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Abstract:
Since 1980, machine vision systems for industrial applications have enjoyed a rapidlv expanding market.
The first generation machines are 2-1D binary vision systems, patterned aficr the SR1 Vision Module. These

systems will soon be joined by a sccond generation, based on edge description techniques.

Both the first and second generation systems are patter recognition machines. Rescarch in machine vision
is lcading towards vision systems that will be able to dynamically mode! the 3-D surfaces in a scene. This
research will lead to a third generation of vision systems which will provide a dramatic increase in capabilitics

over the first two generations.

This .rticle describes these three generations of vision systems.  The algorithms, data structures, and
hardware architecture are presented for binary visioa systems and edge-based vision systems. A {raniework is
presented for the rescarch problems which must be solved before a commereial vision systain can be

produced bascd on dyvnamic 3-D Scene anatysis iechniques.






1 Introduction

In 1980, two companies began selling a new type of automation cquipment: The "Binary Vision Module™.
These systems enjoy an increasing market as factory managers and project engineers learn of their capabilitics
and integrate them into robotic manufacturing systems. This first generation of vision systems will soon be
joined by a second gencration: the "Edge Bascd Vision Module”. Both of these systems are two dimensional
pattern recognition machines. In the near futurc, current rescarch will lead to a third generation of vision

systems which peiform dvnamic 3-12 scene analysis.

A fundamental issue in machine vision rescarch is how to detect and represent visual information. The first
twe systems described below are based on wwo approaches to detecting and representing visual information
that have competed with cach other since the 1960°s. These two approaches arce often called "scgmentation”
and "edge detection”.  Since the late 1970°s a new approach to representation has emerged:  "muitiple
resolution representation”. At the same time a new theme has emerged as a focus of rescarch; "Dynamic 3-D
Scene Analysis™. Within the next 5 to 10 years, vision systems which perform dynamic 3-1D Scene Analysis

should reach the market as commercial vision modulcs.

1.1 Scope and Limitations of this Article
hMachine Viston Systems detect, Jocate and recognize physical objecis using images prodeced by a TV
carrera. ‘The classes of objects that a systemn will recognized are learncd by “training” the systems with

exatrples of the object class.

There is net ncarly cnough reom in this article to describe the large varicty of systems which might be
constdered as examples of "machine vision™. Wec have restricted the scope of this article, perhaps arbitrarily,
to a class of systens which arc uscful in robotic manufacturing. We do not discuss such systems as blood cell
counters, whicli are considered by some to have been the first successful commnercial spin off of machine

visici rescarch.

fn this articic we focus o three generations of systems which are general purpose and are designed
ptimarily for manufacturing applications.  These systems arc intended to be purchased by a relatively
inexperienced user and applied o a lurge varicly of situations where seme arbitrary sct of ehjects niusi be

located and identified, usually to assist the operation of a robotic arm or other automation equipment.



2 The First Generation: Binary Vision Systems

During the mid 1970°s rescarchers at SRI-International began work on a prototype “vision module”. The
goal of the project was 1o develop a system winch would be an inexpensive, fast and gencral purpose pattern
recognition machine for images. The result of this project became known as the SRI vision module. The SRI
vision module was soon developed into a commercial product by two companics, and these became the first
commercially available genceral purpose machine vision systems. These vision modules serve as an excellent
cxample of how a commercial machine vision system can be designed so that it can be casily integrated into a

factory-floor robotic system.

2.1 Basic Capabilities
The SRI Vision Module and its descendants are two-dimensional binary vision systems. These systems
detect and classify connccted binary regions in images, referred to as "blobs”. Such systems provide two

items of information about sclected blobs which are particularly uscful for robotic systems:

e alabel, and

@ the position and orientation,

labels are assigned to olobs by a statistical pattern recognition algorithrn. The most valuable aspect of
fabeling blohs is that it permits a systent to reject or ignore blobs which are not of interest. It also makes it

possible for a system to discriminate several different classes of objects.

The viggest drawbacks of these systems are

o they only make assertions about the two dimensional patterns projected by objects, and

e cach blob is labeled individually

These systems are two dimensional; They locate and classify patterns in images, not objects. The two-
dimensional nature of these system is a scricus limitation; it means that they can only be used in a sctiing
where the seme stable repeatable pattern is imaged for cach object. Because these systems operate on
individual binary regions, the applications cngineer must carefully design the workspace so that blobs
correspond to individual objects. This is typically done by backlighting the object, or by placing dark objects

on a light colesed siirface (or vice versa).

Processing speed for images is typically on the order of 0.5 to 2.0 seconds per image. Such rates bring these
systems into a range where they can be uscful in manufacturing environment, but they can also be a serious
limitation in some situations. Most systems can operate with standard RS-170 Black and white camera signals
and with CID solid state cameras (such as the GE TN-2500). Soclid state camcras are prefered because of their

ruggedness ond because the imaging is mach less subject to distortion and drift effects.



2.2 System Architecture
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Figure 1: The Architecture of a Binary Vision Module

Onc of the first commercially available versions of the SRI vision module was the Machine Intelligence
Corporation VS-100, which entered the marketplace in 1980 at a price of approximately $25,000. The
functional components of the VS-100 are shown in figure 1.  The system is implemented on a DEC LSI-11
MUommmwmmmmgmaQme&@hmmﬂBpmymmmdmBMﬂL]hHMCMWWmmmoﬂm
VS-100, the 32K word address space of the LSI-11 was a serious limitation. A newer version is based on a
DEC 11/23 with memory management which brings the address space up to 128 K words. This permits the

system to be implemented using the RSX-11 operating system, and to support DECNET communications.

1/\ very similar system was available the same year from Automatix. The Automatix system uses essentially the same program
implemented on a Motorola 68000 and programmed in Pascal,



The primary intended mode of interacting with this system is via a light pen. A relatively casy to use menu
system allows the uscr to set up and train the system using only the light pen and the monitor. Indeed, our
MIC VS-100 did not come equipped with a terminal. The system monitor is used for viewing and monitoring

.system information, for receiving light-pen commands, for displaying both raw camera images and binary
images, for displaying histograms and sctting thresholds, and for observing the detection and classification of

blobs.

The system contains a DEC DI1.V-11J quad scrial interface board. Serial pori 0 is typically connected to a
cassette recorder. from which the system software is loaded.  Definitions of patterns and other sct-up

information may alsou be saved or loaded with this cassette recorder.

Serial port 3, (the console port) supports a terminal interface which provides a variety of possibilitics. A
relatively simpic and casy to use command interpreter is available on this port. By connecting a terminal, the
user may request and set various switches and values, as well as direct the system to capturc and process
images. Even more importantly, this serial port provides the casiest method for interfacing the vision moedule

to a larger system.

A parallel port (DEC DRV-11} is also available for interfacing to anotiher processor. ‘The paralle! port
provides considerably faster communication. The parallet communicaticss protocol is both mwere powerful
and somewhat harder to use. ‘The usual method for interfacing to this parailcl port is via a anotier DRV-11

hoard on second 1.81-11 or 11/23.

The board which makes the binary vision module possible is the camera interface. This board contains a
frame buficr which captures images from the selected camera.? This board contains hardware which
thresholds the image and then encodes the regions above (or below) threshold in a run-length code. Run
length encoding, described below, provides a great reduction in information from the original image thercby
making both processing and communications faster. The runs, described below, arc prssed to the system
processor over the systera bus. There is also a strobe lamp coiitrol signal provided at the time cach image is

captured.

2Our VS-100 suppoits up to 4 softwaire sclectable cameras,



2.3 Image Representation

Binary vision modules of this class derive their speed from the image representation. A 256 by 256 image
requires 65.536 bytes of storage. If the image is thresholded, then each byte is replaced by a single bit, giving a
reduction of a factor of 8 to 8192 bytes. If a binary image contains only a small number of blobs, then run
length encoding can provide a further reduction in the amount of information. For cxample, the number of
bytes required to represent a simple convex blob without holes is twice the number of rows which the blob

occupices.

2.3.1 Thresholds and Histogramming
The opceration of thresholding replaces cach pixel with a 1 or a 0, according to whether it is above or below a

certain "threshold” level.
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Figure 2. A Typical Histogram of Pixel Intensities of
an Image that Contains a Bright Object on a Dark Background.
The Threshold is Typically Chosen as the Deepest Part of
the Valley

The first step in thresholding an image is to choose the threshold. A method which can work for very
simple images is to basc the threshold on a "histogram™ of the pixel values in the image. If the image contains
a bright object on a dark background, then the histogram will exhibit two distinct modes, as illustrated in
figurc 2. Choosing the deepest part of the valley between the modes will often yicld a good threshold. Binary

Vision Modules usually have a command which computes and displays the histogram of an image.

It is generally much more reliable to choose the threshold by obscerving the binary image that results as the



threshold is changed. Thus, it is particularly desirable for a vision module to have a-mode for intcractively
sclecting the threshold. The VS-100 has a "threshold Selection Mode” in which the threshold may be varied
up or down by touching onc of two boxes with the light pen. The resulting binary image is automatically

displayed on the monitor screen. This is usually the easiest and most reliable way to choose the threshold.

2.3.2 Run Length Encoding

Intensity TV
Scan Line

N

Threshold

20 40 60 70

Run Length Code: | row # 20 140 60 {70 0

Figure 3: Run Length Encoding on the Vision Module is
given by Marking the Column Numbers where the Intensity
" Makes a Transition Across the Threshold.
A Pair of Bytes is also Necded to Mark the Start and End of
Each Row.

The principles of run length encoding are illustrated in figure 3. For 256 by 256 (or smaller) imagcs, all of
the information may be represented with 8 bit bytes. For each row with any pixels above threshold, the row
number is recorded. The pixel values along the row are then compared to the threshold. The column at which
the valuecs become greater than the threshold is saved as the start of a run. The column number at which the
pixel intensity drops below the threshold marks the end of a run. Thus if a blob is convex, only 2 bytes are

needed for each row that it crosses. A byte with the value zero is needed to mark the end of the row.



2.3.3 Connectivity Analysis
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Figure 4: Connectivity Analysis Groups Overlapping Runs
from Adjacent Rows into Blobs,

The run codes for each row in an image are passed to the processor through a parailel port. The process

starts with the top row and operates sequentially through the rows. The communication is driven by a process

called "Connectivity Analysis”, which groups overlapping runs from adjacent rows into a data structurc called

a "blob descriptor”. The connectivity analysis algorithm which is described here was developed by Agin for

the SRI Vision Module {1]. This algorithm maintains a list of "active” blobs as it obtains the runs from cach

row. There are 4 cases, illustrated in figure 4, which the connectivity algorithm must handle as it processes

cach row.

Insertion

Continuation

Deletion

Mecrge

When a run occurs which does not overlap with an existing blob, a new blob descriptor
must be created. This new blob descriptor is said to be "inserted™ into the active blob list.

When a run overlaps with the run on a previous row of an cxisting blob (using 4 neighbor
conncctivity), then the run must be added to the blob descriptor.

If the process passes the columns for an existing blob without finding a run, then the blob
descriptor is removed from the list of active blobs and stored.

When a run is found to overlap with two distinct blobs then these blobs must be merged
into a single blob descriptor,



A deletion is always accompanicd by a merge of the opposite color. The result of this process is a list of
blob descriptors for the image. Most of the features described below are calculated during the connectivity

process.

2.3.4 Feature Measurements
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Figure 5: Sclected Features Mcasured by a Binary Vision Module

The vision module labels blobs using a statistical pattern recognition algorithm described below. Statistical
pattern recoghnition is based on the measurement of a number of "features” which describe cach blob. Some
of the features measured by the VS-100 are listed in figure 5. Most of these features can be calculated during

the conncctivity analysis process.

The mcasurement used for most of these features is obvious from the names. Color refers to whitc (above
threshold) or black (below threshold). NHoles is the number of oppositely colored blobs completely
contained inside a blob. Area is the area covered by blob, excluding holes, given in calibrated units. These
calibrated units arc established by calibrating the vision module to a standard size circular pattern.

Calibration cstablishes the distance covered in the object plane by each row and each column in the image.

The featurcs XCent and YCent are particularly important. These are the x and y coordinates of the center
of gravity of the blob. These coordinates are frequently used as the location of the blob. Major and Minor
refer to the second moments of the blob. These coincide with Iengths of the major and minor axes of the best

fit of an cllipsc to the blob. Orientation is the angle, in degrees, of the major axis.

Perimeter describes the number of pixels along the perimeter of the blob. TotalArea is the total area
including hole arca covered by the blob in calibrated units. Peround is the ratio of the perimeter squared to

the area.

RMin and RMax arc the minimum and maximum radii from the center of the blob to its boundary.



RMinAng and RMaxAng are the directions, in degrees relative to the x axis, of Rmin and Rmax. AngMod is

the angle between RMaxAng and RMinAng.

Width and Height refer to the dimensions of the bounding box of the blob. A bounding box ranges from
the top most to the bottom most rows covered by the blob, and the left most to right most columns. HoleArea
is simply TotalArea - Area. The feature CGDist(**2) is the squarc of the distance from the center of gravity

of the blob to the calibrated origin of the image.

2.4 Object Classification
The SRI Vision Module and its descendants can be trained to recognize up to 9 classes of blobs. This
pattern recognition ability permits the system to discriminate between various objects, as well as filter out

noisc patterns and objects in which there is no interest.

2.4.1 Training

The probability distribution for each feature in cach object class is approximated by a Gaussian (or Normal)
distribution. The purpose of training is to determine the average and standard deviation for the features for
cach pattern class. Training these systems is extremely easy and can be done by just about anyone. Training
is accomplished by putting the system into Training Mode with the light pen. The uscr then places examples
of the pattcrn class in front of the camera and touches the "Process Image™ pad on the monitor menu with the
light pen. The system will assume that the largest blob is the blob to be learned, but the uscr may select
alternate blobs if desired. The system prompts the user for the name of the class to which the blob belongs. It

is suggested that the system be trained with at least 5 examples from each pattern class.
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Figure 6: Two Probability Distributions with Significant Overlap

To understand how statistical pattern recognition works, let each feature define an independent dimension

in a multi-dimensional space. The fact that many of the featurcs are corrclated is ignored. As the system is
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Figure 7. Two Probability Distributions Which Do not Overlap

traincd on examples from a pattern class, the average and the standard deviation is computed for cach feature.
These define a multi-dimensional Gaussian (or Normal) probability distribution for cach feature for that
pattern class. For simplicity we can ignore the joint probabilitics, and consider the distribution in cach

dimension to be independent.

Let us consider the distributions for a particular featurc observed by training with two object classes. If the
distributions have a significant overlap. as shown in figure 6, then this feature can not be used to reliably
discriminate the two patterns. 1If the two distributions do not significantly overlap, as shown in figure 7, then
this feature can be used to discriminate the objects. The probability that a particular object belongs to either
class can be estimated by measuring this feature, and determining the height of cach distribution at the

feature value.

In the SRI Vision Module an effort was made to determine which of the features can be used to rcliably
discriminate the pattern classes on which it has been trained. The MIC Vision Module permits the user to
select the features to be used. A default list, which includes most of the features, is set in the system software.
This default list includes only features which are invariant under position and orientation. The uscr may alter

this list with the light pen.

The sclected features are trained to determine a multi-dimensional probability distribution which ignores
cross terms. The probability that a blob belongs to each class is computed by measuring the height of this
distribution at the multi-dimensional feature vector that is computed for the blob. The class label for which
the probability value is highest is assigned to the blob. If none of the probability values are above a threshold,

then the pattern is rejected.

Training dctermines the range of orientations, sizes and deformitics over which cach class will be
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recognized. For example, some of the features are size specific. If training examples are given with the blob
at a varicty of sizes, then these features will be found to have a large standard deviation. Any value of these
features will then contribute equally to the likelihood that a pattern belongs to this class. Other features,
which are invariant to size will be found to have small standard deviations. These features will automatically
play an important role in determining the probability that a given object belongs to this class. Note that if a
particular object is can exist at many sizes and all of the tiaining examples are taken with the object at the

same size, it becomes likely that the system will not recognize the same object if it occurs at a different size.

3 The Second Generation: Edge-Based Systems

Machinc vision systems which opcrate on edge descriptions of objects have been developed for a number of
defense applications. Commercial edge-based systems with pattcrn recognition capabilities should reach the

market during the next year or two.

The goal of edge detection is to find the boundarics of objects by marking points of rapid change in
intensity. There is a tendency among some people 1o refer to systems that operate on cdge descriptions of
imagcs as "gray-levei” vision systems. These systems are not sensitive to the individual intensities of patterns
but to changes in pixel intensity. The assumption underlying an edge-based vision system is that the small
edge clements detected inan object correspond to the object boundary. This is not always tue; hignlights,
shadows, and surface texture also contribute to the edge elements detected in an image. Nevertheless, in
proper lighting conditions, and with raany objects, the cdges ir an image can be uscd to describe the shape of

objects.

As with binary vision modules, the key to making a commercial cdge based system is a board which
converts the image into a more efficient representation. Boards which compute edge descriptions of images
have been designed by a number of manufacturers in recent years. Machinc vision systems that employ these

boards should reach the market in the next few years.

The systein described below is hypothictical. Tt is based on research performed at rhe Robotics Institute at

C-MU to develop an edge based vision imodule [22].

3.1 Basic Capabilities

As with binary vision modules, systems based on edge detection are fundainentally two dimensional. ‘They
do not describe objects, but the boundarics of objcets as detected by the sharp chinnges in intensity in the
image. Of course, it is also quite possible to obtain an edge description from a binary image. Boundary
descripion is somewhat more expensive, computationally, than classifying binary blobs, but it can provide a

number of advantages.
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The primary benefit of boundary description is that the object to be described docs not have to be entirely
above some threshold in intensity. This can greatly simplify, and thus reduce the cost of setting up the
lighting in the workplace. A sccond advantage is that articulated objects may be recognized by such a system.
Objects which are flexible, or that have pivoting points can still be recognized so long as the nccessary

structural "landmarks” can be recognized.

Finally, the techniques described below permit more than simple pattern recognition. These techniques
permit a system to show where an observed part differs from a model. 1t is also possible to use such a system
for dynamic 2-D scene analysis; that is, to dynamically describe the structure of objects as they change during
some manufacturing operation. This can permit planning of actions or monitoring of processes. The ability
to perform dynamic 2-ID scene analysis stems more from the techniques used, than from whether the
representation is binary or edge based. It is, however, easicr to implement a dynamic scene analysis system

with an edge based system.

3.2 System Architecture
The system architecture for a hypothetical edge-based vision module is given in figure 8. This system is
similar in form to the binary vision modute. It is suggested that a processor with a larger address space such as

a Motorola 68000 or an Intel 8086 be used as the main processor.

The system contains a digitizer which converts analog picture information into a sampled and digitized
image. The digitized image is stered in a frame buffer. The contents of the frame buffer arc accessed through
a special bus by the smoothing and edge detection board. The use of a sct of "private” busses between boards
solves one of the biggest problems in fast image analysis: communicating the large amount of information in

an image.

The results of edge detection are passed to a dedicated micro-processor which docs one task: convert the
cdge intensities into a collection of line segments. These line segments are then passed to the second

processor which recognizes objects or maintains a model of the 2-ID scene at which the camera is pointed.

As with the binary vision module, a monitor and light pen are provided as an easy to use uscr interface.

Parallel and serial ports are available for integration of the module into a larger system.
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Figure 8: 'The Architecture of an Edge-Based Vision Module

3.3 lmage and Pattern Representation
Edge based vision systems represent the patterns in an image as a nctwork of linc segments. These line
scgments represent linedr sequences of peaks in an "edge image™. The edge image is, in turn, constructed by

applying u local edge detector to the input image.

We have feund that a reliable method for detecting edge lines is to first smooth the image, apply the edge
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deiector, and then deteet 1-D masiina in cach of 4 directions. FEdge image peints which are 1-12 maximu in ut

least 2 directions provide a connected sequence of points along the cdge.



3.3.1 The Edge Detection Board

The operations of smoothing, edge detection, and peak detection can all be performed as operations cn a 3
by 3 neighborhood. Thus, these three operations are all computed on the same "preprocessing” card in our
hypothetical edge-based vision modute. ‘This preprocessing card is based on a micro-programmable AlLLU
which can be implemented with bit-slice processors. On the card there is a frame buffer with enough memory
to store a single image (65,536 pixcls) at 8 bits per pixel. ‘There are 2 "row buffers” which will hold the 2 rows
of image data during processing, and shift the data from these rows into 3 sets of 3 neighborhood registers.

Tiiese 9 neighborhood registers hold the contents of a neighborhood as it is processed.

Immage data is read from the frame buffer into the first sct of 3 neighborhood registers. As it is shifted out of
these registers it goes into the {irst row buffer. During processing of the next image row it is shifted out of the
first row buffer, through the sccond set of 3 neighborhood registers and then into the second row buffer.
During processing of the following image row it is passed into the third set of 3 neighborhood registers and
then discarded. Meanwhile, the results are stored back into the frame buffer. After peak detection, the

column locations of the peaks on cach row are passed to the line fitting processor.

3.4 Smoothing and Edge Detection

In order te detect the houndaries of regions, the image is convolved with an edge detector. [f the resulting
cdge imape is sufficicntly smooth, a connccted sequence of cdge points can then be detected by detecting
local maxima in the edge image. This smoothness in the edge image can be obtained by smootning the raw
image befere convolution with the edge detector. Equivalently, the lincar masks of the edge detector can be

pre-convolved with the smoothing operator.

3.4.1 Linear Filtering

Both spatial smoothing and edge detcction are based on an operation known as discrete convolution. The

forinula for the discrete convolution of an IN by N lincar operator s(x,y) with a discrete image p(x,y) is

N N
s)spCe)= Y > sGk) plx=jy=k)
JE=N k==N

Lincar operations, such as convolution, have the very desirable property that they have a set of "cigen-

functicns”, which are the complex exponentials:
e~ I X ) = cos (ux 4 vy) = j sin(ux -+ vy)

The result of applying any lincar operation, such as convolution, to an cigen-function, is the same cigen-
function scaled in amplitude and shified in phase. The amplitude scaling and phase shift is given by a

complex function, called the "transfer function” H(iw,v), of the lincar operator. Thatis



16

N N

H(u,vye~Aux+0) = Z (i ye it )+ tk+y))
i==N k=~

The formula for the transfer function of a discrete filter may be found very simply by factoring and canceling
the term
e_j( ux+vy)

from both sides of the above cquation [11]. This yiclds:
N

N
Hlu,v)= Z Z (i, ke~ (ui+ v

i==-N k=-N
The transfer function of a discrete coefficient operator is an infinite periodic function. Only the period — o
<u<a is of interest. The frequency u= % ¢ is called the Nyquist frequency and corresponds to a cosine of 1
cycle every 2 samples. Any frequency higher than the Nyquist frequency will be aliiased by the sainple rate to

appear as a lower frequency.

For small masks with integer cocfficients. the transfer function may be casily derived by paper and pencil.

The result is asum of sin and cosine functions in the two-ditrensional (1,v) frequency domain,

The cost of implementing a convolution can often be held down by restricting the filter for wazk) ™
coefficients which are a power of 2. 'This makes it pessible to implement the inultiplication in the convolution
formula as a shift, Itis also possible w design niasks which are separable 110 a convolution of 1-1) masks in
the row and columnn dircetion. "This can make it possible to replace an operation which mekes one pass

. . ) RTI . . . v
through the image, hut requires M- multiplications with an operation which makes 2 passes through the data,

but requires a total of only 2N multiplications.

3.4.2 Linzar Spatial Smoothing

Smoothing helps to assure that the edge image, produced by the edge detector, will contain ¢ican connected
edgc functicns aiong which there is a sharp manimal ridge. This perrtits the use of Tocal maimuan detection
(also called "reak™ detection) to mark the edge points. Without smoothing, the wdge ridge wonid be more
pronc to bresking up, or to having parallel ridges and a much more cxpensive shrinking or refaxation process

would be reguired to locate a connected sequence of cdge points.

Historicaily. the most popular fincar smoothing operator has been a uniform 3 by 3 mask. "T'his cortesponds
to convolation with a 2-3) filter whose weights are
111
111179
111
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This mask may be separated into the convolution of two 1-D masks of the form-[1 1 1] in the row and
column directions. Thus its transfer function is also separable into independent components in the u and v
directions. The transfer function of the 1-D mask {1 1 1] is 1+ 2 cos (u), which has a zero crossing where

cos Nu)=0.5.

We can easily construct a smoothing mask whose transfer function drops monotonically to 0 at the Nyquist
ratc {u = @) by using the mask [l 2 1} as our separable mask. This filter has a transfer function of 2+
2 cos (u), which is identically 4 at DC ( 0 hz) and identically 0 at the Nyquist frequency. This mask also has
the property that all of its cocfficients are powers of 2. If a copy of this mask along the rows is convolved with

a copy along the columns, the result is the 2-1D smoothing mask:

121
242
121

The result of convolution with this mask may be normalized so that the maximum gain is 1.0 by dividing by
the sum of the coefficients. Because the sum of the coefficients is 16, this division can be implemented by

simply shifting cach convolation result to the right by 4 bits.

There are a number of techniques that can be used to compute a fast convolution with this mask. These
include separability, the fact that all of the coefficients are powers of 2, and the fact that the 1-D kernel mask

[12 1] can be implemented as a cascaded of 2 convolutions with the smaller kernel [1 1].

3.4.3 Edge Detection

During the late 1960’s and eariy 1970’s much research was focused on techniques for detecting cdges.
While there are a varicty of edge detection operators described in the literature, one of the simplest and most
reliable is the operator which has become known as the Sobel Operator [6]. This operator consists of 2 masks
which are 90° rotations of each other; followed by a magnitude estimation step. The two masks of the sobel
operator are composed of two scparable kerncls {10 -1] ( a first difference ) and the smoothing kernel [1 2 1].
The transfer function of the kernel [1 0 -1} is — 25 Sin(u), which approximates a first derivative for all but high

spatial frequencics (small forms). The masks of the Sobel Operator are:

121 10-1
000 20-2
-1-2-1 10-1

If we refer to these masks as ml(x, y) and mz(x,y), then for picture p(x,p) the edge function e(x,y) is given by

the following formula:

e(xy)= \/( my(x.y)* p(x.3)) + (mfx,y) * p(x.y))
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The square root of the sum of the squares can be approximated by a sum of the maximum of the absolute

valucs causing a slight loss in sensitivity to diagonal edges.

3.4.4 Peak Detection and Labeling

A lincar sequence of points where the edge detection operation produces a local maximum can be found by
a simple local peak detection test. In this test, the edge values in each 3 by 3 neighborhood are compared to
find local maxima in each of the 4 possible directions (horizontal, vertical, and the 2 diagonals). Edge points
which are greater than or equal to both neighbors in 2 of the 4 directions are marked as an edge point. The
edge value is also compared to a small threshold ( say 5 ) to avoid responding to blank regions and small

round-off errors.

After peak detection, peak points can be labeled based on the configuration of peaks in their immediate
neighborhood. Labeling the peaks makes the process of fitting lines to the peak points much simpler. In the
C-MU Popye edge-based vision system, one of 4 labels are assigned to each edge point based on the
configuration of edge points in its nearest 8 neighbors. An edge point is defined as any point with 2 or more

peak flags sct. These labels are:

Isolated Point: An edge point with no other edge points in its neighborhood.
End Point: An cdge point that terminates a line.

LLinc point: An edge point interior to a line,

Node: All other edge points. Typically junctions and small blobs.

The actual ncighborhood configuration for each label were explicitly defined.

The results of peak marking and labeling are passed to the line fitting board. Unless the image is very
cluttered, the most efficient coding for this communication is to pass the column numbers on which a peak

has been marked for cach row. The peak label can be appended as a second byte of information.

3.4.5 Line Description and Vertex Detection

Constructing a line scgment description does not require an extremely large amount of memory or an
unusual processor architecture. These processes described below can be implemented on a dedicated micro-

processor with on-board memory, or on the gencral system processor.

A "'simple to implement” line extraction algorithm was used in the C-MU Popye system. This system
performs a raster scan of the image until an edge is detected. The edge is then tracked and stored as a linked

list of edge-points. The edge point labels were used to control the tracking. Edge points are marked as they
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arc tracked by deleting them from the image buffer. Afer tracking an edge, the raster scan resumes from the

point at which tracking began.

A technique which operates more cfficiently can be designed based on the connectivity analysis algorithm
developed by Agin for the SRI binary vision module. This algorithm can be casily integrated into the
communication. between the cdge detection board and the line fitting board. This algorithm involves a raster
scan of the edge point frame buffer. As the edge points for cach row are detected, they are transmitted to the
line fitting board. Points which overlap from onc row to the next are grouped into a data structure and held

for linc detection.

The linc encoding algorithm is similar to Agin’s binary connectivity analysis algorithm which is described
above. However, the algorithm is complicated by the possibility of an cdge running along a row. As with

conncectivity analysis, the process maintains a list of "active edges” as it scans cach row.

Inscrtion This is the case where an edge point has no active edge as a neighbor on the previous row,
or to the left on the same row. A new edge is inserted in the active edge list. If there is an
edge along the upper row a pointer is made to this cdge.

Continuation When an edge point has a neighbor on the upper row, or o the left on the same row, its
dircction is added to the end of the edge list.

Deletion When the ond of an edgze has no neighbor at this row, its suucture is removed from the list
of active cdges.

Fork When an edge point has 2 lower ncighbors, the edge is removed from the active list and 2
new active edges are inserted. Pointers are made between thicse edges.

Merge When 2 edges come together at a single edge point, both cdges arc removed from the active
edge list, and a new edge structure is inscrted. Pointers are made between these three edge
structures. A filter process will climinate the new edge if it contains only one point,

3.4.6 Line Fiiting

The result of edge description is processed by a recursive line fitting algorithm, As with the Sobel Edge

Detector, this algorithm is described in the textbook by Duda and Hart [6].

Recursive iine fitting begins by computing the cquation of the line which conuncects the end points of the
cdge. The line equation has the form:
Ax+ By+C=0,
There is a very simple analytic formula for this line equation which may be fuund in many textbooks un

analytic gecometry [20].
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The recursive line splitting algorithm travels @long the connected edge points to find the point that is
furthest from the line. The furthest point is found by cvaluating the line equation Ax + By + C at cach edge
point (x,y). The value of this expression wiil rise monotonically with distance from the fine. ‘The point where

the absolute value is a maximum is sclected as a break point.

The distance to the linc at the break point may be computed from line cquation. If this value is above a
tolerunce, then the procedure calls itself recursively on cach side of the break point. Wien the furthest point is
within the tolerance. then a Iine segment is recorded. The tolerance detcrmines how accurately the lines must

describe the data. The result is a linked list of line scgments which describe the edge.

The connectivity between the line scgment lists was established during the edge coding stage. 'This
connectivity may be maintained for the line segment lists. Connections to nearby vertices may also be inade

by scarching for ¢nd points within a distance tolerance.

3.5 Gbject Recognition

Objects may be recegnized by comparing the line segments from an observed image to the line segiments in
miadels of objects. The line segment descriptions of objecis are sometimes called stuciural descriptions, and
the process of corrparing them to models to find the most simiiar model is referred 1o as Structural Pattern
Recoynition (17]. Structural pattern recogrition is based on findiag & correspundence between lines in the
obsenied image and lines in the object models.  An evaluation function based on the correspondence

determines which model best matches the pattern observed in the image.

1f the comparison is done purely on the basis of the connectivity of the line elements. then the problem
becomes a graph (or sub-graph) isomorphism problem which is known to be computationally cxpcnsivc.3
One popular approach has been to represent the models as a grammar and atteinpt to parse the observed
pauern of lines with this grammar, If the observed pattern is a legal sentetice in the graminar then it is
reeaznized as an instance of that modcl. This approach is catled Syntactic Patiern Recognition [8] and is

xnown o be very sensitive to irregularitics and noisc in the pattern.

At C-MU, we have developed a matching technique tor matching random graphs such as line segment
descriptions [22]. "This approach is based on the measurement of a sct of atiributes of the line segmeats, and
the use of Probability Theory to determine the most likely correspondence between segments in the observed
patiern and object models. With this approach, each mode! is composed of elements which have observed

probabilities of occurrence. Fach clement has a set of “recognition features™ which are described by

3. . . s
Gereral Subgraph isomorphism has been shown to be N-P Complete!!
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probability distributions. Each clement also has a set of attributes which are measurcd at each instance of the
primitive and then used as features for higher level recognition. There arc also connections to other clements
which are described with a probability distribution. As with statistical pattern recognition, the clements and

probabilities in the models are learned by a training process.

3.5.1 Model Representation

Object models are composed of a hierarchy of symbols. The attributes of the symbols at cach level are

defined in terms of the relative attributes of symbols at the previous level. The levels in this hicrarchy are:

Level 1: Line Segments
Level 2: Vertices
Level 3: Lists of Vertices.

The process of abstracting hicrarchical primitives can be continued for more than 3 levels. However 3 levels
seems to provide a rich enough vocabulary of unique primitives for recognizing most simple 2-DD cdge

patterns.

At the lowest level an object model is composed of a set of line segments which represent cdges and a set of
interconnections between line segments. Each line segment has the attributes of length and oricntation and a
link to lin¢ segments to which it is connected. A search process links disconnected segment endpoints to other
disconnected endpoints within a small distance tolerance. Each edge-line segment is defined by the following

structure:

Edge-Linc Segment:

L: Length of the line

O: Angle of line segment (0° to 180°)
(xl,yl): Position of the first endpoint
(xz,yz): Position of the second endpoint

Pointer List: Pointers to connected edge-line segments.

Each instance where two or more line segments meet defines a second level primitive called a vertex.
Vertices have both recognition features and attributes. The recognition features and the attributes both
depend on the number of lines at a vertex. For cxample, a vertex with 2 line segments, called a pair, has the
recognition features of the relative angle (AG) and the length of the two linc segments. Each recognition
feature is described by a Gaussian (or Normal) probability density function, given by a mean (u) and a
variance (02). There is also a probability of occurrence for the vertex. Vertices have attributcs of the number

of line segments of which they are composed, and the absolute orientation and position of the entire structure.

Recognition features are used in determining the likelihood that an observed vertex is a particular instance
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of a veriex in an object model. Attributes are available for calculation of "higher level” fcatures. There is also
a list of other vertices to which the vertex is connected. Thus the data structure for representing a vertex of
type "pair” is

Vertex Type Pair:

Probability of Occurrence: p(V)

Recognition Features:
Relative Angle: (p. o)
l.ength of Line 1 (g, 02)
Length of Line 20 (g, 02)

Attributes:
Position: (x,y)
Oricntation: o

List of Connected Vertices.

Object models are given by a network of vertex primitives whose recognition featurcs arc established during
training. Vertices are conncected to other vertices with which they share a segment. The link between vertices
may be described by probability density functions for the distance between the vertices aund for the reiative
orientations of the vertices. In the case of an articulated object, the relative orientations for these links will

have & large density function, and hence contribute little to the classitication probability.

3.5.2 Training
The purposc of training is to derive thie vertex types. probability of occurreuce, and the density functions of
the recognition features for the vertex primitives. Training also provides the probability deasity functions for

the conncctions between vertices.

Training procceds by showing the systein instances of cach object class. In order to determine whether a
pair of liie scgiments in two training samples correspond, the relative position and orientation of the training
samples must be specified. This is done by explicitly specifying the same pair of line scgment endpoints in
each training sample. These endpoints are called handle vertices. The system aligns the training sample to
the specified object model and alters the cumulative probability density functioas for the vertex recognition
featurcs. During training, it no obscrved vertex is found at dhe position predicted by a maodded voriex, a search
is made within a small distance {called an azceptance region) for the nearcst vertex. "Uhis pormiits the system
to tolerawc minor distorzions in the shape of the pattern, Ve network of connected vertices, with probinbility
density fucctions for the pesition and oricntation between connections is also updated with cach training
sampic. In the case of articulated parts, it is necessary to specify a pair of bandle vertices for cach rigid

cempornent.
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3.6 Matching

Matching an obscrved pattern to an object model is a search process. The system must determine the most
likely correspondence between cach observed vertex and a model vertex. Combinatorial explosion is averted
by only evaluating the combinations for which the vertices have a high probability. The process can also be

guided by the probabilitics to try the most likcly positiens and orientations first.

During training, a dictionary of vertex primitives may be compiled. Vertex primitives which have a similar
mcan and standard deviation for their recognition fecatures can be merged into a single entry in the dictionary.
A list which gives the object models and the location of the primitive in the object model can be compiled for

cach vertex primitive. The dictionary can be ordered on the basis of the means of the recognition features.

Candidate models can be sclected using this dictionary with a subset of the vertex primitives in a pattern.
Each vertex primitive yields a list of model vertices from the dictionary that have a high probability of fitting
the observed vertex. This list then provides a list of possible object models. Object models which occur in a
large number of the lists generated by the set of primitives are likely candidates for matching. The probability
may then be comiputed that cach of these candidate models matches the observed nctwork of vertex

primitives. The model that yields the highest probability is the most likely match for the observed pattern.

3.7 Dynamic 2-D Scene Description

A system which can describe images as a nctwork of linc scgments can be uscd for other tasks besides
recognition.  In many situations, the identity of a part is not as important as monitoring the position,
orientation, or shape of the part as some system operates on it or necar it. By matching between the line
segments from consecutive images it is possible to build up a “"composite” description of a 2-D scene. This
description may be updated as each image is processed. This matching searches within an acceptance region
for a line scgment with a similar length and orientation. The end-points of the line are updated as cach new
image is matched. Tracking a rapidly moving object requires that an cstimated velocity be attached to a rigid
collection of line segments. A dynamic scene description can be used for planning actions by a robot arm, or

to monitor a process for the occurrence of some event.

4 Dynamic 3-D Scene Analysis Systems

Vision in a 3-D world is fundamentally a 3-D process. Humans (and other species) cmploy a form of vision
that could be described as dynamic 3-D scenc analysis. The design of a machine vision system that
dynamically monitors a scene, and interprets the forms in the scene as a collection of 3-D surfaces is rapidly

becoming a popular paradigm for machine vision research.
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There is no doubt that dynamic 3-D scene analysis will require large amounts of computing. However,
computer power alone alone is not holding up development of such a system. Before dynamic 3-D scene
analysis can cven be demonstrated, much less made available on a commercial vision module, a number of
difficult theoretical problems must be solved. Progress at this time is rapid; in recent years there has been a

convergence toward agreement on what problems must be solved. Much work remains to be done.

4.1 A Proposed System

The following is a framework for a dynamic 3-ID scene analysis system proposcd by the author as part of his
research in this areca. The componcnts of this system are described in figure 10. When vision systems which
perform dynamic 3-D scene analysis become commercially available, we believe that they will have these

componcents.

4.2 The Initial Representation
Images come into the system as a time sequence of sterco pairs. They are immediately converted into an
initial representation which greatly reduces the bandwidth and is designed to facilitate the processing of a set

of "shape” experts.

There is evidence that the human visual system uses an initial representation which independently describes
the image information at a number of resolutions. Such a representation can be provided by a "Laplacian
Pyramid”, which provides a scquence of band-pass versions of cach image. Matching information in two or
more images is fundamental to the operation of most of the shape cxperts. A multiple resolution
representation has been found by a variety of researchers to greatly simplify the problem of matching image
information [15], [16]. The one shape expert which does not rely on matching is the "shape from shading"
operation. However, it has rccently been shown that surface curvature may also be determined using a

Laplacian operation [18].

A particularly suitable "Laplacian Pyramid" is provided by the Difference of Low-Pass (DOI.P) transform
[4]. The DOLP transform expresses an N by N image as a set of 2 log, N band-pass images such that the sum
of the band-pass images, plus a low-pass residue, vields the original image. 'This proves that the DOLP
transform is reversible and thus does not lose any information in the image. The band-pass filters in the
DOILP transform are a sct of copies of a prototype filter which have been exponentially scaled in size. All of
these filters arc defined as difference of 2 circularly symmetric low-pass filters which differ in size by a factor
of squarc root of 2. A fast algorithm has been developed which computes a DOLP transform of an image
composed of M samples in 3M additions and multiplications. The result of the transform occupies 3M

storage locations [3].
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Local positive maxima and negative minima (Peaks) in cach band-pass image mark places where the
band-pass filters arc a close fit to forms in the image. This cccurs for individual forms, ends of clongated
forms, and at corners. .ocal positive and negative ridges describe edges and clongated shapes of forms. By
detecting the peaks and ridges at cach band-pass level, and then connecting them across ievels, a trec may be
constructed which describes the forms in an image at every resolution. At coarse resolutions there is very litile
information and matching images between levels is relatively easy. As the resolution becomes finer. more
detail emerges, and more information is stored. A matching process can use the coarse resolution levels to
detect forms and constrain possible matches. Continuing to higher resolutions provides increasing amounts

of detail about the form, and and increasing precision in the matches between forms in different images.

The sct of band-pass images in the Taplacian Pyramid forms a 3 dimensional space, whose dimensions are
X, y, and resolution. Peaks in the band-pass images occur at adjacent locations at adjacent band-pass images.
Connccting adjacent peaks in adjacent band-pass images vields a shape primitive called a "Pcak-Path".
Pecak -paths describe the gross structure of forms, ends of clongated forms, and corners. We have recently
dermonstrated probabilistic 2-D shape matching using Peak-paths as the shape primitives [S]. There is also a
continuity across ievels of ridge information. Detecting the largest ridge samples across levels yiclds a shape
primitive called a "Ridge-Path”. Ridge-Paths describe clongated forms and boundaries of forms. The graph

of Peak-Paths und Ridge-Paths provides the initial representation for the shape primidives.

4.3 Shape Experts

The shape experts are a set of independent processes which provide information about the shapes of 3-D
surfaces.  liach shape expert operates on the initial representation and contributes information to the
composite surface description, The information provided by the different shape cxperts complements and
verifics consisiency of the surface description. The shape information is represeniced by a data structure called
the "Composite Surface Modcl”. The Composite Surface Model is dynamically maintained and kept

consistent by an updating procedure.

4.3.1 Simple Sterco

Onc of the best understood methods for recovering the shape of surface information is "simple sterco.
Simple sterco provides shape information from the difference in position of gray-scaie forms in two images
taken at the same time froin two cameras whose image plancs are at a known position with respect to each
other. Simple sterco is distinguished from generalized stereo by the fact that the camera geomctry provides
the constraint that patterns along a known linc in one image must match to patterns along a known line in the
sccond image. These lines. called epipolar lincs, are defined by the intersection of a single planc with the (wo
stereo images. A variety of techaiques has been developed to perform simple stereo matching along epipclar

lines, including a systemn developed at C-MU which uses the peaks from the DOLP transform,
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4.3.2 Generalized Stereo and Occlusion

Animals learn much information about surface shape by moving their heads from side to side and forward
and backward. Such movements cause corresponding movements in the patterns in the images. The problem
of determining 3-1) shape from the individual movements of these patterns is called "Generalized Stereo™.
Generalized sterco includes both detection of occlusion contours, and changes in size of patterns. Occlusion
contours generally correspond to the edges of surfaces and are a very important cluc about surface shape. The
rate of change of the size of patterns as the camera moves forward or backward is an important cluc about the
distance to the pattern. While the matching problem is harder for generalized sterco, it has been recognized

as a very important source of surface information for a 3-D scene analysis system [15], [10].

4.3.3 Texture

Surface texture can also be a very important cluc about the shape of surfaces. There are several ways in
which surface information can be cbtained from changes in texture patterns[13]. The most obvious
technique is based on assuming that the underlying texture patterns are all approximately the same size.
Statistics about the rate of change of the size of the patterns provides an estimate of the surface oricntation.
Boundaries between texture regions can be an important clue about the edge of a surface. If the texture
pattern is assumed to have a known shape, such as a cirlce, then an estimate of the orientation of the surface
on which the pattern rcsides may be obtained by determining the affine transform that the element has

undergone. Contours in a texture can also be an important cluc about the shape of surfaces [23].

4.3.4 Shape From Shading

[t is possible, in some cases, to estimate the rate of change of surface orientation from the rate of change of
the shading on the surface. Shape from shading can provide surface information in just thosc cascs where
sterco and texture provide the least information. Several elegant techniques have recently been published to

describe how surface orientation may be obtained from changes in shading [18], [24].

The orientation of a patch of a 3-D surface may be described by the two parameters of its gradient often
referred to as (p,q) [2]. The (p.q) plane is known as the "gradient space”. When a scenc is illuminated by a

single source, the observed intensity at a pixel is a function of:

e the illumination intensity,
o the angle between the illumination source and the surface patch normal (i), and
o the anglc between the line from the camera, and the surface patch normal (e).

For a given configuration of camera, illumination source, and 3-D surface, there is a set of valucs of (p,q)

that are closed and connected, and that correspond to a given intensity at a pixel. This sct of values
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corresponds to a contour in the space of {p,g). [f the scene is observed with illumination from a sccond light
source, then a sccond contour in (p.q) results from the observed intensity. In general, there will be two values
for (p.q) that lic on both contours. A third image with iliumination from yet another 3-1D point wiil
disambiguate the situation and give a unique value of (p,g). This shape measurement technique is known as
"photometiic stereo”.  Alternatively, knowledge about the possible shapes of objects can be used to

disambiguatc the shape from two images.

Photomctric stereo is not usually practical because of the difficulty of placing a point light source in three
known places, and because most surfaces do not have a truly lambertian aibedo. However, the contours of
cqual reflectance in (p.q) space can be used in another way to obtain local shape information. Given the
values of (p,q) for a point, the gray levels along any line from that point map into a contour in (p,q) space,

provided that

e no discontinuities in surface orientation are crossed,
o the values of (p,q) are assumed continuous and smoothly varying, and

o the surface reflectance (Malbedo™) is constant.

Thus, knowledge of (p,q) at a point allows knowledge of relative {p,q) at adjacent points.

4.3.5 Shape From Motion

A rigid obiect may be described by a sct of Iandmark points on its surface, and a distance and oricntation of
the vector betveen these landmark points. When a rigid object moves in a scene, the 3-D length and relative
3-1) orientations of these vectois remain constant, while the observed 2-D lengihs and relative 2-D
oricntations change. A sequence of images of a moving rigid object in which a sct of keypoints are detected

can allow the 3-D lengths and oricntations of the lines between keypoints to be determined.

As with sterco, there are two parts to the problem: determining the correspondence of landmark points and
inferring 3-D shape from this correspondence information. The initial represeatation basced on peaks and
ndges in the Difference of Low-Pass Transform is useful for determining the correspondences of putterns in

the images.

4.3.6 The Composite Surtace Model

The composite surface model serves as a common data structure into which the ensemble of shape cxperts
place their interpretation of surface shape in the scene. it also permits the shape expers to read the
interpretation from the other shape cxperts so that they may modify or guide their interpretation in
ambiguous situations. It is the data structure in which a description is built up from many views tiken over
time. It is also the data structure in which inconsistent information about surfaces from the different

knowledge sourccs is resolved.
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Tn addition t integrating a surface description fiom many knowledge sources, the composite surface model
is also the data structure on which a variety of "higher ievel” processes operate. Such processes perform tasks
such as:

e Recognize 3-1D objects and construct a scene description,
e Plan actions with respect to the scene,
e Monitor the excention of actions,

e J.carn the shape of objects. or collections of objects.
p ]

The composite surface model is "viewer centered"”; it contains a description of surfaces scen from the
viewer from a particular perspective, perhaps including surfaces which are temporarily occluded. 1t is
referred to as comnosite because it is a composition of information obtained, over time, from different views,

and froin all of the shape experts.

The development of a sepresentation for the composite surface model is currently an important rescarch
issuc. ldeally, the the composite surface model should be composed of entities which rcpresent surface
patciies. A number of cempeting techniques exist for representing these surface patches, cach with its own

short-comings.

The most obvicus implementation for a composite surface model is as a "depth map”, that is a 2-12 array of
the form 7z = f{x,y). The most obvious problem with this representation is how to represent surfaces that are
vertical with respect to the viewer. In this case there are multiple surface points at a given location (x,y). A

seccond problem is an inability to represent surfaces which are temporarily occluded.

Onc possible implementation for the composite surface model is to represent surface regions as patches
which ate enclosed in closed contours where the surface shape is discontinuous. Each such patch could be
approxininted by a plasie or a second order crirve. A surface description of this form can be implemented as a
graph of "surface paich clements”, with cach clement linked to its adjacent ncighbers. A planar
representation composed of triangles hes been developed by Fuchs[9]. A more general scheme which
employs polvhedral approximations to 3-1) objects has been developed by Faugeras et. AL [7]. An alternative
to representing cach patch as a planar or second order element is to represent cach pateh as a network of

surface norwals. Such a sct of normals can be represented by a spatial proximity graph [12].



30

4.3.7 3-D Object Models

Objects have 3-D shapes. In general, there is no way to know a-priori the 3-1 angle or distance from which
an object is likely to be seen. Thus a model is nceded which describes the complete 3-D shape of an object.
The system must be able to determine from this model what surfaces and surface features will be scen from a
given viewing angle. Because such a model is represented independent of viewing angle it should be "object

centered”. That is surfaces in the model are represented relative to an internal coordinate system.

A powerful method for representing the 3-D shapes of objects is the technique known as "gencralized

cylinders” developed by Agin [1]. A generalized cylinder is described by three components:

1. a spine, or 3-D curve which is the center axis of the object,
2. across section, and

3. a sweeping rule which transforms the cross section as it is swept along the spine.

Objects which have more than one spine are described as a configuration of generalized cylinder models.
Agin used paramctric functions to represent cross sections. Thus, a generalized cylinder model of an object

was a symplification which ignored many small shapes on a surface,

Marr has proposed a scheme for representing shapes as a hierarchy of generalized cylinders [14]. In this
representation scheme, the description at each level is kept very simple. A pointer rcfers to a more detailed
description of cach component. Brooks has demonstrated a model driven visual interpretation system named

ACRONYM which uses such a representation [2].

4.4 Object Matching

Construction of a scene description from a composite surface model involves matching object centered 3-D
models to the viewer centered composite surface model. A dictionary of observed forms, similar to that
described for matching edge-line descriptions, can be used to select candidate 3-D object models.  As
individual forms are described, their structure can be used as an index into a dictionary which yields a list of
possible object models to which they can match. Models which are suggested by many of the forms can be
compared to the observed patches in the Composite Surface Model, Land-marks can be used to determine

the position and orientation at which matching is tried.

5 Closing Remarks

Machine vision is both a science and an enginecring discipline. As a science it is still in its infancy; in a

stage of development where exciting and surprising developments occur every year.
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For a rcader who is interested in learning more about cither Pattern Recognition or Image Analysis we
recommend the textbook written by Duda and Hart [6]. 'This text thoroughly describes both fields and has
continued (o surprise us by its relevance as new problems have emerged. The rcader may find a rather
different trcatment, more oriented toward image processing, in the classic text by Azricl Rosenfeld [21] or in
the newer text by Pratt [19]. Readers who are interested in the problems of dynamic 3-1) scene analysis are
urged to read David Marr's book [15]. Such readers may also cnjoy the perspective given by Eric Grimson in

his book on Stereo [10].
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