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Abstract 

This third report describes a new method to control single-link lumped-mass flexible arms in the case of 
having friction in the joint and changes in the payload. Both linear and nonlinear friction components are 
overcome by using the very robust control scheme developed in the second report, which is based on two 
nested fecdback loops: an inner one that controls the motor position and an outer one that controls the 
tip position. In order to compensate for changes in the payload. an adaptive control scheme is used. Two 
cases are considered when compensating for changes in the tip payload the arm is a minimum phase 
system or a non-minimum phase one. Different adaptive control schemes are proposed in each case. In 
them, compensation for changes in the load is achieved in two steps: first the tip payload is estimated 
from a very simple procedure proposed here, and theIl the feedfarward and feedback controllers a r t  tuned 
according to this estimated value. It results in a quite simple control law that can be used for real-time 
conml of flexible arms, and that needs minimal computing effoxt. Experimental results are shown. 
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1. Introduction 

Several methods have been developed during recent years to control single-link flexible arms with 
invariant parameters: [1-6]. for example. These methods allow a precise control of the tip position 
by sensing some states of the motor and the tip bosition. velocity, etc). AI1 the states of the system 
are reconstructed from these measurements, and used to place the closed-loop poles of the arm. These 
reconmctions (by using filters or obsewers) usually involve a large amount of computation. especially 
when there is a high level of noise in the measurements. 

A next step has been to consider that the parameters of the arm may vary with time. Some adaptive 
control schemes have been proposed to compensate for these changes. They are based on the methods 
mentioned in the previous paragraph and make use of the same sensing. me parameter that tipically has 
been considered 10 change is the tip payload ([7-lo], e&), which represents the load carried by the robot. 
These adaptive controls are unnecessarily complicated to compensate for only one varying parameter. 
Moreover nonlinear and time varying joint frictions, which play important roles in many robots, are 
parameters that have not been considered in all these adaptive and non-adaptive methods 11-10]. 

This report is the third one of a series of reports that describe a new method to control single-link 
flexible arms. There are only two parameters that are likely to vary through the time in a flexible 
manipulator: the friction in the joint and the tip payload. We develop here a procedure to compensate 
for changes in these two parameters, that makes use of measurements at several points of the beam. We 
will show that the real time calculations carried out by the controller are dramatically reduced in our 
method, compared with the others. Our method is based on a feedforward-feedback combined scheme, 
and we particularize our study to the case of lumped-mass flexible arms. We showed in Repon I that this 
method can be generalized to distributed-mass flexible arms by using the modelling technique described 
in Section 4 of this first report. 

Lumped-mass flexible arms consist of massless flexible struchms that carry masses concentrated at 
certain points of the beam (see Figure 1). Only translations of these masses produce stresses in the 
flexible structure, their rotations do not generate any toque in the beam. So the number of vibrational 
modes in the structure coincide with the number of lumped masses. Our control scheme makes use of 
measurement of the positions of all the lumped masses, 

Problems caused by Coulomb friction (which is a nonlinear component of the friction) BS well as 
for changes in the dynamic friction coefficient are overcome by using a general robust control scheme 
developed in [13] (Report 11). This is composed of two nested loops: an inner loop that controls the 
motor position and an outer loop that controls the tip position. See Fig. 2, where 8, is the motor angle, 
8. is the tip position angle, and i is the motor current. 

A new scheme is proposed to adapt the control law to changes in the load. Adaptive conmls referenced 
above are based on the Model Reference Adaptive Control (MRAC) ([7], [8]); or on a two-stage process: 
a system identification stage followed by the adaptation of the controller as a function of the identified 
system parameters (191, [IO]). Both methods require a large amount of calculations to be performed in 
real-time. Then powerful computers have to be used, being problematic the use of these methods for 
conuol of multilink flexible arms. The adaptive control here proposed belongs to the second kind. But 
it estimates only the tip payload (instead of the whole dynamic model) and changes only some specific 
coefficients of the controllers. It makes the identification stage very fast and the adaptation law very 
simple, 
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The dynamic model of single-link flexible arms with lumped masses is resumed in Section 2. The 
control loop for the motor position is briefly described in Section 3. Section 4 describes the tip position 
control schemes used in both cases: minimum and non-minimum phase systems, when the tip payload is 
invariant. And Section 5 develops the corresponding adaptive schemes. Experimental results are shown 
in Section 6. and conclusions are stated in Section 7. 

2. Lumped-Mass Flexible Arm Model 

This section briefly resumes Section 2 of Part I. We divide the model of our flexible arm into two 
submodels: the first one describes the behavior of the motor, the second one describes the behavior of the 
mechanical structure using the angle of the motor as its input. These two submodels are coupled by the 
reaction torque of the beam on the motor. This model is quite different from the models normally used in 
control of flexible arms, which consider the applied torque as the input to the beam (Truckenbrodt [14], 
Low [15]). Our model has some advantages when identifying flexible arms with friction in the joints 
[16]. and when trying to compensate for friction [13]. Another advantage of OUT model is that it allows 
us to separate the dynamic-model terms that depend on the geomeuy of the beam from the terms that 
depend on the lumped masses of the beam, facilitating the payload identification process. 

Consider the system of Figure 1. It represents a massless flexible beam with n point masses distributed 
along the structure, the last mass bemg located at the tip of the beam. The inertia of the motor is included 
in the motor submodel. Let mi, 1 2 i 5 n be the values of the masses and Zi the distances between 
consecutive masses i - 1 and i, where 11 is the distance between the rotation axis of the motor and the 
first mass. We assume that beam deflections are small enough so that the distances between masses mi 
(measured along length of beam) are equal to the distances between the masses' projections on x-axis. 

We establish a coordinate system %- y,  that is fixed in space with origin at the motor axis. We denote 
as Bi the angle between Z-axis and the radial line from the origin to mass i (see Figure 1). The angle of 
the motor is denoted R,,,. 

It can be shown [ I l l  that the dynamic equation for this beam submodel is: 

where M = diag(m1, mz, . . . ,mn), 8' = (SI,&,. . . , R,) is the vector of beam measured positions, A is an 
n x n constant matrix, B is a constant n x 1 column vector, and E .  I is the stiffness of the beam. which 
is assumed constant through the beam. In this expression, A and B depend only on the geometry of the 
beam: I;.  The values of the lumped masses influence only matrix M. 

The dynamic equation for the DC motor submodel is very simple: 

where K is the electromechanical constant of the motor, i is the current, J is the polar inertia of the motor, 
V is the dynamic friction coefficient. Cr is the coupling torque between motor and beam and CF is the 
Coulomb friction. 
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We can express the coupling torque as a linear function [ 111: 

where ?i = (hl , h2 , .  . . , hn); hi, 1 5 i 5 ncl are parameters that do not depend on the masses of the beam. 

3. Motor Position Control Loop 

We resume here Section 3 of Pan 11. This control loop corresponds to the inner loop of E~gure 2. 
We want to achieve two objectives when designing a controller for this loop: 

1. to remove the modeling error and the nonlinearities introduced by Coulomb friction and changes 
in the coefficient of the dynamic friction, 

2. to make the position controlled response of the motor much faster than the response of the tip 
position control loop (outer loop in Figure 2). 

The fulfillment of the second objective will allow us to substitute for the inner loop, an equivalent 
block whose transfer function is approximately equal to one; Le. the error in motor position is small and 
quickly removed. This simplilies the design of the outer loop as will be seen in the next section. 

To simplify the design of the inner loop, the motor submodel described in equation (2) can be linearized 
by compensating for the Coulomb friction and can be decoupled from the dynamics of the beam by 
compensating for the coupling torque. This is done by adding to the control current. the cumnt equivalent 
to these toques which is given by 

where the sign of CF coincides with the sign of the motor velocity. 

The coupling torque C&) can be calculated either from strain gauge measurements at the base of the 
link, or can be estimated, by using expression (3), from position measurements of the lumped masses and 
the motor angle. The second approach is used here. After compensating for the friction and coupling 
torque, the transfer function between the angle of the m o m  and the current is given by 

The block diagram of the inner loop control system is shown in Figure 3 (discrete controllers version). 
The feedforward and feedback controllers (A(@ and B(z) respectively) are designed so that the response 
of the inner loop (motor-position-control) is significantly faster than the response of the outer loop (tip- 
position-control) and without any overshoot This is done by making the gain of the feedforward controller 
large. It was shown in [I31 that. in theory, this gain could be made arbitrarily large even in the case 
of the arm being a non-minimum phase system. It was shown also that large gains in this loop reduce 
the effects of nonlinearities because of friction. Practical limits to these gains are given by the saturation 
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current of the D.C. motor amplifier, unmodelled high frequency dynamics, or even unstability because of 
the discretization of the signals when using digital controllers. 

When the closed-loop gain of the inner loop is sufficiently high, the motor position will track the 
reference position with small error. Thcn the dynamics of the inner loop may be approximated by 1 when 
designing the outer loop controller. 

Notice that the dynamics of this inner loop is independent of the payload, so controllers of Figure 
3 do not have to be adaptively tuned. This is because the only dependence of this submodel on the 
payload is through the coupling torque. and it is exactly compensated by using position measurements 
and expression (3). whose parameten h; are independent of the payload. 

4. Nonadaptive Tip Position Controller 

Provided that the inner loop has been satisfactorily closed, the dynamics of the a m  are reduced to 
the dynamics of the beam submodel. Because the transfer function of the inner loop is approximately 1, 
then 0, N_ 0,. We assume in what follows that both variables are identical. 

The transfer function between the tip and motor positions is given by: 

where Ci = ( 0.. ,010.. . 0 ) the 1 being in the i - th column. This tmsfer function holds for the case 
where tip payload is constant. 

If g&) is minimum phase, the simple control scheme described in Subsection 4.1 may be used. If it 
is non-minimum phase, a general control scheme is proposed in Subsection 4.2. In general, the controller 
for the tip position is composed of a combined feedfomadfeedback control law. The feedforward com- 
ponent is responsible of driving the tip of the arm closely to the desired trajectory, and the feedback term 
is responsible of correcting tracking errors. 

4.1. Control of minimum phase arms 

The control scheme proposed here exploits the particular structure of equation (1). If we close a loop 
using a feedback law of the form: 

we transform equation (6) into the simple expression: 

6 



Equation (8) corresponds to the dynamics of a rigid single-link arm. and techniques to control this are 
well known. We propae the scheme of Figure 4 to drive the arm using second order parabolic profiles 
as trajectories for the tip. The feedforward term provides with the acceleration of the desired trajectory, 
and the feedback term is a standard P.D. controller that corrects tip position errors. 

Notice that the feedback law (7) cancels all the zeros of the plant (and all the poles but two). It means 
that, if the system has zeros in the right half-plane, some intermediate e;, i # n, and 0, become unstable. 
Therefore. this scheme cannot be used for non-minimum phase flexible arms, and a more general method 
is needed. 

4.2. General control scheme 

A general control scheme is proposed here, that may be used for both minimum and non-minimum 
phase systems (see Figure 5). But now the controller for the tip position is more complicated. 

4.2.1, Feedforward r e m  

If the m s f e r  function between the angle of the motor and the angle of the tip g.(s) is minimum 
phase, then a second order parabolic profile can be used and the feedforward term is g;'(s). But if this 
transfer function is non-minimum phase, then a quasi-parabolic profile with derivatives bounded up to the 
fourth order (see Fig. 6) is used in order to guarantee the implementability of the feedforward term, and 
the nominal quasi-parabolic profile is passed through a special filter in order to avoid unbounded control 
signals. We denote that nominal trajectoy as Pp. 

The necessity of the above mentioned filter is justified from Figure 7. Assume an open loop control 
for the case without external perturbations. If we want the tip to follow the reference exactly, then the 
conml signal Jm (which is the same as 8, neglecting the dynamics of the inner loop) is obtained by 
passing the desired profile Pp through a block &(s) that implements the inverse. of the plant g.(s). If 
this plan! had zeros in the right half-plane, they would become unstable poles in g;'(s) producing an 
unbounded iW control signal. In order to avoid this, a modified g,,(s) term must be used and the tip 
reference would be now: 

Pp(s) being the Laplace transform of the parabolic or quasi-parabolic profile. This filter is chosen in such 
a way to get a reference trajectory 8., as close as possible to the desired reference Pp,  taking into account 
the constraint of a bounded am. We choose as a representative index of the closeness between trajectories 
the integral of the squared difference between boh profiles (see Fig. 7): 

where a parabolic profile 2 /2  has been assumed for Pp because, from Figure 6,  the quasi-parabolic profile 
behaves as a parabolic one most of the time. being a 4-th order parabola only at the short transitions from 
maximum to minimum acceleration and vice versa. 
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Assuming that gR(s) is of the form: 

where ai < 0 , l  5 i 5 ni; bj > 0 , l  5 j 5 nz, and all the mots of d(s) are in the left half-plane, it can be 
shown 1121,[171 that the optimum &(s) that minimizes the cost defined in (10) is given by 

*a 

n(s + bj) 
j=l where the cy coefficients are obtained fmm the partial fraction expansion of Az 3 ao,al>cyz 

83. - bj) 
j=1 

being the coefficients corresponding to the terms whose denominators ~IE s, 3,$ respectively. The filter 
is then 

4.2.2. Feedback term 

The feedback controller is designed using optimization techniques (e.g. 1181). We design a controller: 
-y(s) = -A .x(t) that drives x from an initial state to the zero state minimizing a cost function of the form: 

3 = Irn(g(t) 1=O . R1 I x(t) + Rz . O$(t)) . dt (1 3) 

where R1 E Rz.nx2.n,R2 E R are weighting matrices, and x E e" is the state vector of the system. We 
get from (1) the state equation of the system: 

where ~ ' ( t )  = ( 0' d' ), and I, E Rex" is the identity matrix. 
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This feedback scheme uses the errors between the desired and the actual states to generate the control 
AI,  A2 E 3?lX" we can express the con!ml signal (y) in function signal. Defining A = ( A ,  A2 ) ; 

of the measured variables: ~ ( s )  = ( A ,  + A2. s) , (@?(s) - Q(s)). 

The reference vector for the measured variables (8,) may be obtained from the reference 0, by using 
the following expression derived from (1): 

(16) 
1 

Cn.Adj(M . S' - E  . I .  A ) .  E . I .  I3 

CI.Adj(M .s2 - E  . I .  A ) .  E .  I .  I3 
Cz.Adj(M .s2 - E .  I .  A ) .  E . I .  B ! C,AA~~(M . ~ 2  - E .  I .  A) .  E .  I .  B 

T(s)  = 

In the case of a non-minimum phase system, the denominator of this expression has some positive real 
component mots. But they are cancelled with the zems of filter (12), leaving e,(?) bounded. Cancellation 
may be exactly done because all these terms are computed. 

This feedback control scheme presents imponant advantages over other existing schemes when im- 
plementcd on a digital computer. Other control methods need to reconsuuct the whole state x from 
measurements of the motor and tip of the arm by means of filters or observers. They involve a large 
amount of computation. Also, in many cases. these reconstxuctions are distorted by the noise of the 
measured signals making the control dificult. But in our case, because a) we have simplified the arm 
dynamics by closing the motor position loop, and b) we are using more sensing in the beam, all the 
states may be easily obtained positions are measured and velocities may be approximated by the simple 
difference equation 

where Tis the sampling period and k is an integer. Because only the first derivative of measured signals is 
needed, this approximation of the velocities of the mass points is leasonable in many cases, even having 
relatively high levels of measmment noise. 

5. Adaptive Tip Position Controller 

The adaptive control is composed of two stages: the first one identifies the tip mass, and the second 
tunes the coefficients of the controllers as functions of the estimated values of the masses. 

5.1. Payload Estimation 

We assume that changes in the tip payload are caused by the weight of the different objects carried 
by the manipulator. Then we assume that the tip payload remains constant during each movement. 

Lumped masses of our arms may be easily estimated by three ways from equation (1): 
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1. by double differentiation of & ( f ) :  

2. by integrating twice equation (1): 

E .  I .  I*  la [C. .  .4 . O(r1) + C,, . I3 . O,,STI)J. d q  . dr2 
(19) 

3. and by using the solution intermediate between the previous two: differentiating once the left-hand 

*=o TI* m. = 
wt) 

term and integrating once the right-hand term of equation (1). 

of 
of 

Notice that we can use these expressions because of the property that matrices A,B we independent 
the tip mass m,,. Any of these estimators may be used. The selection will depend on the quality 
the measurements. Expression (19) seems to be the most adequate because no derivatives of the tip 

position measurement are required, then noisy measurements may be used to estimate m.. But, in turn. 
this estimator carries out a double integration, and it showed to be very sensitive to little permanent errors 
in the position measurements due to errors in the calibration of the arm or permanent bendings of the 
beam. 

Finally, we assumed that m,, is the only mass that can change. Provided that we know the values of 
masses 1 5 i < n, we can use equation (1) to obtain the accelerations of these masses, and they can 
be used to get better estimations of states 8i, 1 5 i < n than ones obtained from (17). The trajectoly 
described by the tip is often the slowest one among the trajectories of all the points of the beam. Then 
relatively good estimations may be achieved for & from (17). 

5.2. Tuning the Controllers 

No controller of the motor position control loop needs to be tuned, because the decoupling term is 
independent of the payload. Only the parameters of the tip position control loop need to be tuned as 
described below. 

5.2.1. Minimum phase cormoiler 

The feedback law (7) is independent of the tip mass. Only the gain m,,/EI of Figure 4 needs to be 
tuncd as a function of the estimated mass. This tuning keeps all the performances of this control scheme 
unchanged. 

5.2.2. General scheme 

Analyzing the controllers of Figure 5 we get [12]: 

gn(s). &(s) is independent of m,. 



a Only numerators of &(s) and T(s)  depend on m,. 

a If we consider a perturbation E(S) applied to the input of the system (Om), then the resulting closed- 
loop transfer function is 

and the zeros of this transfer function do not depend on the tip payload or on the coefficients of 
the controller. 

All this means that few computations are n d e d  to tune the controller to the new estimated payload: 

a The feedforward term JW may always be expressed as: 

where dL, &&, are functions independent of q. These functions can be easily generated fmm (ll), 
takiig into account that the term 

0 2  .$+a, . s+ao 
nl nZ H(s - ai) ' n ( ~  + bj) 
i=I j=1 

is independent of the payload, and can be implemented as a filter whose transfer function has 
constant coefficients. The only term that depends on the payload is the factor of the numerator 
d(s)/K. This polynomial has coefficients that are proportional tom,. and otheIs that are independent 
of this mass. Grouping the coefficients that are independent of m. and multiplying them by the 
previous filter and the Laplace transform of the reference signal Pp. we get &w(t). f?;(t) is obtained 
in a similar way from those coefficients of d(s)/K that depend on m.. 

a The refeerence 0, may be expressed in a form similar to the previous: 

@,(?I = @(r) + m,, . &'(r). (22) 

a Controller A I  + A2 . s has to be adjusted in order to maintain the poles of the closed-loop system 
(20) in the same positions. This is an algebraic procedure that involves resolving a system of h e a r  
equations. Often, only the dominant poles have to be placed. This significantly reduces the amount 
of calculations. 

Figure 8 shows this tip position adaptive control scheme. 

6. Experimental Results 

In this section we apply the methods described in this paper to control two single-link lumped-mass 
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flexible arms that we have built in our laboratory. The experimental setup is described first. Then exper- 
imental results are presented for our two arms, which correspond to the single and two mass cases. The 
single-mass a m  is minimum phase and the two-mass ann is non-minimum phase. Then the two methods 
presented in this paper are applied. 

6.1. Single-mass flexible arm 

From an identification technique described in [ll]. [16] we found that the parameters of this arm were: 

I =  0.005529 lb.in.sec2 
V = 0.01216 1b.in.Jrad. Jsec. 
K = 2.184 .lb.in./amp. 
Coulomb friction = 0.2883 &.inch (0.132 amp.) 

C,(r) = C . (8, - 81), C = 0.6741b.in.Jrad. 

Equation (1): 

54 . s2 . 6'1(s) = -2362.5 . ei(s) + 2362.5 . e,,&), (24) 

and 

The estimated value of the Coulomb friction corresponds to the equivalent torque generated by a beam 
deflection of 25 degrees, so its effect in the control is very noticeable. Transfer function (25) is minimum 
phase. Then we use the control scheme of Subsection 4.1. 

6.1.1. Design of inner control b o p  

The inner loop incorporates compensation terms for the Coulomb friction and the coupling between 
the motor and the beam, according to (2). The scheme of Figure 3 is used for the inner loop. A delay 
term is included in the scheme in order to take into account the delay in the control signal because of the 
computations. A sampling period of 3 msec. is used for this inner loop. 

An optimization program was developed to get the best controllers using the model obtained for 
the motor. The settling time (considering an error less than 1 96) of the response of the motor to step 
commands in the motor angle reference input was minimized. The saturation limit of the current amplifier 
was taken into account in this design too. Step inputs were assumed as references for the inner loop 
because, in order to get a good control action, the command angle for the motor should experience very 
sharp changes. In fact in our experiments the motor angle varied much faster than the angle of the tip. 

The resulting controllers were: 
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A(z) = 17.442 - 2.442. Z-' 

B(z) = 6.667 - 5.667. z-' 

This motor position closed loop proved to be fast and accurate enough to mume that the dynamics 
of this inner loop are negligible compared to the dynamics of the beam. Details may be found in 1191. 

6.1.2. Design of outer control bop 

Notice that matrices A and B of (24) include the wnstant term E .  I. Because this system is minimum 
phase, we use the method of Subsection 4.1. First we close the loop (7): 

Then we design the controller G&) of Figure 4. Designing an analog P.D. controller and then 
discretizing it using thc Tustin transform ( e g  [20]) we get the digital controller: 

1 - 0.987. Z-' 
GC(z) = 328 1.25 . 1 - 0.74. r1 

6.1.3. Adaptation 

Identification of the tip mass is done by using (19) [191. The complete control scheme is shown in 
Figure 10. Experimental results are shown in Figures 11-14. Parabolic profiles of order 2 are given to 
the controller as references for the tip position. Comparisons between the behavior of the arm when 
using the nominal controller (27) (m. = 54 gm. in the block m,,/EI of Figure 4) and when using the 
adaptive controller (block m. is tuned) are presented. Figure 11 shows the response of the system with 
the nominal payload of 54 gms. and the nominal controller (non-adaptive). Notice that the response is 
very good because G, was designed for these conditions. figure 12 shows the adaptive response with the 
nominal payload. Figure 13 shows both adaptive and non-adaptive responses when payload is 142 gms.. 
and Figure 14 when the payload is 15.73 gm. Notice that the system Without the adaptive controller 
becomes unstable in this last case. 

6.2. Two-mass flexible arm 

The motor submodel is the same here as in the previous arm, because we use the same motor. Coupling 
torque is now: 

Ct(r) = -6.159. R1(r) +2.053. R2(:)+4.106. e,,,@), (28) 
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and the beam submodel is, assuming the two nominal masses of 54 gms (0,12136 b.): 

d’@(O -176.6032 110.377 ) , 66 2262 ( -5.51885 , 
) . e,(tl. (29) 0.12136 ) ’ d12 = ( 27.59425 -22.0754 

This last expression gives the transfer functions: 

(3 0) 
el(s) 545.7. (52 + 106,10833) -= 
e,&) s4 + 1637.1 . S’ + 57903.3175 

-45.465 . (9 - 1273.3) -- - 0’0) 
S4 + 1637.1 .sZ + 57903,3175 

Natural frequencies of the beam are obtained from the poles of these transfer fimctions. They are: 6.014 
r d . / s e c .  and 40.0116 rud./sec.. The last transfer fwction is non-minimum phase exhibiting a positive 
zero placed at 35.683. Then the general control mehod of Subsection 4.2 is used here. 

6.2.1, Motor position control loop 

Because we use the same motor as in the previous arm. we use the same controllers for the inner 
loop too. Only the compensation term of the motor-beam coupling has to be changed. This is imple- 
mented by using expression (28). We continue here using a sampling period of 3 mec.  Experiments 
showed that the dynamics of the motor position inner loop were negligible [12] using this controller. 

6.22. Outer loop 

We use a sampling period of 6 msec. for this loop. We want to test the tuning of both feedforward 
and feedback controllers. Then, in this experiment, in order to separate the results of tuning these two 
terms, we drive the system open loop along a trajectory (only the feedforward term works). In turn. when 
the arm is resting in a position, only the feedback term works to compensate for external perturbations. 

Figure 15 shows the tip position reference 0, that results from passing the founh order parabolic 
profile Pp through filter (12). The arm has to move 200 mrad. in about 0.4 sa.. The components of the 
feedforward term, exprcssed according to (21), are: 

(852.81575+2.6791 .s’). (1 +0.05605. s+0.00157075 .$) 
Bm(s) = . Pp(s) (32) 0.6697676. (S + 35.6833)’ 

s2 .  (176.6032+0.12136~sZ)~(1+0.05605~~+0.00157075 .s’) 
&(S) = 0.6697676. (S + 35.6833)’ ’ PP(S), (33) 

as shown in Figure 16. Notice that l i i  $&(t) = desired tip position, and lim &(t) = 0. So the steady 
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state of the feedforward term is not affected by changes in the tip load. Because we move the arm under 
open loop control conditions, we do not need T. 

In order to get the feedback controller, we chose a cost function (13) of the form: Rt  = diag( l ,2 ,0 ,  0), 
R2 = 1, where we weighted the tip position twice the middle mass and motor positions. The optimum 
conmller that minimizes this cost is: 

A =  ( 0.4428 0.5572 0.0534 0.1828 ) . (34) 

This places the closed-loop poles at -3.79 f j .  7.375, -6.61 ?c j .40.506. There are two dominant poles 
and two secondary poles far away from them. 

6.2.3. Adaptation 

Identification We first tried to estimate the tip mass by using expression (19), like in the first example. 
But the problem mentioned in Subsection 5.1 appeared. Experimentation showed that (18) was the best 
estimation among the three proposed there. Measurements of Selspot are very noisy so we had to pass 
all f?i measurements through a low pass filter with cut off frequency 100 rad./sec. 

The tip acceleration was estimated by fitting a second order parabola to several consecutive tip position 
samples. At the first instants of the motion, tip position experiences little changes: first it moves slightly 
backwards and then it moves forward at a low speed. Then the tip acceleration is close to 0 and 
estimations based on (18) are unreliable. Estimations are consistent after about 0.15 sec. from the stan 
of the movement, when the tip experiences noticeable motion. 

Controller adjustment Analysis showed that both dominant and secondary poles of the closed loop 
system could be maintained approximately in the same positions (deviations less than 20% with respect to 
the values given at the end of the outer loop design subsection), for variations of the payload between 30 
grams and 160 grams, by tuning independently the P.D. controllers associated with each mass position 
measurement. Further analysis showed that good resnlts are attained by using the following simple 
adaptive law: 

A: = p . ( 1  + X i )  - 1 (35) 

where X i , i  = 1,2 are the two first elements of vector A @sition coefficients), and A,,j = 3,4  are the two 
last elements of this vector (velocity coefficients); X represents the coefficients of the controller for the 
nominal tip mass m., and A’ represents the coefficients of the new P.D. controller for the estimated new 
tip mass mh; and p is mh/m,. 

An adaptive controller based on the above ideas would run the first 0.15 sec. of the motion (where 
the tip mass is k i n g  identified) with the nominal controller, and the remaining of the motion with the 
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tuned controller. This works in minimum phase systems, where the gains of the feedback controller are 
high (single-mass case) and allow the system to recover from the position errors produced during these 
0.15 sec. But in non-minimum phase systems, feedback gains have to be low (in order to have a stable 
closed loop system), and tracking e m r s  produced in these first 0.15 sec. c m o t  be corrected during the 
remaining 0.25 sec. of motion, the trajectory described by the tip beig quite distorted. 

Then, the following experiment was designed to test open and closed loop performances in our two- 
mass arm. The experiment is composed of four phases (see Figure 17). The first two phases = needed 
for the identification of the tip mass. The other two correspond to the real movement of the arm. with 
the controller coefficients already tuned. They are: 

Phase 1 The arm is open loop driven (mer loop is closed, outer loop is open) following the trajectoly 
S,, obtained from a Quasi-parabolic profile Pp.  The feedforward signal is generated from (32), (33) 
assuming the nominal tip mass of 54 gms. We are estimating the tip mass during all this phase. 
Thc arm is driven in this way until we get a consistent estimation of m,, (until about 0.15 sec.). 

Phase 2 Once the tip mass has been estimated, the feedback controller is recalculated according to (35). 
(36). the open loop control is stopped. the new feedback loop is closed, and the tip reference is 
settled to the initial position. Then the arm goes back to the initial state. 

Phase 3 Once the arm is approximately in the initial state, we start the real motion. In this phase we drive 
the arm according to the nominal trajectory by using the open loop controller. The feedforward 
controller has already been tuned ((21) with the value of the estimated tip mass), so the tip position 
reference is closely tracked. 

Phase 4 Finally, when the tip has approximately reached the goal position, the controller is switched 
from an open to a closed loop scheme. In this phase, the work is carried out by the tuned 
feedback controller, that positions the tip exactly on the target position, and compensates for external 
perturbations. 

Figure 17 shows the tip reference, and tip position obtained for a tip m a s  of 54 g m .  (the nominal 
value). The value given by the estimator was 58 gm. Figure 18 shows that the commanded position 
for the motor (0,) is closely tracked by the actual motor position (Om), supporting the assumption that 
the dynamics of the inner loop are of secondary order compared to the dynamics of the beam. Rgure 
19 shows the results of repeating the experiment with a tip mass of 133 gms. The estimated mass was 
now 120 gms. Figure 20 shows the response of the arm, with a tip mass of 133 gm., when the nominal 
controller (34) is used without any adaptation. 

Phase 2 is the most critical part of this process in the sense. that is the longest one, and can cause 
oscillations. The arm experiences a strong acceleration in the direction opposite to the motion, and then 
a quick decceleration in order to be placed at the initial position. In some cases, it produces oscillations 
(see Figure 19) that are the result of saturating the amplifier. These phenomena do not appear later, in 
phase 4, where the feedback loop is working again, under less extreme conditions. 

7. Conclusions 

A new method to control single-link lightweight flexible arms in the presence of joint friction and changes 
in the load has been presented. 
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Reduction of frictional nonlinear effects is achieved by closing a high gain loop around the motor 
position. This was developed in a previous paper [ 131 (and Report II) and includes compensating terms 
for the coupling torque and the Coulomb friction. 

The new ideas that this report presents are two schemes to control the tip position of the arm when 
there are changes in the tip load. The first scheme is significantly simpler than fhe second, but can be 
used only in minimum phase systems. 

The general control scheme (second one) is shown to be simple and computationally efficient: the 
sampling period was 3 msec. in our experiments and this was the time needed by real-time conuol 
calculations. The controller is composed of two nested control loops (three in the first scheme) plus an 
adaptation loop, but each one is formed by very simple elements. In fact, our experiments show that 
using a computer of vcry modest calculation capabilities, a controller that fulfills the desired specifications 
can be implemented. The experimental responses were shown to be good even in the case of extreme 
conditions: the Coulomb friction was very high and the payload ranged from lf3 to 3 times the nominal 
tip load of 54 gr.. 

Experimental results showed that ow control scheme made the tip follow the reference accurately even 
with a 10% ermr in the estimates of the tip mass, as happened in our experiments. 

Phase 2 of the two-mass flexible arm experiment makes the total time required for the motion be 
unnecessarily large. In a practical implementarion of this, Phase 2. returning tip to initial position. could 
be eliminated. Then tip would start from some new initial state closer to the goal state, and an appmpiate 
new trajectory would have to be calculated. It means that the desired trajectory e,,, and the feedfonvard 
signal 6,  should have to be recalculated at the end of Phase 1. These trajectories have to reach the final 
position, but now starting from the actual state of the arm, at the end of Phase 1, where the tip has some 
velocity, acceleration and, eventually, some jerk. Efficient ways of calculating these trajectories in order 
to avoid Phase 2 are object of our present research. 

A significant advantage, from the design point of view, of our control scheme is that each loop is 
designed indcpcndently of the others (starting from the inner one) and their elements are calculated easily 
and according to simple specifications. The inner loop is designed to compensate friction and make the 
motor response fast. Both goals are achieved with the same high gain P.D. controller. The middle loop 
of the first scheme dramatically simplifies the dynamics of the system (reduces its transfer function to a 
double integrator). The outer loop wants a fast and accurate response in the tip position (a simple P.D. 
with a feedforward term). The adaptive control takes care of changes in the load by estimating only one 
parameter of the system: and Subsection 5.2 shows that the control scheme may be tuned to the new tip 
load with a minimum computation effort. 

Finally, this control approach is different from others in the following sense. Existing methods to 
control flexible arms are based on the explicit control of the tip position only, where the controller 
generates the current for the DC motor of the joint as a control signal. The proposed method is based on 
the simultancous explicit control of the joint motor position and tip position. The controller for the motor 
position generates a control signal that is a current for the DC motor, as in the other methods. But the 
tip position controller generates a control signal which is a motor position reference for the inner loop. 
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Figure 1: Lumped-mass flexible beam. 
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Figure 2: Control scheme robust to friction. 
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Figure 3: Computer mtml loop of the motor positio~~ 
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Figure 6: Nominal traject0rie.s for the tip position (Pp). 

Figure 7: Feedforward contml. 
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Figure 8: Adaptive general tip position wnm1 scheme. 
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Figure 10 Adaptive schemt far the single-maps ann. 

T i p  position reference ! “I / 

response 

Figure 11: Tsp position rcspona with the nominal controller d a payload 

of 54 gmr. (single-mass am). 
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,Tip p o s i t i o n  ref ereace ." '1 response 

Figure 12: 'KD posilion rcspnse ~ $ h  the Zd@x m l k r  and a Payload 
of 54 gmp. (SinglMnaSs arm). 

xperimental tip posi t ion  response 
i t h  the nominal controliar 

Figure 13: E p  position mponse of nominal and adaptive contmlIus with a payload of 142 gm. 
(single-mass arm). 

Experimental t i p  posi t ion  xesponse 
with the nominal c o n t r o l l a  

Tip pos i t ion  reference 

-- 
xperimental t i p  posi t ion  response 
f th  the adaptive controller 

Figure 14 Tip position response. ofmmbal aud adaptive controllers with a payload of 15.n g m ~ .  
(single-mass arm). 
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Figure 18: Motor position reference and actual motor position 
(two-mass arm). 
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Figure 1 9  Tip position response of adaptive controller with a payload 
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Figure 20: 'b response with a payload of 133 gms.. and the nominal controller is used 
(two-mass arm). 
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