional N additions.

Low-pass level 3 is then formed by convolving low-pass level 2 with a twice expanded version of the
low-pass filter. Two applications of the expansion operation scales the filter larger by a factor of 2 leaving the
original filter coefficients on a grid with every other row and column set to zero.

Ly(xy) = Ly(xy) * E, 52{2.(x1)}
Band-pass level 3 is then formed by subtracting low-pass level 3 from low-pass level 2.

By(xy) = Lo(xy) - Laf(xy)

Since expansion does not alter the number of coefficients this convolution also requires N X, multhlxes and
additions and the subtraction requires an additional N additions.

In a similar manner, each band-pass image k is produced by first creating low-pass image k by convolving
low-pass image k-1 with a copy of the low-pass filter which has been expanded k-1 times.
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Figure 13: Data Flow Graph for Cascaded Convolution with Expansion

This fast algorithm uses cascaded convolution and V2 expansion to compute a
DOLP transform in O(N Log(N)) multiplies
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L (xy) =L, (xy)* E F&-D{g,(xp)}
Low-pass image K is then subtracted from low-pass image k-1 to produce band-pass image k.
B (xy) =L (xy) - L (x)

Since expansion docs not alter the number of cocfficients cach convolution requires N X, multiplies and
additions and cach subtraction rcquires an additional N additions.

Since thercarc K = LogS(N) band-pass imaggs, the total cost is

C=X,N LogS(N) multiplies and
(X, + 1) N Logc(N) additions,

Since cascaded convolution docs not involve resampling the any of the images, the memory costs for
computing a DOLP transform in this manner are not affected. As with equation (6), the memory
requirements are

M=N LogS(N) memory cells

3.3 Resampling and Cascaded Convolution with Expansion

The computational cost and memory requirements for a DOLP transform can be reduccd substantially by
resampling cach low-pass image before each cascaded convolution. The savings in computational complexity
result because there resampling reduces the number of points at which the convolution is evaluated for cach
new level, while cascaded convolution holds the number of filter coefficients constant. In this fast algorithm
recursive expansion of the low-pass filter is not necded. In the odd number levcls, expansion is given
implicitly by the resampling. In the even numbercd levels, 4 single V2 expansion is needed to place the filter
coefficients on the same sample grid as the data.

3.3.1 The Algorithm and Complexity Analysis

The algorithm for resampling and cascaded convolution with expansion is illustrated in the data flow graph
shown in Figure 14. This algorithm runs as follows. Low-pass and band-pass levels 0 and 1 are computed as
described above for cascaded convolution with expansion. That is, low-pass level 0 is constructed by
convolving the picture with the low-pass filter g (x.»).

Lo(xy) = p(xy) * go(xy)
Band-pass level 0, B ,(x, ), is then produced by subtracting L ,(x.) from p(x,y) .

Bo(xy) = pPxy) = Lo(xy)
Thus the band-pass impulsc response at level 0 is

bo(x3) = 8(xy) = go(%Y)

Low-pass level 1 is then formed by convolving low-pass level 0 with the low-pass filter.

Li(xy) = Lo(xy) * go(xy)
Band-pass level 1 is then formed by subtracting low-pass level 1 from low-pass level 0.
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Figure 14: Data Flow Graph for Composite Fast Algorithm Using
Resampling and Cascaded Convolution with Expansion
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B (x3) = Lo(xy) = L(xy)
The impulse response at band-pass level 1 is
b (x3) = golx.y) = (8o(x3) ¥ 8o(x.3))

Both band-pass level 0 and band-pass level 1 require X, N multiplies and (X, + 1) N additions. They cach
produce N band-pass samples.

For cach band-pass level 2 through K-1, the low-pass image k-1 is first resampled at \/? by the operation
S\/5{-}. This resampling reduccs the number of sample points by a factor of 2 from the low-pass image at
k-1. For odd levels, resampling leaves the data on a cartesian grid, and thus no expansion is necessary. The
low-pass image or level k is thus formed by simply convolving the filter with the low-pass image from level
k-1.

Lixy) = L, (x3)* g(xy)
On cven levels, resampling places the data onto a \/5 sample grid. To convolve an image on a \/5 sample
grid, the low-pass filter coefficients must be remapped to a V2 grid by the expansion operation.

Lk(x'y) = Lk_l(X.}’) *E\/i-{go{xo}’)}

In both cases the band-pass image is then formed by subtracting the result of the convolution from the
previous low-pass image.

For S2 = \/-2_, each resampling reduces the number of sample points by 2, and thus reduces the number of
multiplies and additions by a factor of 2. Thus the total number of multiplics and additions is given by

C=X,N(1+1+172+1/4+1/8+.)
= IN X, multiplies
and
IN(X, + 1) additions.
As with the resampling algorithm described above, the total number of memory cells required is

M=3N

3.3.2 The Impulse Responses for Cascaded Convolution with Expansion and Resampling

In the cascaded filtering algorithms described above, the band-pass images are formed by subtracting
adjacent low-pass images. The band-pass impulse responses are thus equal to a difference of low-pass impulse
responses which are produced by cascaded filtering. Because a finite impulse response Gaussian filter is only
an approximation of the Gaussian function, the low-pass impulse responses for levels 1 through K are only
approximations of scaled copies of the level 0 low-pass impulse response.

The low-pass impulse response at level 1 is

8Axy) = go(x.y) * go(x.y)

Thus at low-pass level 1, a \/5 scaling in size of g,(x,y) is approximated by the simple cascadcd convolution
of go(x,y)-
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Low-pass level 2 is formed by resampling low-pass level 1 at a sample distance of V2 and then convolving
with an cxpanded version of the low-pass filter g (x.y).

gAxy) = Ey5{8a(x3)} *S, /7 {80(x.3) * go(x1)}

The low-pass image from level 2 is then resampled at a distance of \/5 for a sccond time, which places it on
a sample grid with a unit distance of 2. This low pass imagc is then convolved with the low pass filter g, (x,y).
The resampling provides a remapping of the filter cocfficicnts and so no cxpansion is nceded at this level.
Thus the size scaling of g, by a factor of 2V/2 is approximated by

gHxy) = 8o(xy) *S [F{EB /7 {8:(x2)} *S/7{8.(x3) * go(x3)}}

In gencral, the imp.ulsc responsc at low-pass level k, from k=2 to K~1 is given by the following recursive
relationships depending on whether k is even or odd:

Foreven k:

g(xy) = E\/7{8(xy)} *S, /7 {8, (x¥)}
And for odd k:

g(%y) = 8o(xy) * S\ 7 ig (x3)}

3.3.3 The Size of the Impulse Responses

Size scaling the kernel low-pass impulse responsc by resampling the continuous Gaussian function at a
denser sample rate would yield a sequence of radii Rk given by

R, = R, 2%?

The sequence of radii is somewhat different with cascaded filtering. In this case, the expansion operatig'n
maps the furthest coefficient, at say, (R,0), to a new point at (R,R). This gives an increase in radius of V2.
Convolution with the composite low pass filter then adds this new size to that of the composite filter.

That is, at level 0 the radius is R,. At level 1 the composite filter is the auto-convolution of g,(x.y), and its
radius is thus 2R ,-1. The level 2 composite filter is formed by convolving the level 1 composite filter with an
V2 expanded version of g,. The radius of the level 2 composite filter is thus 2R, + V2R, - 2. A general
formula for the radius at any levelk > 0 is

(-1
R, =R, -k + R, (V2)

a=0

4 An Example of the DOLP Transform

Figure 15 shows a resampled DOLP transform of an image of a teapot that was produced using the fast
computation techniques. In this Figure the image at the lower right is the high frequency image, B,(x.»).
The upper left corner shows the level 1 band-pass image, ®B,(x,), while the upper right hand corner contains
the level 2 band-pass image, B,(x.). Underncath the level 1 Band-pass image are levels 3 and 4, then 5 and 6,
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Figure 15: The Resampled DOLP Transform of a Teapot Image




Figure 16: Levels 5§ Though 13 of the Resampled DOLP Transform of a Teapot Image
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cte. Figure 16 shows an enlarged view of band-pass levels 5 through 13. This enlargement illustrates the
unique peaks in the low frequency images that occur for cach gray-scale form.

These images were formed using both resampling and cascaded convolution with cxpansion. Fach band-
pass impulsc responsc is composced of a difference of Gaussian low-pass filters with a ratio of scales of S2 =
V2. These band-pass images were computed by forming low-pass images with the cascaded convolution
with cxpansion technique and then subtracting to form the Band-pass images. The use of V2 resampling is
apparent from the reduction in size for cach image from level 3 to 13. In the even numbered images, on the
right of cach pair, the image is actually on a V2 sample grid. To display these V2 images, cach pixel was
printed twice, creating the interlocking brick texture evident in Figure 16.

5 Summary and Conclusions

This paper has defined the Difference of Low-Pass ( DOLP ) transform. The DOLP transform is a
reversible transform that scparates a signal into a sct of band-pass components. The DCLP transform serves
as the basis for a representation for two-dimensional shape that is described in a companion paper [11]. The
DOLP transform is showa to requirc O(N?) multiplies and produce O(N Log(N)) samples.

The DOLP transform is interesting because shapes ( and signals ) which are represented by cncoding peaks
and ridges ( or zero-crossings ) in the DOLP transform can be matched cfficiently despite changes in size,
orientation, or position. and despite corruption by image noise. One of the biggest obstacies to use of the
DOLP transform for describing and matching shapes in images was the apparent computational and memory
costs. In this paper we have described two independent techniques which may be used to reduce the
computational complexity and storage costs of a DOLP transform. The technique of resampling is shown to
reduce the computational complexity of a DOLP transform to O(N Log(N)) multiplies and the storage
requirements to O(N) samples. The technique of cascaded convolution with expansion is also shown to
reduce the computational cost of a DOLP transform to O(N Log(N)) multiplies, but does not affect the
storage requirements. It is then shown that these .two techniques may be combined to produce a DOLP
transform in O(IN) multiplies that requires O(N) samples.

Cascaded convolution has been investigated recently as a technique for efficiently realizing large digital
FIR filters[1]. In particular, Burt[S] has employed a cascaded convolution of a kernel which is an
approximation to a Gaussian to obtain larger "Gaussian-like"” filters. Such a process requires a doubling in
the number of convolutions with the fixed size kernel for each increase of V2 in filter size. Our use of the
expansion function, however, permits a composite Gaussian filter of size SV2 to be formed from a composite
Gaussian of size S by one convolution of the kernel filter. This technique is general and should be of benefit
whenever low-pass kernel filters are cascaded to form larger impulse responses.

The scale factor of V2 for filter size results naturally from both fast techniques. In resampling, it occurs
because it is the smallest distance larger than one between samples on a cartesian grid. It is the smallest rate at
which a two-dimensional discrete sequence can be resampled without interpolation. The factor V2 also
occurs with cascaded filtering. It is the increasc in size scale provided by convolving a Gaussian low-pass filter
with itsclf. This happy coincidence indicates that V2 is a very convenient value for the scale factor for a
DOLP transform that is to be used to represent images for matching: And, indced, this factor turns out to
work quite well {10] for representation and matching with the DOLP transform.
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The most important result of this work is that it makes available the representational power of the DOLP
transform without a prohibitive cost in computation. For a 256 by 256 image, if the scparable form of the
Gaussian filter is used. the total cost of computation for the 16 band-pass imagcs is

C = 3x 18 x 2562 = 3.538 million multiplics
compared to

= 18 x256* = 77.309.41133 million multiplics

without the techniques of cascaded convolution with cxpansion and resampling. Thus, the calculation of a
DOLP transform in under a second is made possiblc by implementing these fast techniques on commercially
availablc high-speced vector processing peripherals.
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