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Abstract: 

Siwc 1980. machinc viPion systcms for industrial applications havc crijoycd a rzpidly cxpnnding innrkct. 

The first gcr!cration mxhincs arc 2-13 bindry \.ision systcms, pattcrncd afiLci. tile SRI  \'ision Moddc. 'I'hcsc 

systciiis will soon bc joincd by 3 sccond gcncraticn, bascd on cdgc description tcchniques. 

h t h  thc f in t  and sccond gcnrration systcms arc pattcro recognition tnnchincs. I<csc;iich in machine vision 

is lcading towards vision systcins that will l x  ublc to dynamically mode! thc 3-D surfxcs in a scciic. 'This 

rcsearch wi l l  lcad to a third scncration of visior, systems which will provide a dramatic incrcasc in capabilitics 

ovcr thc first two gcncrations. 
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1 lnt roduction 

I n  1980. two companies bcgiiti sclling ;i ncw typc of ;iutoniation cqiiipmcnt: Tlic "Ijinnry Vision Module". 

l'hcsc systems crijoy i i n  iiicrcasing nrarkct as factory tnaniigcrs i ind projcct cngincct s lcnrn of thcir caprtbilitics 

and intcgratc thcm into robotic manufiicturing systcnis. This first gcncration c f  vision systcms will soon be 

joincd by a sccond gcncrLttion: thc " i3gc Ihscd Vision Modcllc". I M r  of thcsc systcins iirc t w o  dirricnsional 

pattcrn rccognition machincs. I n  tltc ncar futiirc. current rcscarch will lead to a third gcncration of vision 

systcnis hich pcifoi-in dynamic 3-13 sccnc analysis. 

A fiindamcr!tal issuc in niachinc vision rcscarch is how to dctccl and rcprcscnt visual information. 'l'hc first 

t\ro systcms dcscribcd bclow arc bascd on t w o  approachcs to dctccting and rcprcscnting visiral infcmnation 

that havc compctcd with each other sincc the 1960's. 'I-hcsc two approxhcs arc oftcn callcd "scgiiicntation" 

and "cdgc dctcction". Sincc thc latc 1970's a new approach to rcprcscntation has cmcrgcd: "multiplc 

rcsolutio:i rcprcscntation". At the samc timc a ncw :hcmc has cmcrgcd as a focus of rcscarch: "llynamic 3-13 

Sccnc Analysis". Within thc ncxt 5 to 10 years, vision systems which pcrform dynamic 3-13 Sccnc Analysis 

slio~lld rc'icli thc tilcirkc! as coItitt?crci31 visioii modulcs. 

l'hcrc is i3c;t 11c~i1y CCilLigh X<jm in this articlc t;) c',cscribc thc large vdriety of s)':!clTlS which might be 

coil!;tc!crcd as cxamplcs of "machinc visioit". Wc havc rcstrictcd thc scope of this article, pcrhitl>T arbitrarily, 

to n cl;i\s of5ystc:ns which arc iiscful in robotic maiiufacturing. We do not discuss such systcms ;IS blood cc!l 

cui: !ikrs, wii idi  ,ire considcrcd by sonic to h,i,;c bccn tIic first succcssfu: cotntncrcial spin off of rnachinc 

vkL*;~i rcccarch. 

iri t l i is  ariiclc we focus 01: !!?rcc gencratioiis of s!sccms c.liic!i arc gcncral purpose and arc dcsigricd 

p i h - l r i l y  for nimifactiiring qqA:cslions. rhcsc systems arc intended to bc purchascd b y  a rclatiwly 

i!icb.xi:c-:'icnccd iiscr and applied 1.0 n large (ai icly of situations \+hcrc scmc t~Ibitr;.iry sc! of cI)jcct:; nrus; IIC 

I(j[:utCcl and idcntificd, usually to assist the opcration ofa  robotic nmi or olhcr autonirition cquionimt.  

. ,  
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2 The First Gene ration: Binary Vision Systems 

Iluring tiic mid 1970's rcscarchcrs at Sl<I-lntcrnational bcgan work on ;I prototypc "vision module". 'I'hc 

goal of the projcct was io dcvclop a systcm which would bc an incxpcnsivc, fist and gcncral pirposc 1)iIttCrIi 

rceognition machine for images. 'I'hc rcsult of this projcct bccamc known as tlic SKI \,ision modulc. 'I'hc SRI 

vision module was sooi; dciclopcd into a cuninicrcial product by two cornpanics. rind thcsc bccnmc thc first 

commcrcially av;iilablc gcncral purposc machinc vision systcms. 'I'hcsc vision :1li)dulcs scrvc as an cxccllcnt 

cxamplc oihow 3 commcrcial machine vision systcm can bc dcsignccl so that i t  ca:i bc casily integrated into a 

factory-floor robotic systcm. 

2.1 Basic Capabilities 

'I'hc SRI Vision Modulc and its dcsccndants arc two-dimensional binary vision systcnis. 'l'hcsc systcms 

dctcct and classify conncctcd binary rcgioils in images, rcfcrrcd to as "blubs". Such systems providc two 

items of i!iforniation about sclcctcd blobs \vhic!i arc particularly uschl for robotic systcms: 

0 a label, and 

o thc posi;ion arid orientation. 

1,abcls arc asjigricd to 'slol)s b y  a sutistical pattern rccogniiion alpori!hm. 'The mos; vi:lcinblc aspcct of 

iahcling blolx is that it permits a systciji to rcjcct or isnorc blobs wliich arc not of intcrcst. I t  also rtiiikcs it 

poscib!c for :I xystcm to di,crii-niniitc scvcral cliffcrcnt classcs of objects. 

'I'hc b igcs t  drinrbacks of thcsc systcnis arc 

e t l icy o n l y  makc asscrticms about thc two ditncnsioi?al pmcrns projcctcd by objccts, arid 

0 cach blob is labclcd individually 

Thcsc sy:tcins arc two dir-ncnsional; Tlicy locate and clmify patterns in imagcs, not objccts. The two- 
dirncnsional iiztiirc of thcsc systcm is a serious limitation; it mcans that thcy can oi~ly be used in a sctiing 

where dic s m c   SI&^ rcpcalirblc pnttcrn is imagcd for cadi object. nccausc t3csc systrins opcmtc on 

individuol binary rcgions, tlic application; cnginccr must wcfirlly design the wo! kspacc so that blobs 

correspond to Iridividual objccts. 'This is typically donc by liackligiiting the cilijcct, or by placiiig dark objects 

on ;i l ight  col(;!xd a;i:rF;;cc (or vicc vcrsa). 

Proccssing spccd for imagcs is typically on the ordcr of 0.5 to 2.0 scconds pcr imagc. Such rnics bring thcsc 

systcrns hit,) ;I rmgc whcrc clicy can bc wd'iil in nianufr;cttiring cnvironini'iit, but dicy can also bc a w ious  

liinitntion i n  soiiic situatioiis. Most systcms can opc-ratc wi:h standard 1< S- 170 Illnck and xhitc camcra signals 

and wit!? CI I )  solid StiitC camcra.; (such a b  :hc GFI 'TN-2500). Solid shtc camcrns arc prci?rcd lwcausc of  rhcir 

itlggcdncss il!id bixxiisc the iiiiii:;iiq ;S m;ich !CSS snbjcct tu distortion atid drift cffccts. 
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2.2 System Architecture 

L 

L i g h t  Pen 

1 

M o n i t o r  Q 
I 

C arne r a I 11 t e r f ace 
Threshold 

R u n  L e n g t h  Encode 

I 0-BUS 

S e r i a l  
I n t e r f a c e  

To E x t e r n a l  
P r o c e s s o r  P a r a 1  l e 1  

I n t e r f a c e  
LSI - 11 

Figure 1: The Architecture of a Binary Vision Module 

Onc of the first commercially avrilablc versions of thc SliI vision module was thc Machinc Intelligcnce 

Corporation VS-100, which entered thc marketplace in 1980 at a price of approximatcly $25,000. The 

hnctional componcnts of the VS-100 are shown in figure 1. The system is implernentcd on a DEC LSI-11 

micro-proccssor residing on a Q-Bus backplanc and is programmcd in Bliss-11.’ In thc carly vcrsions of the 

VS-100, thc 32K word address space of the LSI-11 was a serious limitation. A ncwcr vcrsion is bascd on a 
DEC 11/23 with memory managemcnt which brings the address space up to 128 K words. ‘I’his pcimits the 

systcm to be implcmcntcd using ihc ItSX-11 operating system, and to support DECNEI’ communications. 

‘A very similar system was available the same year from Automatix. The Automatix system uses essentially the same program 
implemcntcd on a IMotorola 68000 and programmed in Pascal. 
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'I'lic priniary intcndcd inode of intcr'actiiig witl i  this sjlstcin is via a light pci!. A rclativcly easy 10 usc nicnu 

systcm allows tlic iiscr to sct up and train thc sys!cni using o n l y  tlic light pcn a!id thc monitor. Indccd, our 

M IC VS-100 did not come equipped with ii tcrmiwi. 'i'he systcrn monitor is uscd for vic\+.ing and monitoring 

systcm in forination, for rccciving light-pcii commands. for disprnying both raw camcra imiigs and binary 

images, for displaying histograms and scrriug thrcsholds, and for observing thc tictcction and classification of 

blobs. 

'I'hc systc111 conains a l)i-X2 I ) IaV- l l J  quad &a1 intcrfiicc Soard. Scri;il pori 0 is typical!). conncctcd to a 

Ilcfinitionr; of patterns ;iii(l o:hcr sct-tli) ciisscttc recorder. from which thc system softwar: is 1o;itlcd. 

i n  formation m a y  also bc savcti or lond~d with this c;issctte rccordcr. 

Serial port 3 ,  (thc consolc port) supports a tcrininal intcrfacc which provides a varicty of possibilitics. A 

rclativcly siinpic and casy to LISC command intcrprctcr is available on this port. Uy connccting a terminal, the 

iiscr may rcqucst and sct various switchcs and valucs. as wcll as direct thc systcm to captrirc and p r o m s  

images. Evcn inore importantly, this scria! port providcs thc casicst mcthod for interfacing the visio!i modide 

to a largcr systcm. 

'rhe h a i d  which niakcs the binary vision moduli. possiljlc is the carricra intcrfiicc. This 5oarcl contains a 

framc buffer which captures iinagcs fron? the sclccted camcra.2 This board contains h,iidwarc wl~icli 

thrcsliolds thc iinagc and tlicn cncodcs rhc regions abovc (or below) thrcshold in a run-lcngth code. Run 

lcngtli cncoding, dcscribcd bclow, provides a p a t  reduction j i i  information from thc original iiiiagc thcrcby 

niaking both pruccssing a n d  commirnications faster. I?i: ims ,  dcscr ihl  bclow, arc r isscJ to thc systcm 

yrwcssor over ~ l i c  sysrei-n bu. .  'Tlicrc is also ;i strobc lamp cotitr:)l signal provided at thc t i n x  enih iinagc is 
cap tu rcd. 



5 

2.3 Image Representation 

Ilinary \ision modulcs of this class dcrivc their spccd from thc imagc rcprcscntation. A 256 by 256 imagc 

rcquircs 65.536 bytcs of storagc. If thc imagc is thrcsholdcd, thcn cach bytc is rcplaccd by a singlc bit, giving a 

rcduction of a factor of 8 to 8192 bytcs. If a binary imagc contains only a small numbcr of blobs, thcn nin 

Icngth cncodiiig can provide a furthcr rcduction in thc amount of information. For example, the number of 

bytcs rcquircd to rcprcscnt a simple convex blob without holes is twice the numbcr of rows which the blob 

occupies. 

2.3.1 Thresholds and Histogramming 

l'hc operation of thrcsholding rcplaccs cach pixcl with a 1 or a 0, according to whcthcr it is above or below a 

certain "thrcshold" levcl. 

NL'mber of 1\ 

In tensity 
Figure 2 A Typical Histogram of Pixel Intcnsities of 
an Image that Contains a Bright Object on a Dark Background. 

' h e  Threshold is Typically Chosen as the Dcepcst Part of 
the Valley 

'Thc first step in thrcsholding an image is to choose the threshold. A method which can work for very 

simple imagcs is to base the threshold on a "histogram" of the pixcl values in the image. If thc iinagc contains 

a bright object on a dark background, thcn thc histogram will exhibit two distinct modcs, as illustrated in 

figure 2. Chousing thc dccpcst part of the vallcy betwecn thc inodcs will oftcn yield a good thrcshold. Binary 

Vision Modulcs usually have a command which computes and displays the histogram of an image. 

It is gcncrally much morc rcliablc to choosc the thrcshold by obscrving the binary imagc that rcsults as the 



6 

thrcsliold is changcd. Thus, it is particularly dcsirablc for a vision modulc to haw a mode for interaclivcly 

sclccting thc threshold. l'hc VS-100 has a "thrcshold Sclcction Mode" in which tlic thrcshold may be varicd 

up or down by touching onc of two boxcs with the light pcn. The rcsulting binary imagc is automatically 

displayed on the monitor scrccn. This is usually the easiest and most rcliable way to choosc thc tlircshold. 

2.3.2 Run Length Encoding 

1' Intensity 
TV 

/ Scan Line 

60 70 20  40 

Figure 3: Run Ixngth Encoding on the Vision Module is 
given by Marking the Column Numbers where the Intensity 

Makes a Transition Across the 'I'lircshold. 
A Pair of Bytes is also Nccdcd to Mark the Start and End of 

k c h  Row. 

The principles of run length encoding are illustrated in figure 3. For 256 by 256 (or smallcr) imagcs, all of 

the information may bc rcprcscntcd with 8 bit bytes. For each row with any pixels abovc thrcshold, the row 

numbcr is rccordcd. l'hc pixel valucs along thc row arc then compared to the thrcshold. The column at which 

the valucs bccome grcatcr than the threshold is saved as the start of a run. The column number at which the 

pixcl intensity drops bclow the tlircshold marks the end of a run. Thus if a blob is convex, only 2 bytes are 

ncedcd for cach row that it crosses. A byte with the value zero is ncedcd to mark the end of the row. 
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2.3.3 Connectivity Analysis 

Insertion 

H H 
H f-4 Continuation 

H H 

H - Merge 
H H 

H H De 1 et iori 

H 

Figure 4: Connectivity Analysis Groups Overlapping Runs 
from Adjacent Rows into Blobs. 

'Ihe run  codcs for each row in an image are passed to the processor througli a parailel port. I'lie proccss 

starts with the top row and opcrates sequentially through thc rows. 'The cotnmunication is drivcn by a process 

called "Connectivity Analysis", which groups overlapping runs from adjacent rows into ;I data structurc callcd 

a "b!ob dcscriptor". Thc conncctivity analysis algorithm which is described here was developed by Agin for 

the SRI Vision Modulc 111. This algorithm maintains a list of "active" blobs as it obtains the runs frorn cach 

row. There arc 4 cases, illustrated in figure 4, which thc conncctivity algorit'im must handlc as it processes 

cach row. 

Iuscrtion Whcn a run occurs which docs not overlap with an existing blob, a ncw blob descriptor 
must be crcatcd. This new blob dcscriptor is said to Ix "insertcd" into thc activc blob list. 

Continuation When a run ovcrlaps with the run on a previous row of an existing blob (using 4 neighbor 
connectivity), thcn the run must be added to the blob descriptor. 

Deletion If thc process passes thc columns for an existing blob without finding a run, then the blob 
descriptor is rcmovcd from thc list of activc blobs and stored. 

Mcrgc Whcn a run is found to overlap with two distinct blobs tlicu thcsc blobs must bc mcrgcd 
into a singlc blob descriptor. 
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A dclction is always accompanied by a merge of the opposite color. ' h e  result of this proccss is a list of 

blob descriptors for the image. Most of die fcaturcs described below arc calculated during the conncctivity 

process. 

2.3.4 Feature Measurements  

Color Major Peround AngMod 
NHoles Minor RMin Width 
Area Orientation RMax Height 
XCent Perimeter RMinAng HoleArea 
YCent TotalArea RMaxAng CGDist(**2) 

Figure 5: Selected Features Measured by a Binary Vision Module 

'I'hc vision module labels blobs using a statistical pattern recognition dgorithm described below. Statistical 

pattcrn recognition is based on the ineasurement of a number of "features" hhich describe each blob. Some 
of the fcaturcs measured by the VS-100 are listed in figure 5. Most of tliese features can be calculated during 

the conncctivity analysis process. 

The incasureincnt used for most of these features is obvious from the names. Color rcfers to whitc (above 

threshold) or black (below threshold). NHoles is the number of oppositely colored blobs completely 

contained inside a blob. Area is the area covered by blob, excluding holes, given in calibrated units. These 

Calibrated units are established by calibrating the vision module to a standard size circular pattern. 

Calibration cxablishcs the distance covered in the object plane by each row and each column in the image. 

The fcaturcs XCent and YCent are particularly important. These are the x and y coordinates of the center 

of gravity of the blob. These coordinates are frequently used as the location of the blob. Major and Minor 

refer to tlic second moments of the blob. These coincide with lengths of the major and minor axes of the best 

fit of an cllipsc to the blob. Orientation is t ie angle, in degrees, of the major axis. 

Pcrinictcr describes the number of pixels along the perimeter of the blob. T o t a l h a  is the total area 

including hole area covered by the blob in calibrated units. Yeround is the ratio of the pcrinictcr sqirared to 

the area. 

Rhlin and RMax are the minimum and maximum radii from the center of the blob to its boundary. 



9 

ItMinAng and ItklasAng arc thc directions, in dcgrccs relative to thc x axis, of Rmin and Rmax. Anghlod is 

thc angle bctwccn 1WaxAng and RMinAng. 

Width and Height rcfcr to the dimcnsions of thc bounding box of thc blob. A bounding box rangcs from 

thc top most to thc bottom most rows covcrcd by the blob, and thc lcft most to right most columns. I-IolcArea 

is simply TotalArea - Area. Thc fcaturc CGDist(**I) is the squarc of thc distance from the ccntcr of gravity 

of the blob to thc calibrated origin of thc image. 

2.4 Object Classification 

'l'hc SRI Vision Module and its dcsccndants can be trained to rccognizc up to 9 classes of blobs. This 

patlcrn rccognition ability pcrmits thc system to discriiriinatc bctwccn various objects, as well as filter out 

noisc pattcrns and objccts in which thcrc is no interest. 

2.4.1 Training 

'I'hc probability distribution for cach feature in each objcct class is approximated by a Gaussian (or Normal) 

distribution. 'Ilic purpose of training is to dctennine the average and standard dcviation for the featurcs for 
cach pattcrn class. 'Training these systems is extremely easy and can be done by just about anyone. Training 

is accomplished by putting thc systcm into 'Training Mode with the light pen. Tlw uscr then placcs cxamples 

of the pattcrn class in front of the camcra and touches thc "Process Image" pad on the monitor mcnu with the 

light pen. l'hc systcm will assumc that thc Iargcst blob is thc blob to bc learned, but the uscr may sclcct 

altcrnatc blobs if desired. Thc systcm prompts thc user for the name of the class to which thc blob belongs. It 

is suggcstcd tha! thc systcm be trained with at least 5 examples from each pattern class. 

Feature 
Value 

Figure 6: Two Probability Distributions with Significant Ovcrlap 

'To undcrstand how shtistical pattcrn rccognition works, lct each fcaturc dcfinc an indcpcndcnt dimcnsion 

in a multi-dimensional space. 'I'hc fact that many of the features are corrclatcd is ignored. As thc systcm is 
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Figure 7: Two Probability Distributions Which 130 not Ovcrlap 

traincd on cxamplcs from a pattcrn class, the avcragc and thc standard deviation is computcd for cacli fcature. 

‘Ihcsc dcfinc a multi-dimcnsional Gaussian (or Normal) probability distribution for cach fcaturc for that 

pattcrn class. For simplicity we can ignore the joint probabilitics, and consider the distribution in cach 

dimension to bc independent. 

I d  us consider the distributions for a particular featurc observed by training with two objcct classcs. I f  the 

distributions haw a significant overlap. as shown in figurc 6. then this fcaturc can not be uscd to reliably 

discriminatc the two pattcrns. If the two distributions do not significantly overlap, as shown in figurc 7, then 

this featurc can bc uscd to discriminatc the objects. The probability that a particular objcct bclongs to either 

class can bc estimated by measuring this feature, and determining the hcight of cach distribution at the 

feature value. 

In thc SRI Vision Module an effort was made to determine which of the fcatures can be uscd to rcliably 

discriminatc thc pattern classes on which it has been trained. The MIC Vision M O ~ U ~ C  permits thc user to 

selcct thc fcatures to be uscd. A default list, which includcs most of thc fcaturcs, is set in thc systcm software. 

This default list includcs only fcatures which are invariant under position and oricntation. The uscr may alter 

this list with thc light pen. 

’I’hc sclcctcd fcatures arc trained to determine a multi-dimensional probability distribution whicli ignorcs 

cross terms. I’hc probability that a blob bclongs to cach class is computcd by measuring the hcight of this 

distribution at thc multi-dimcnsional fcatuic vector that is computed for the blob. Thc class labcl for which 

thc probability value is highcst is assigncd to thc blob. If none of the probability valucs arc abovc a tlircsliold, 

then the pattcrn is rcjected. 

Training dctcrmincs thc range of oricntations, sizes and dcformitics over which cacli class will be 
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rccognixd. For csitmplc, sonic of tlic fcaturcs arc sizc specific. I f  trailling cxar1lplc.s iirc givcn with the blob 

at a varicty of sizcs, thcn thcsc fcaturcs wil! be found to havc a largc standnrd dcvixioii. A n y  virlric of thcsc 
fcatiircs will then contrilxitc cqiially to thc likclihood that a pattcrn bclongs to this class. Oihcr fcaturcs, 

which arc invariant to sizc will be found to havc small standard dcviations. 'l'hcsc fixtiires M ' i l l  a1itoin;ttiCidly 

play an  important rolc in dctcnnining thc probability that a givcn objcct bclongs to rhis class. Note that if a 

particular objcct is can cxist at many s i x s  and all of thc tr'tining cxaniplcs ar'c takcn with thc objcct at the 

saiiic sizc. i t  bccomcs likely t k i t  thc systcm will not rccogni;rc thc samc objcct if it ocwr's at n diff'crcnt s ix .  

3 The Second Generation: Edge-Based Systems 

Machinc vision systcnis which opcratc on edgc descriptions of objccts havc bccn cic; :loped for n tiurnbcr of 

dcfcnsc applications. Coinmcrcial cdgc-bascd systems with pattcrn rccognition capa1)ilitics should rcach the 

mnrkct during thc next ycar or two. 

Thc goal of cdgc dctcction is to find the boundaries of objccts by marking points of rapid chatigc in 

int-cnsiry. l'hcre i s  a tcndcncy am!)ng mnc pcoplc to rcfcr to systems that opct-atc 011 cdgc descriptions of 

in?agcs ;is "gray I z v i i "  vision systcms. l'hcsc systcrns arc n d  scnsitivc !o thc indiviclu;il intciis;tics o f  pattcnis 

bur to ch;i:igis in pixel intensity. 'fhc assumption undcrlyiiig an edge-bawd I isiw sys!c!n is L!i,.it the m a 1 1  

cdgc elcmcrits d:tcctcc! il; ai ob-jccr corrcspona to the object boand,iry. 'Ms js i10t : ; I \ Y I ~ S   ti.^('; hi~hlighis, 

shadows. and surfacc tC) ; t l i rC T . ~ S O  contriburc !o thc cdgc clcmcnts detccrcd i n  311 imng.c. Ncvcrtl!r.lcss, in 

proper ligh;ing condjtions, and with ~ i ~ a t i y  cibjccts, ?he cdgcs ip an imngc can bc :isc:i to i+xriiw thc d?3pc cf 

objccts. 

As with binary vision modules, the kcy to making L? commcrcial cdge bascd system is a board which 

convcrts the imngc ir!to a morc efficicrit icprcscntation. Boards which conipure cdgc tlcscriptions of irriazcs 

havc 1)ccn dcsigncd by n number of manufxlurcrs in rcccnt years. Machinc vision sysmns that employ tlxse 
boortls s h o d d  reach thc market i n  thc ricxt few years. 

3.1 nasic Capabili?ies 

As with binary vision modulcs, sqslci:is bnscd on cdgc il.etection arc fiinaaincntally t w o  dimcnsional. 'l'hcy 

do Itot dcscrilx o1)jccts. but thc boiifidarics of objccts 3s dctccted b y  thc S h ~ i ~  cii:?t;gi's in intcnsity in  the 

imngc. Of coiirsc, it is also quite possible to obtain an edge dcsci.iption from a binnry image. lhiitidary 

dcsci,ip:ion is sonicwliat more cxpcnsivc, computationnlly, than ClilSsify ing binary blobs, but it can proviclc ii 

n u  in I>c? of ad\rilntiitgcs. 



12 

l'hc primary bcncfit of  boundary dcscription is that thc objcct to bc dcscribcd docs not havc to bc cntircly 

abovc somc thrcshold in intensity. 'I'liis can greatly simplify, and thus reduce thc cost of setting up the 

lighting in thc workplacc. A sccond advantage is that articulatcd objccts may be rccognizcd by such a system. 

Objects which arc flexible, or that have pivoting points can still bc rccognized so long as thc nccessary 

stnicttiral "landmarks" can be recognized. 

Finally. thc tcchniqucs dcscribed below pcnnit morc than simple pattern recognition. Thcsc tcchniqucs 

pcrmit a systcin to show whcre an obscrvcd part diffcrs from a niodcl. I t  is also possiblc to usc such a system 

for dynamic 2-13 sccne analysis; that is, to dynamically dcscribc the stnictiirc of objects as thcy changc during 

some manufacturing operation. This can pcrmit planning of actions or monitoring of prcxcsscs. The ability 

to pcrfonn dynamic 2-D scene analysis stcms morc from the tcchniqucs used. thdn from whcthcr the 

rcprcsentation is binary or cdge based. It is, howcvcr, easicr to implement a dynamic sccnc analysis system 

with an edgc based systcm. 

3.2 S y s t e m  Architecture 

Thc system architecture for a hypothetical edge-based vision module is given in figure 8. This system is 

similar in form to the binary vision modulc. It is suggcstcd that a proccssor with a larger address space such as 

a Motorola 68000 or an lntcl 8086 bc used as the main processor. 

Thc systcm contains a digitizer which convcrts analog picture information into a sampled and digitized 

iniage. 'The digitized image is storcd in a frame buffcr. The contents of the frame buffer arc acccsscd through 

a special bus by the smoothing and edge detcction board. The use of a sct of "private" busses between boards 

solvcs onc of the biggest problems in fast image analysis: communicating the large amount of information in 

an image. 

The rcsults of cdgc detection are passed to a dedicated micro-processor which does onc task: convert the 

cdge intcnsitics into a collection of line segments. These line scgments are then passed to thc second 

processor which rccognizcs objects or maintains a rnodcl of the 2-D scene at which the camera is pointed. 

As with thc binary vision module, a monitor and light pen are providcd as an easy to use uscr interface. 

Parallel and serial ports are available for integration of the modulc into a larger system. 
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Figure 8: ' l hc  ,\rchitecture of ai Edgc-Based Vision Module 

3.3 Image and Pattern Represen:ation 

Edgc b ; i d  vision systcms rcprcscnt the pdttcrns in an itnagc as a network of litic segments. 'I'hcsc linc 

scgmcnts rcprcscnt lincrir scqucnccs of pc~A:s it1 an "edgc imagc". l'hc cdgc iinagc is, i n  turn,  constrii~tcd b y  

nypiyii ig ;t local cdgc dctcctor to the inpiit imagc. 

Wc Ili\\rc foiintl that a rclinblc mcthod for dcrciting cdgc lincs is to firs! stnooth thc irn.igc, aj)ply t l i c  ctlzc 
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3.3.1 The Edge Detection Board 

The  operations of smoothing. cdgc dctcction. and pcak dctcction can a11 bc pcrfornicd as opcrXions on a 3 

by 3 ncighborhood. 'l'hus. thcsc thrcc opcrntions arc all compi:tcd on thc sainc "prcproccssing" card i n  our 

hypothctical cdgc-bawd vision module. l 'his prcproccssirig card is bnscci on a micro-progr;iinniablc A1 .U 

which can bc implcincntcd with bi!-slice proccssors. On thc card thcrc is a framc bkiffcr with cnough mcniory 

to storc a singlc imagc (65,536 pixels) a t  8 bits pcr pixcl. 'I'hcrc arc 2 "row bitf'fcrs'' which will hold thc 2 rows 

c:f iinagc data during proccssing. and shift thc data from tllesc rows into 3 sets of 3 ncighborhood rcgislcrs. 

'1 iicsc 9 neighborhood rcgistcrs hold thc contcnts o f  a ncighborhood as it is proccsscd. 

Iinngc dim is read from thc framc buffcr into thc first sct of 3 neighborhood rcgistcrs. As i t  is shiftcd out of 

Lhcse rcgistcrs it gocs into tne first row buffcr. During proccssing of the ncst image row it is shiftcd out of thc 

first row buffcr, through thc sccond sct of 3 ncighborhood rcgistcrs and thcn into thc sccond row buffcr. 

DLiririg prtxcssing of thc following imagc row it is passcd into the third sct of 3 neighborhood registers and 

thcn discnrdcd. Mcanwhilc. the results arc stored back into the framc buffer. AFtcr pcak dctcction, thc 

column locations of the pcaks on cach row arc pasjcd to dic linc fitting processor. 

3.4 Smoothing and Edge Detection 

I n  ordc;. tc dctcct thc Soundarics o f  rcgions, thc irnagc is convolvcd wi th  iin cdgc dctcctor. If thc rl.siilting 

cdgc ini:i!;c is sui'ficicntiy smooth. a conrlcctcd scqucncc of cdgc points ciiii thcn bc dctccrcd by dctcctirig 

local r;inxirna in thc edge image. This smoothness in  thc cdgc imagc can bc obtained by sniootnins thc raw 

imagc bcf(b:-c convo1utio:i !;.ith thc cdgc dctcctvr. Equil:alcntly, thc linear masks of thc cdgc dctccror can bc 

pre-coii\wlvcd with thc smoothing operator. 

3.4.1 Linear Filtering 

Both sp:itial smoothing and cdgc dctcction arc based on an opcration known as discrcrc convolution. The 

formula for thc discrctc convolution of an X by N lincar operator s(x,y) with a discrete imngc p(x,y) is 
N N 

1,incar operntio!is, such as convolution, !IiI\'C the vcry dcsii.a!)lc propcity that thcy havc a sct (if "cigcn- 

functions", which arc the coinplcx cxponcntials: 

'T'hc rcsult o f  applying m y  linca: opcration, such as convolution, to an cigcn-hnction, i s  t!ic s m c  cigcti- 

fiinction scalcd i n  mplitildc and xliifrcd in philsc. 'l'he xnplitudc scaling and phasc shift is gi1;cn by ;I 

coinplcx ifunction. callcd tlic "trmsfcr filiiction" /l(;~,v), of t!ic lincar cJpc:';itor. l 'hat is 
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l'hc forinLila foi rlic transfer fiii!ctiori of n discrctc filtcr may bc foiind \'cry simply by factoring and cnnccling 

thc term 
e-A u.y + vy) 

from both :ides of thc above cquation [ l  11. This yiclds: 
N s 

l 'hc transfcr function of a discrctc cocfficicnt operator is an infinirc per idic  tiiIictio11. Only tlic period --n 

< u <  .n is of intcrcst. ' 1 ' 1 ~  frequency u= 2 n is callcd tlic Nyquist frcqucricji and cc;i.rcsponds to ;I cosine of 1 

cyclc cvcry 2 smplcs. Any frcqucncy higher than thc Nyquist frcqiiencp will bc ulliuscd b y  the sainplc rntc tu 

appcar ns i l  losvcr- rrcqucncy. 

For small masks with iiitcgcr coefficients. thc transfcr fitnctioii m y  bc casily dcrivcd by p;ipcr and pcncil. 

Thc rcsui: is .I SLIIT! of sin and cosiiic functions in 1110 t.wo..diil7cnsioi,~l ( u , v )  frcqucncy domsin. 
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1 2 1  
0 0 0  

-1 -2 -1 

This mask may be scparatcd into tlic convolution of two 1-D masks of thc form.[l 1 11 in the row and 

column dircctions. ‘rhus its transfer function is also separable into independent cornponcnts in the u and v 

directions. ‘rhc transfer function of the 1-D mask [l 1 I] is 1 + 2 cos (u), which has a zcro crossing where 

COS-’ (U)  = 0.5. 

1 0 - 1  
2 0 - 2  
1 0 - 1  

We can casily construct a smoothing mask whose transfcr function drops monotonically to 0 at the Nyquist 

rate (u = n )  by using the mask [l 2 I] as our separable mask. This filter has a transfer function of 2-4- 

2 cos(u), which is identically 4 a t  DC ( 0 hi.) and identically 0 at the Nyquist frequency. This mask also has 

the propcrty that all of its cocfficicnts arc powcrs of 2. If a copy of this mask along the rows is convolved with 

a copy along thc columns, the result is thc 2-D smoothing mask: 

1 2 1  
2 4 2  
1 2 1  

Thc result of convolution with this mask may be normalized so that the maximum gain is 1.0 by dividing by 

thc sum of the coefficients. Rccausc [lie sum of the coefficients is 16, this division cdn be implemented by 

simply shifting cnch con\olution result to the right by 4 bits. 

’I’hcre are R number of techniques that can bc used to compute a fast convolution with this inask. These 

include separability, the fact that all of the coefficients are powers of 2, and the fact that the L-D kernel mask 

[l 2 11 can bc irnplcinentcd RS a cascaded of 2 convolutions with the smaller kernel [I 1). 

3.4.3 Edge Detection 

During tl?c late 1960’s and early 1970’s much research was fwuscd on techniques for dctccting edges. 

While thcre arc a varicty of edgc detection operators described in the literature, one of the simplest and most 

reliable is thc operator which has become known as the Sobel Operator [6]. This operator consists of 2 masks 

which arc 90’ rotations of each other, fdowcd by a magnitude estimation step. Thc two masks of thc sobel 

opcrator arc composcd of two scparable kernels [l 0 -11 ( a first difference ) and the smoothing kernel [l 2 11. 

?’he transfcr fhct ion of thc kcrnel [l 0 -11 is - 2 j  Sin(u), which approximatcs a first derivatite for all but high 

spatial frcqiicncics (small forms). The masks of the Sobcl Operator are: 

If we refer to these masks as ml(x,y) and mz(x,y), then for picture p(x ,y )  thc edgc function e(x,y) is given by 

the following formula: 

e(x,y) = ~ ~ w l ( x , y )  * p(XJ))’ + (m2(x,y) * p(x,y))* 



l h c  squarc root of thc sum of the squares can bc approximatcd by a sum of thc maximum of thc absolute 

valucs causing a slight loss in scnsitivity to diagonal edges. 

3.4.4 Peak Detection and Labeling 

A linear scquencc of points where thc edge detection operation produces a local maximum can be found by 

a simplc local pcak dctcction tcst. In tliis tcst, thc edge valucs in each 3 by 3 ncighborhood arc comparcd to 

find local maxima in each of the 4 possible dircctions (horizontal, vcrtical, and the 2 diagonals). Edgc points 

which arc grcatcr than or equal to both neighbors in 2 of the 4 dircctions are markcd as an edgc point. 'The 

edge valuc is also compared to a small threshold ( say 5 ) to avoid responding to blank rcgions and small 

round-off crrors. 

Aftcr peak dctection, peak points can be labeled based on the configuration of peaks in thcir immediate 

ncighborhood. Labcling the peaks makes the process of fitting lines to the peak points much simpler. In the 

C-MU Popyc edgc-based vision system, one of 4 labels are assigned to each edgc point based on the 

configuration of cdge points in its nearest 8 neighbors. An edge point is defined as any point with 2 or more 

peak flags sct. These labels are: 

Isolatcd Point: An cdge point with no other cdge points in its neighborhood. 

End Point: An cdge point that terminates a line. 

Line point: An edge point interior to a line. 

Node: All other edge points. Typically junctions and small blobs. 

Thc actual neighborhood configuration for each label were explicitly defined. 

The results of peak marking and labeling are passcd to the line fitting board. Unless the image is very 

cluttered, the most efficient coding for this communication is to pass the column numbers on which a peak 

has bccn markcd for each row. The peak label can be appended as a second byte of information. 

3.4.5 Line Description and Vertex Detection 

Constructing a line scgment dcscription does not require an extremely large amount of mcniory or an 

unusual proccssor architecture. Thesc processcs described below can be implemented on a dedicated micro- 

processor with on-board mcmory, or on the general system processor. 

A "simplc to implement" line extraction algorithni was used in the C-MU Popye system. This system 

pcrforms a rastcr scan of thc imagc until an edge is dctccted. The edgc is then trackcd and storcd as a linked 

list of cdgc-points. The edgc point labcls wcre used to control the tracking. Edgc points arc marked as they 
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arc tracked b y  dclcting thctn from thc iinagc buff;,.r. Afcr tracking an cdgc, thc rastcr scan rcsurncs from tlic 

point at which trxking bcgan. 

A tccliniqiic which opcrates morc cfficicntly can bc dcsigncd based on thc conncctivity malysis algorithm 

dcvclopcd by Agin for tlic Sit1 binary vision modulc. This algorithm can bc casily intcgratcd into tlic 

commitnic~r.!ior7.bctwccii tlic cdgc dctcction board and thc line fitting board. 'I'his algorithni involvcs a rastcr 

scan of thc cdgc point framc buffcr. As thc cdgc points for each row arc dctcctcd, thcy arc trnnsmittcd to thc 

linc fitring board. Poitits which ovcrlap from otic row to thc ncxt arc grouped into a data sttuctiirc and held 

for linc dctcction. 

Thc linc cncoding algorithm is similar to Agin's binary conncctivity analysis algorithm which is dcscribcd 

above. Howcvcr, thc algorithm is complicatcd by thc possibility of an cdgc running along a row. As wi th  

conncctivity analysis, thc proccss maintains a list of "active cdgcs" as it scans cach row. 

In jcrtion 'This is tlic casc where an cdgc point has no activc cdgc as a neighbor on tlic prcvioils row, 
or to fnc lcfr on the same row. A ncw cdgc i s  inscrtcd in h c  activc cdgc list. If thcrc is an 
cdgc along tlic uppcr row a pointer is made to Ihis cdge. 

Continuntjon Whcn s n  cdgc point has a ncighbor on Lhc upper row, or io tlic left on the sanic row, its 
dircztion is acldcd to thc cnd of thc cdgc list. 

l l ~ l c t i o i ~  Whcn tlic cnd of an cdgc has I?O neighbor at this rob, its SLI 'UC:~I~C is rcinovcd f!om gic list 
of active cdgcs. 

I 5 r k  Whcn an cdgc point has 2 lowcr neighbors. ;lit cdge is ~ - c n o \ c d  from thc activc list ;itid 2 
ncw activc cdgcs arc inscrtcd. Pointers arc madc bctwccn tliCSC edges. 

Mcrge Whcn 2 cdgcs come togcdicr at  a single cdgc point, both cdgcs arc rcmovcti fiom ihc active 
cdgc lisl and a ncw cdgc striicturc is inscrtcd. Pointcrs arc madc bctwccn dicsc thrcc cdgc 
structures. A filter proccss will climinatc thc ncw edge if i t  contains only oi?c point. 

3.4.5 L i n e  Fitting 

l'hc rcsult of cdgc dcscription is proccsscd by a recursivc liiic fitting algorithm. A s  w k h  tlic Sobcl Edgc 

Iktc'ctor, thi:, alp,oritlim is dcscribcd in the tcxtbook by Iluda and Hart [6]. 

Rccursivc iinc fitting bcgins by computing thc cquation of thc linc whidi connccts thc cntl poitits of thc 

cdgc. l 'hc Iinc cquation has the form: 

/ I X +  f ly+ c-0. 
'13crc 1s a \cry 4tnplc analytic forniula for this linc cquation which may bc fitund in inwy textbooks on  

mnl)tic gcoiiictry [20]. 



'!'hc rccursil c linc splitting algorithm travcls zlong :hc connccrcd i'dgc points to find the poiiit that is 

furthcst from thc linc. 'I'hc furthcst poinr is found by c!.aluating t!ic linc cquation A.u + h'y-k C ;?L c x h  cdge 

point (xJ). 'l'hc valuc of this cxprcssion will risc nionotonicallp wirh distancc from thz iinc. 'i'hc point whcre 

thc absolutc valuc is a maxiinurn is sclcctcd as a break poinr. 

'T'hc distancc to thc linc at the brcak point may bc cwnputcd from linc cqudtion. If this valuc is aCovc a 
to!crancc, thcn thc prcxcdliic calls itsclf rccuisivcly on cach sidc of thc brcak point. Whcn thc fiirthcst point is 
wit!iiii tlic tolcrancc. thcn ii liiic scgmcnt is recorded. 'I'iic tolcrancc dctcrrnines how acciiratcly tlic liiics iniist 

dcscribc the data. The rcsult is a linkcd list of linc scgmcnts which dcscrihc thc cdge. 

Thc coiincctivity bet\\ ccn the linc segment lists wCis cstablishcd during thc cdgc coding stagc. 'Ihis 

conncctivity may bc maintaincd for thc linc scgnicnt lists. Conncctions to ncarby icrticcs may also bc made 

by scnrching for cnd points within a distancc tolerance. 

If '  thc comparison is done purely 011 thc basis of the connectivity of tiic line clcmaits. Uicn tl!c problcin 
becomes n graph (or sub-graph) isomorphism problcm which is known to be compii tathnally cxpctis;vc. 3 

Onc p(ipli!:ir approach has hccn to rcprcscnt thc models as a graintnar and attcinpt to parsc thc obscrxd 

palicni o f  lincs with !his grammar. If thc obscrvcd pattcrn is a legal scntcim in thc graminnr t I iCi i  it is 
rcc.,;::ii;r.cd as an iiirtance of that tnoclcl. This approach is called S ~ v / u ~ * t i c  Palrcrtz Rrcq;tziiiclt: [8] :ind is 

k n o w i i  to bc very scnsitivc to irrcgu!xitics and noisc in thc pattcrn. 

i \ t  C-h4'J, h a w  dcvclopcd n inntching techniqiic for matcl?iiIs rar,dorn graphs such as linc scg!ticnt 

dcscriptiotis [22]. This approach is bascd oii the iiicasiircnicnt of a sct of ntlributcs of tlic linc scgmcilts, and 

t'ic i!sc of f'robahility 'l'hctiry to dctcrminc the most likcly corrcspondmcc bctwccn scgrncitts in thc obscrvcd 

paticrn and ;)lijcct niodcls. With this approach, cach inodc! is cotiiposcd of clcmcnts which havc oliscr~~ed 

pi o1)abilitics of wciii'rCticc. Each clcnicni has a sct of "rccognition fcaturcs" which arc dcscriI)cil by 
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probability distributions. Each clement also has a set of attributcs which are measured at each instance of the 

primitive and then used as fcatures for higher level rccognition. There arc also connections to othcr clemcnts 

which arc described with a probability distribution. As with statistical pattern recognition, the clemcnts and 

probabilities in the models are learned by a training process. 

3.5.1 Model Representation 

Object models are composed of a hierarchy of symbols. ?he  attributes of the symbols at cach lcvcl are 
defined in terms of the relative attributes of symbols at thc previous Icvcl. The levels in this hierarchy are: 

Level 1: Line Segments 

1,evcl 2: Vertices 

Lcvcl3: Lists of Vertices. 

The process of abstracting hicrarchical primitivcs can be continucd for more than 3 levels. However 3 levels 

seems to provide a rich enough vocabulary of unique primitives for recognizing most simple 2-13 edge 

patterns. 

At thc lowest lcvcl an object model is composed of a set of line segments which represent edges and a sct of 

interconnections between line segments. Each line segment has the attributes of length and orientation and a 
link to linc Segments to which it is connected. A search process links disconncctcd segment endpoints to other 

disconnected endpoints within a sinal1 distancc tolerance. Each edge-line segment is defined by the following 

structure: 

Edge-Line Segment: 
L: Length of the line 
e: Angle of line segment (0’ to BO0) 
( X y Y  1): Position of the first endpoint 
(X*,Y$ Position of the second endpoint 
Pointer List: Pointers to connected edge-line Segments. 

h c h  instance where two or more line scginents nee t  defincs a second lcvcl primitive called a vertex. 

Vertices have both recognition features and attributes. The recognition fcatures and the attributes both 

depend on the number of lines at a vertex. For example, a vertex with 2 line segments, called i~ pair, has the 

recognition features of the relative angle (AO) and tlic length of the two line segments. Each rccognition 

feature is described by a Gaussian (or Normal) probability density fimction, givcn by a incan (p) and a 
variance (a’). There is also a probability of occurrence for the vertex. Vertices have attributcs of thc number 

of line segments of which they are composed, and the absolute oricntation and position of the entire structure. 

llecognition fcaturcs are used in detcnnining the likclihood that an obscrvcd vertex is a particular instance 
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of a C C I  ic'x i n  an objcct tnodcl. Attributes arc available for ctilculation of "higher lcvcl" rciii1IiC.s. 'I'hcrc is ;dso 
:i list of <J:IK~ vcrticcs to which thc wrt ru  IS conncctcd. '1'hi:s rhc data W-uctitrc for rcprcscnting a vcrtcx of 

typc "pair" is 

Vcrtcx 'I ypc Pair: 
I'robability of Occurrcticc: p(V) 
liccogn i t ion I rcs: 

liclativc Anglc: ( p .  a') 
I cngtli ofI.inc 1: ( p ,  0') 

I,cngth of I inc 2: ( p ,  u 

PoGtion: (XJ) 
Orientation: a 

2 

i\ttributcs: 

List of Conncctcd Vcrtices. 

Objcct riiodcls arc givcn by a network of vcrtex primitives whosc rccognition fcaturcs arc cstablished during 

training. 5 crticcs arc conncctcd to other vcrticcs with which thcy s l im a scgmcnt. l 'hc link bctwccn vcrticcs 

may bc dcscribcd by probability dcnsity functions for thc distancc bctwccn :he vcrticcs ii!id for 9ic rciative 

oricntatioiis of thc vcrticcs. In thc case of :in articularctl objcct, tbc: rclnticc orisn;atioIls For thcsc l i t i k j  will 

havc i: 1:ii-y dcnsity fu:ictiotr, and hcncc contribatc littlc to tlic clas$it'!cation probability. 

3.5.2 Tri?ining 

' lhc piiiyusc of training is to dcrivc tile vcrtcx types. probability o?occLirrcij!:c, iind thc ticnsity functions of 

thc rccogliitioil fcaturcs for tlic vcrtex primitivcs. 'I'raining Aso plokidcs thc prolxibillty dc4isity functions for 

thc COli i ICi  ticns bctwcctt vertices. 

Training procccds by showing thc systcin instances of cndi object c l m .  In order to dctcrminc w!ictiicr a 

pair of liiic scgtncnts i n  two training samplcs corrcspund. the rclativc posit.icn and oricntatio~i of thc traiiiiiig 

samplc.; tncst ?IC spccificd. This is donc by cxplicjtly spccifying the sanic pair of linc scpmcr;t endpoints in 

each trairiitiz samp!?. l'hcse endpoints arc callcd ha:idlc vcrtices. -!'hc s j  stern a!igw tI!c trainifig snmplc to 
thc s p x i f k d  objcct rnod~:l a i i d  alters thc cu!ndntivc probability density fiLit?ctic!IIS Cor thc .;c-itcx m ! ) g n i t i o ~ i  

fcaturcs. Ih r ing  traiuiiy, it '  no observed vcitcx is found a t  d ie  posihii  przdictcd b y  a iwtlci ' < ~ ~ ! i ~ ~ x .  2 w x c h  

is mad(. ~wirhii i  a srunll iiistmci. (cslkd 211 axcptnncc rcgion) for thc ncar'cst \!cI-:~Y. TlJi\ i):-x!!i:$ thc :,stem 

tv tolctxtc tiii:iol, di.wr;iIms in :tic sltapc of tlic pattcrii. I'iit iictwork of con!icci,4 ;,crticcis, ,:>,ir!i px1:l;hility 

dcnsity fut:i.tions for thc pcsition nncl uricntation bctwccn conncctioris is also updated with cx l i  wiiiiing 

sampic. In ttic casc of.cwiculatcd parts, i: is iiccessary to spcify a pair of Iiandlc vcrticcs Cor CiIcI i  rigid 

cr.rnpi-!c 1-1 t. 
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3.6 Matching 

Matching an obscrvcd pattern to an objcct inodcl is a scarch proccss. ?Tic systcm must dctcrminc the most 

likcly corrcspondcncc bctwccn each obscrvcd vcrtcx and a model vcrtcx. Combinatorial cxplosion is averted 

by only cvalaating thc combinations for which thc vertices have a high probability. The process can also be 

guided by thc probabilitics to try thc most likcly positicns and orientations first. 

Illiring training, a dictionary of wrtcx prinitivcs may be cornpiled. \’crtex primitivcs which havc a similar 

mcan and stmdard dcviation for thcir rccognition fcaturcs cdn bc mcrgcd into a singlc cntry in thc dictionary. 

A list which givcs thc objcct rnodcls and the location of the primitive in die objcct modcl can be conipilcd for 

c x h  \el tcx primitive. ‘I’he dictionary can be ordcrcd on the basis of thc means of thc recognilion fcaturcs. 

Candidatc models can be sclcctcd using this dictionary with a subset of thc vcrtcx primitives in a pattern. 

Each vcrtcx primitive yields a list of modcl vcrticcs from the dictionary that have a high probability of fitting 

thc obscrvcd vertcx. This list then provides a list of possible object rnodcls. Object rnodcls which occur in a 

largc numhcr of thc lists generated by thc sct of primitives arc likcly candidates for matching. ‘fhc probability 

may then bc computcd that each of thesc candidate models matches thc observed network of vertex 

prirniLh es. ‘1 he modcl that yields thc highest probability is the most likcly match for thc obscrvcd pattern. 

3.7 Dynamic 2 -D  Scene Description 

A s q w m  which can descr-ibc iniages as a nctwork of linc scgments can be uscd for ot\cr tasks bcsidcs 

rcccgnition. i n  many situations, thc identity of a part is not as important ;IS monitoring thc position, 

oricntation, or shape of the part as somc systcm opcratcs on it or near it. By mnrcliing bctwecti thc line 

scgmcnts from consecutivc images it is possible to build up a “composite” description of a 2-D sccne. This 

dcscription may be updated as each imagc is processed. This matching searches within an acccptancc rcgion 

for a linc scgmcn! with a similar lcngth and orientation. The end-points of thc line arc updated as cach ncw 

imagc is matclicd. Tracking d rapidly moving objcct requires that an crtimated vclocity be attachccl to a rigid 

co l l~ t ion  of linc scgrncnts. A dynamic scene description can be used for planning actions by a robot arm, or 

to nionitor a process for the Occurrence of some event. 

4 Dynamic 3-0 Scene Analysis Systems 

Vision in a 3-D world is fundamcntally a 3-D process. Humans (and other spccies) employ a form of vision 

that could bc dcscribcd as dynamic 3-D sccnc analysis. Thc design of a macliinc vision systcm that 

dynamically monitors a sccnc, and interprets the forms in thc Scene as a collcction of 3-D surfaccs is rapidly 

bccnming a popular paradigm for machine vision rcscarch. 
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llicrc is no doubt that dynamic 3-D sccnc analysis will require largc amounts of computing. However, 

computcr powcr alone alone is not holding up dcvclopmcnt of such a systcrn. Bcforc dynamic 3 - D  sccne 

analysis can cvcn bc dcmonstratcd, much lcss made available on a commercial vision rnodulc, a numbcr of 

difficult theorctical problcms must be solved. Progress at this time is rapid; in rcccnt ycnrs there has been a 

convcrgcnce toward agrccmcnt on what problcms must be solved. Much work remains to be done. 

4.1 A Proposed System 

Thc following is a framework for a dynamic 3-11 scene analysis system proposed by thc author as part of his 

rcscarch in this area. 'Ihc cornponcnts of this systcrn arc dcscribcd in figure 10. Whcn vision systcms which 

perform dynamic 3-D scene analysis bccornc comrnercially available, we bclieve that thcy will havc thcsc 

cornponcnts. 

4.2 The Initial Representation 

Imagcs comc into thc system as a time sequence of stereo pairs. Thcy are imrncdiately convcrtcd into an 

initial rcprcscntation which greatly reduces the bandwidth and is designed to facilitate thc processing of a set 

of "shapc" cxpcrts. 

l'hcrc is cvidencc that the human visual systcrn uses an initial rcprcscntation which indcpcndcntly describes 

the irnngc information at a number of resolutions. Such a rcprcsentation can be providcd by a "Laplacian 

Pyramid", \+ hich provides a sequence of band-pass versions of cach image. Miitching information in two or 

more irnagcs is hndarncntal to the operation of most of the shape experts. A multiplc rcsvlution 

rcprcsentation has bcen found by a variety of researchers to greatly simplify the problcm of matching image 

information [15], [16]. The one shape expert which docs not rely on matching is the "shape from shading" 

operation. Howevcr, it has recently been shown that surface curvature may also bc dctcrrnincd using a 
Laplacian opcration [18]. 

A particularly suitable "Laplacian Pyramid" is provided by the Diffcrcncc of Low-Pass (I101 P) transform 

[4]. 'Ihe 1101-P transform exprcsscs an N by N image as a set of 2 log, rV band-pass images such that the sum 

of the band-pass images, plus a low-pass residue, yields the original image. This proves that thc DOLP 

transform is rcvcrsible and thus does not lose any information in the image. ' h c  band-pass filtcrs in the 

D0I.P transform are a sct of copies of a prototype filter which have been exponentially scalcd in size. A11 of 

thcsc filtcrs arc dcfincd as difference of 2 circularly symmetric low-pass filters which diffcr in size by a factor 

of squarc root of 2. A fast algorithm has been developed which computcs a IIOLP transform of an image 

coniposcd of M sarnplcs in 3M additions and multiplications. The result of the transform occupies 3M 
storagc locations [3]. 
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2-D linage Images from Stereo 
or time sequence 

I Shape Experts: 

Stereo Motion 
Shading Occlusion 
Texture Shadows 

Oescr i pt ion 
Models lnterpretat ion 

Figurc 10: Framework for a Ilynsmic 2-D Scc:ic Analysis Slstctn 
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I<ocal p\>sitivc maxima and iicgativc t?iiiiiina (Peaks) i n  c x h  bai1d-p;lsc im;igc inark placcs whcrc t h ~  

band-pass filtcrs arc :: close tit to forms in the image. 7'his cccvrs for individu;il forms, cnds of ~1011gi1tcd 

forms. and a t  corncrs. I .oca1 positive and ncgative ridgcs dcscribc cdgcs and clongntcd shnpcs of forms. 13y 

detecting thc pcliks m d  ridgcs at  cacii bitnti-pass Icvcl. and thcii connccting them m o s s  levels. a tree may bc 

construcrcd which dcscribcs the forms in an image at cvc:y resolution. At  coarse rcsoiutions thcrc is w r y  little 

in  formation and matchit?g images bctwccn levels is relatively easy. As LIic rcsolution bccoincs finer. moic 

dctiiil cmcrgcs, and rnorc information is stored. A matching process can use the c n m t  rcsolution lcvcls to 

detect forms and consirnin possiblc matchcs. Continuing to higher resolutions providcs increasing amounts 

of dctail about the fortii, and and incrcasing prccisiori in tile matchcs bctwccu forms in diffcicnt in:agcs. 

' fhe sct of' lxind-pas iEizgCS ii1 thc 1-aplacinn Pyramid forms a 3 dimensional space, whnsc ilitncnsions arc 

x, y ,  and rcsolution. Peaks in the band-pass iniagcs occur at adjnccnt locations at  adjncent bimd-pass images. 

Connecting adjacent pcaks i n  adjacent band-pass images yields a shape primitivc callcd a "I'cak-Path". 

Peak .paths dcscribc thc gross structure of forms, ends of clongatcd forms, and corncrs. We have rcccntly 

demonstrated probabilistic 2-D shapc marching using Peak-paths as the shapc primitives IS]. 'I'hcrc is also a 

corltinuity ;icross icvcls of ,'idZe information. l?ctcctitig thc largest ridzc samples across lcvcls yiclds a shapc 

prirnirlvc called a "Ridge-hti!". Kidge-Par!is tfcscribc elongated forms and bound;>ries of Forms. 'Fhe graph 

of I'~i:i:-Pat115 Litid Xidge-I'nchs p:-o;iicics Gfc in):ial rcprcscntation for thc shapc griniiiivcs. 

4.3 Shape  Expcrts 

'I hc shapc C X I ) ~ : ' ! ~  arc a set of indcpcndcnt proccsses which providc information about thc sh:.pcs of 3-13 

s:irf;rcL. ! * X i  shapc e x p x  operztcs on the initial rcprcscntation and contributcs information to rhc 

composirc surf;!cc dcscription. The i~iformation provided by thc different shape cspcrts cornplcrncnts a!id 

vcrifics cotisismicy of the surface description. The shape information is reprcsctiicd by n data structurc callcd 

t!!c "Composite Surface Modcl". Thc Composite Surface Model is dyiximicnlly mainhincd and kcpt 

consiwnt b y  a n  iipda:ins procedure. 

4.3.1 Sirnplc Stereo 

Onc of t k  bcst undcrstood methods for rccovering Ihc s!iapc of surfiice infoimation is "simplc stcIco". 

Simplc Ctcrco pri,r'idcs :hap(: infcvmation from thc diffcrcncc in position of grLily-xaic fornis i n  twu imnges 

taken at !he s m e  timc fi.l.)iTi two cameras whose iniagc planes arc at a known pc!sition with rcspcct to cnch 

other. Simplc stcrco is disii~iguisl~cd from gencrr?lizcd stereo by the fact that the camerr: gcotnctry p r o \ W s  

the constraiiil that p;ittcrns along a kriowti linc in otic image must match to pattcrns along n kiiown iinc in tlic 

second image. 'l'hcsc lines. callcd c!:ipolar iiiics, arc clcfincd by thc intcrscctioit of a siiiglc plsiic wi th  thc LWO 

stcrco itn:rgzs. A vnricty of Lc~hi:icliic~ has bccli dcvclopcd to pcrfom simple sicrco matching ;;loitg zpipclnr 

liiics, i t icl~idin~ 3 systcrn dcvclopctl L L ~  C-M I: isliicli uses the peaks From tllc 1101~1' tri>ei-,5for1rI. 
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4.3.2 Generalized Stereo and Occlusion 

Animals Icarn much information about surfacc shapc by moving their heads from sidc to sidc and forward 

and backward. Such movcmcnts cause corresponding movement$ in thc pattcrns in thc imagcs. l 'hc problcin 

of dctcrmining 3-1) shapc from the individual movements of these patterns is callcd "Gcncralizcd Stereo". 

Gcncralizcd stcrco includes both dctcction of occlusion contours, and changcs in size of patterns. Occlusion 

contours gcncrally corrcspond to the cdgcs of surfaces and are a vcry important chic about surface shape. 'lhe 

ratc of change of the siic of patterns as the camcra movcs forward or backward is an important clue about the 

dismcc to the pattcrn. While the matching problcin is harder for gcneralixd stcrco, it has been rccognizcd 

as a vcry important source of surfacc information for a 3-D scene analysis systcm [lS], [lo]. 

4.3.3 Texture 

Surface texture can also be a vcry important clue about the shapc of surfaces. There arc scvcral ways in 

which surface information can be obtained from changes in tcxture patterns [13]. 'The most obvious 

technique is bascd on assuming that the underlying texture patterns are all approximately tllc same size. 

Statistics ahout the rate of chapgc of the size of the patterns provides an estimate of the surfacc oricntation. 

Ihundaries between texture regions can be an important clue about die edgc of a surface. If the texture 

pmcrn is assumcd to have a kno\+ n shape, such as a cirlce, then an estimate of the orientation of thc surface 

on which the pattern resides may be obtained by dctermining the afinc rransfonn that the c1c:ncnt has 

undcrgonc. Contours in a texture can also be an important clue about the shape of surfaces [23]. 

4.3.4 Shape From Shading 

It is possiblc, in some cases, to estimate the rate of change of surface orientation from the ratc of change of 

thc shading on the surface. Shape from shading can providc surface information in just those cascs where 

sterco and tcxturc providc the lcast information. Sevcral elegant techniques havc rcccntly bccn published to 

describe how surface orientation may be obtained from changcs in shading [18], [24]. 

The oricntation of a patch of a 3-D surface may be dcscribed by the two paramctcrs of its gradient often 

rcfcrrcd to as (p,q) [2]. The (p,q) plane is known as the "gradicnt spacc". When a scene is illuminirtcd by a 

singlc source, tlic obscrved intcnsity at a pixel is a fiinction of: 

0 the illumination intensity, 

0 tlic angle betwccn the illumination source and the surface patch normal (i), and 

0 the anglc bctwccn the line from thc camera, and the surface patch normal (e). 

For a givcn configuration of c'mcra, illumination s a m e ,  and 3-D surfacc, thcrc is a sct of valucs of (p,q) 

that arc closcd and conncctcd, and that corrcspond to a givcn intensity at a pixel. This set of values 
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corrcspontls to a cotitour in  the spnsc of (p,q). If the sccnc is :4):;crvcd with illumination from ;I sccond light 

soiircc. thcn ;I scconc! contour i n  (p.q) resulrs from thc obscrvcd ititcnsity. In gcncriil, thcrc will bc two valucs 

for (p.qj that lie on both contoiirs. A third irnngc with iliumination from yet anothcr 3-1) point will 

disambiguatc thc situation and givc a uniquc V ; ~ C  of (p,q). This shapc ineasiircmcnt technique is known as 

"photomct~ ic stcreo". Altcrnativdy, knowlcdgc about thc possiblc shapcs of objects c m  be uscd to 

disambigunrc thc shapc from t.wo iinagcs. 

Photomrtric stereo is not iisually practical bccausc of tlic Jiffiicult:,, of placing a point light source in thrcc 

kiiowii plxcs, and bccausc most siirfaccs dd not hmc a truly Iaiilbcrtiaii nlhcdo. Howc\er, dic contours of 

equal rcflcctancc i n  (p.q) space can be uscd 111 anotlicr way to obtain local 1,hnpc information. Givcn thc 

values ot (p,q) for a point, thc gray Ic\cls along any line from that point map into a contoiir in (p,q) space, 

provided tliat 

0 no d~scontinuitics in surface orientation 2ie crossed, 

0 thc \aliics of (p,q) arc assumed continuous and smoothly varying, and 

a the si.1: hcc rcflcctancc ("kilbcdo") is constant. 

'I'lius, krioulcdgc of (,i,q) at a point allows knov, IcJgc of rclativc 1p,q) at adjacent points. 

4.3.5 Shajie From Motion 

A rigid ol>:::ct mny bc dcscribcd by a sct of Ixicfinark poi:its 011 i!:s s:irfacc, and a distaxc and oricxitation of 

tlic vector bctv;ccn Ihcsc Isndniark pints .  Whcn 3 rigid objcct n i o m  in ri SCCIIC,  thc 3-11 lcnl;t!i 2nd relativc 

3-11 oriel1 talioiis of thcsc vcctors rcniain constant, \vhilc Ac obscrvcd '3-D Icngdis a;id rclativc 2-11 

oricntatioiis change. A sequencc of jmazcs of a moving rigid objcct in which a set of keypoints arc dctcctcd 

can allox che 3-D lengths aiid orientations of thc lincs bctwecii kcypoints to bc dctcrminctl. 

As with stcrco. thcrc arc two p m s  to thc problem: determining tlic corrcspondcnce of Inndmnrk points and 

inferring 3-D shapc from this corrcspondcncc information. Thc iritial rcprcscntntion bilfcd oi: pcciks and 

ndgcs in thc lliffcrencc of 1,ow-Pass Transforin is uscfi.11 foi dctcri;iini:ig tlic cor rcqondenm o f  jxlttcrns i n  

thc iniages. 

4.3.6 The Composite Surface Model 

'I'hc composite surfacc model serves as a coiwnoii data striicttirc into which the cticcmblc of  shnpc cxpcrts 

placc tlicir iiitcrprctation of surface shapc i:i the scenc. i t  also pcnnits thc shape cspcns to rcxi the 

intcrprctation froin ihc oihci. sli;ipc cxpcrts so h a t  t h C j *  m i y  modify or guide thcir iiitcrpretntion in 

nnibiguous situations. It is the &;ta structure i n  whicli dcscription is buitt up froin many views t:tkcn o:cr 
tiinc. I t  is .iko tlic data striicturc in which inconsistcnt iiifoimn:ion about sui-faccs froin Llic diffcrciit 

ktiowlctlgc sources is rcsolvcd. 
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.In additior, to intcgrating ii surfacc dc:;cr;ption fi om ~nnny knowlcdgc sourccs, thc counpo4ti: surf;lcc 1nod~1 

is also L!IC data structiirc on which a yaricty of "!iighcr icvcl" proccsscs opc:Xc. Such proccsscs pcrform tasks 

such as: 

0 Rccognizc 3-13 objccts and construct a sccne dcscription, 

e Plan actions c.ith rcspcct to thc sccnc, 

e Monitor rho cxwttinn of actions, 

0 J m r n  the sh+c of ohjccts. or CcilliCtiO~S of objccts. 

The compositc surfax niodcl is "viewer ccntcred"; it contains a dcscriptilm of surfaccs sccn from the 

vicwcr frem 3 particular pcrspcctivc, pcrliaps incluciing surfaccs which arc tcinpoi,,irily occludcd. It is 

rcfcrrcd to as cornpositc because it is a composition of information obtaincd, over titnc, from diffcrcnt vicws, 

and froin all of thc shapc cxpcrts. 

-J hc dci clopmcnt of i; rcprcscntation for the compositc surface modcl IS currcntly '7n important rcscarch 

issuc. l~!c~tl!) thc the con:posi:c surfxc model shouid bc composcd of entities wh~cli rcprcscnt surface 

ptciics. A numbcr of ccinpcting tcchniqucs exist for rcprcscnting t h c x  surfacr patchcs, cadi \-,iLh its oKn 

short-comings. 

?'hc most ;,bvkws Iinp!cr~~ntativn for a compositc surface model is as a "dcpch map", tha! is a 2-1) array of 

tlic form i = f [ X , j ) .  l l v :  niost obvious problem with this rcprcscntatinn is how to rcprcsciit surfaccr, !hat are 

vcrtlcd wi th  I-cspwt to !hc viwwer. In this case thcrc arc multiple surhcc poinIs at a givcri locatiai (x,y). A 

second problcm is 3:i inability to rcprcscnt surfaccs which arc tcmporarily occluded. 

Onc possible implcmcntation for thc compositc surface niodcl is to rcprcscnt surfacc rcgions as patchcs 

Klicli a ~ c  t~iiclosctl in closcrt contours whcre the surfacc shape is discontinuous. FAch sucli patch could bc 

approsil3.:2.:i;d by a pl(1iiC oi' s second order ciirvc. A siirfacc dcscription of this form can be implcincrdcd as ;1 

graph of "sarfxc paxh ckincilts", wit]: cach clcincnt linkcd to its ixljaccnt nci$ibors. if. p l a m  

rcpresciit;ition composcd of  triangles has bccn dcvclopcd by Fiichs [9]. A morc gciicral schm:: which 

cmi?lo;.t: iiol).hec!ral qpiwiinnLiuns to 3-1) objccts has bccn dcvciopcci by Fnugcras ct. Al. [7j. ..\n :iltcridvc 

to rcprcscniirig cadi  pntch as a planar or sccond ordcr clcmcnt is to rcprcscnt cach p w h  as a nctwork of 

surfacc nortnnls. Such a sct of tiorinals cain 'oc rcprcscntcd by ;t spatial proximity grnyh 1121. 
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4.3.7 3-D Object Models 

Objccts havc 3-D shapcs. I n  gcncral, thcrc is no way to know a-priori thc 3-11 anglc or distancc from which 

an objcct is likcly to bc wen. 'rhus a modcl is nccdcd which describes the complctc 3-13 shapc of an objcct. 

l h c  systcm lilust bc able to dctcrminc from this modcl what surfaces and surface fcaturcs will bc sccn from a 

givcn vicwing anglc. Ikcausc such a model is rcprcscnted indcpcndcnt of viewing anglc it should bc "object 

ccntcrcd". That is surfaccs in the modcl are rcprcscntcd rclativc to an intcrnal coordinate system. 

A powcrfi11 method for rcprcscnting the 3-D shapcs of objects is the technique known as "gcncralizcd 

cylindcrs" dcvcloped by Agin [l]. A gcneralized cylindcr is described by thrcc components: 

1. a spine, or 3-D curvc which is thc centcr axis of thc object, 

2. a cross scction, and 

3. a swccping rule which transforms the cross section as it is swept along thc spine. 

Objccts which havc more than one spine are described as a configuration of gcncralizcd cylinder models. 

Agin uscd paramcuic functions to reprcscnt cross sections. Thus, a gcneralizcd cylindcr modcl of an objcct 

was a symplification which ignored many sinall shapcs on a surface. 

h4arr has proposed a schemc for representing shapcs as a hierarchy of gcncralizcd cylinders [14]. In this 

rcprcscntntion schcmc, the description at cach lcvcl is kcpt very simp!e. A pointer rcfcrs to a rnor'c dctilcd 

description of cach component. Brooks has dcmonstratcd a model driven visual interprctation systcm named 

ACRONYM which uses such a represcntation [2]. 

4.4 Object Matching 

Construction of a scene description from a composite surface model involves matching objcct ccntered 3-D 

modcls to the vicwcr centered composite surface model. A dictionary of obscrvcd forms, similar to that 

described for matching edgc-line descriptions, can bc used to select candidate 3-D objcct models. As 

individual forms are dcscribcd, their structure can be used as an indcx into a dictionary which yiclds a list of 

possiblc objcct models to which they can match. Models which arc suggcstcd by many of thc forms can be 

comparcd to thc obscrved patchcs in thc Composite Surface Modcl. Land-marks can be uscd to dctcrmine 

thc position and orientation at which matching is tried. 

5 Closing Remarks 

Machinc vision is both a scicncc and an engineering discipline. As a scicncc it is still in its infancy: in a 

stagc of dcvclopmcnt where exciting and surprising dcvclopmcnts occur cvery year. 
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For a rcndcr who is intcrcstcd in Icarniiig niorc about cilhcr Pattcrn Rccognition o r  Imagc b.nnlysis ws 

rccoinincnd the tcxtbook writtcn by Iluda and Hart [6]. ' Ihis tcxt thoroughly dcscribcs both ficlds iInd has 

continucd io surprisc us by its rclcvancc as new problcms hnvc cmcrgcd. 'I'hc rcadcr inay find a rathcr 

diffcrcnt trcatmcnt, morc nricntcd :ownrd inirrgc proccssing, i n  thc classic tcxt by Azricl I~oscnfcld [21] or i n  

the ncwcr tcxt by Pratt [19]. I<cadcrs who x c  intcrcstcd in thc prohlcms of dynamic 3-11 sccnc annlysis are 

urgcd to rcad I1nvid Marr'5 b o o k  [15]. Such rcadcrs may also cnjoy the pcrspcctivc givcn b y  I1ric Grirnson in 

his book OH Stcrco [IO]. 
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