
Experiences with SRL:
An Analysis of a Frame- based

Knowledge Rep resentation

Mark S. Fox, J. Mark Wright, and David Adam

CMU-RI-TR-85-10

Intelligent Systems Laboratory
The Robotics Institute

Carnegie-Mellon University
Pittsburgh , Pennsylvania 1 521 3

July 1985

Copyright @ 1985 Carnegie-Mellon University

This research was sponsored in part by Digital Equipment Corporation, and the CMU Robotics
Institute.

EXPERIENCES WITH S R L

Table of Contents
1. Introduction
2. What is SRL

2.1. Language Overview
2.2. Extensions to the Language
2.3. Applications

3.1. User.Defined Relations
3.2. Demons
3.3. [?strictions
3.4. Paths for Transitivity
3.5. Paths for Search
3.6. Mc ta- in formation
3.7. Contexts
3.8. Database Interaction
3.9. Efficiency

3. Experiences

4. Conclusion
5. References

1
1
1
3
4
5
5
7
8

9
9

10
10
10
11
'I 2

a

I

EXPERIENCES VJITI.1 SRL

L i s t of Figures
Figure 2-1: h l - spec Schema
Figure 2-2: hl-r;pec Schema
Figure 3- 1 : Previous-Activity Schema
Figure 3-2: Demon Schema
Fiyurc 3-3: Search Paths

Abstract

The goal of this paper is to examine a single representation language, SRL, and its applications to

determine utility of its ideas. Post mortems have been performed before but have the appearance of a

massive "weeding" due to the plethora of ideas included in the initial version of the language. What

distinguishes SRL is its evolution from a research engine to a "production level" language. Its

evolution has been hastened by its application to "real" problems, and its transition to industrial use.

EXPERIENCES WITH SFlL

1 . Introduction
During the latter half of the 70's the field of AI experienced a proliferation of semantic network and

frame-based knowledge representation languages: Concepts (Lenat 1976), FRL (Roberts & Goldstein
1977), KLONE (Brachman 1977), NETL (Fahlman 1977), Scripts (Schank & Abelson 1977), Units
(Stefik 1979), and SRL (Fox 1979). With the advent of AI techniques as marketable products, we are
beginnicg to sce a similar surge of vendor supported knowledge representation languages in the
market place: KEE (Intelligenetics 1984), LOOPS (Bobrow & Stefik 1983), ART (Williams 1983).

One would think that before an idea is "productized," a clear understanding of it and its use would
have. emerged. Yet the majority of the applications of knowledge representation languages have
been experimental, and have yet to move into production use. A su rvey of systcrns in field test or
production use are either fule-based, e.g., R1 (McOermott 1080), ACE (Stolfo 19132), XSEL
(McDermott 1083), and CATS-1 (GE 1983), or utilize an ad hcc representation. In the case of
knowledge representation languages, though the size of the intersection of frame-based languages
has grown larger, no clear subset has yet to emerge; and the field continues to evolve as new ideas
are explored, e.g., RLL-1 (Greiner 1980), and MRS (Genesercth 1980).

In this paper, the SFlL system and its applications are described, followed by 8 description of our
. ? x p i m , c cr,nd what n;ay be conclud2d from them.

2. What is S.RL

2 . l . Language Overview
A schema is a s.ynbolic

ropresentation of a concept. Its definition is the summation of its slots and va.lues. Slots are ussd to
rcprescnt attributive, structural and reiational inforniaiion about a concept. A schema is coii\pxxxi of
a schema name (printed in the bold font), a set of slots (printed in small caps) and the slot's values
(Lisp printing conventions are observed). Values can be any Lisp expression and reference schemztc?
when they are strings. When printed, a schema is always enclosed by double braces with the schema
name appearing at the top. The hi-spec schema (figure 2-1) contains six slots, each of which
contains a value.

S R L is a frame.based language with the "schema" as its primitive.

({ h1-SpC.C
IS-A: "engineering-activity"
SUB-ACTIVITY*OF: "develop-board-hi "
INITIAL-ACTIVITY -OF: "develop-board-til I'
ENABLED-BY: "TRUE"
CAUSE: "hi -spec-complete"
DESCRIPTION: "Develop specifications for the cpu board" }}

Figure 2-1: hi-spec Schema

Many of the ideas found in other represeniation systems have been incorporated into SHL. These

1

EXPERIENCES m - t i sriL

include meta-information, demons, restrictions on legal slot value and a context facility.

Mefa-information may be associated with schemata, their slots, and values in the slots. It is
represented by another schema, called a meta-schema, that is attached to the schema, slot, or value.
Representing meta-information as schemata provides a uniform approach to representation. The
user is provided with access functions for retrieving meta-schemata. Once retrieved, they are
manipulated just as any other schema. The meta-information is printed in italics beneath schema, slot
or value to which it is attached.

{ { h l -spec
Crealor: "mark fox"
To -Create: : schemac

IS-A: "engineering-activity"
SUB- ACTIV ITY -OF: "develop- board- h 1 "

range: (type "instance" "activity")
INITIAL- ACTIVITY -OF: "develop-board-h 1 "
ENABLED-BY: "TRCJE"
C i>. IJ :> E : " I 1 .
m s c R i P r i o N : "Desdop specifications for the cpu board")}

con I p le t e 'I

Figura 2-2: t i l -spec Schema

Any slot may have facets associared with it. Four facets are defined in SFII..: D ~ O N , ~ O M A I N , RANGE,

and CAnDINAI-ITY. The DEMON facet allows Lisp procedures to be associated with a slot. The
excm:ion cf dcmcnc is key& to particular S R L access functions, such ;is filling or retrieving the
vaiue of a slot. RANGE and DGMAIN facets are used to restrict the values that may fill a slot and the
schemata in which a slot may be placed, respectively. The CARDINALITY is used to restrict the number
of values that a slot may contain. Values for each facet may be inherited from slots in other schemata.

As in other representation languages, a standard set of relations are provided to the user to form
taxonomic and part hierarchies. Slots and values may be inherited automatically between schemata
along these relations. One of the novel representational ideas introduced by S R L is user-defined
inhcritance relations (Fox 1979). In most other knowledge representation systems, several relations
for inheriting slots and values are defined as part of the representation (e.g., AKO, is-a, virtual-copy).
In contrast, SRL offers a facility by which users can define their own inheritance relations, allowing
only slots and values of the user's choice to be inhcrited. In addition, slot structures can be
elaborated between schemata, an3 slots and their values mapped arbitrarily between schemata, as
need demands. Inheritance relations are represented by additional slots in a schema. A dependency
mechanism is integrated into the inheritance facility that notes as meta-information the source of
inherited slots and values. Here again, the user can define the dependency relations that are put into
place.

Another novel feature provided by SRL is a means of controlling the search performed by the
inheritance process. Any query of the model may optionally use a path to restrict which relations may

2

EXPERIENCES L V I I t+ SRL

be traversed while searching for a suitable value to inherit. Paths may also be used to specify the
transitivity properties of relations. For example, a PART-OF hierarchy for describing a car might
represent tlie battery as PART-OF the electrical system, and the electrical system is PART-OF the
car. The implicit notion that the battery is PART-OF the car (i,e., that PART-OF is transitive with itself)
is represented using paths.

Contexts in S R L act as virtual copies of databases in which schemata are stored. In the copy,
schemata can be created, modified and destroyed without altering the original context. Coritexts are
structured as trees where each context may ir-therit the schemata present in its parent context.
Hence, only schemata that are used in a context need be explicitly rqmsented thcre. This avoids
copying schemata that will never be used in the ccntext. The context provides for version
management and alternate worlds reasoning with SRL models.

Error haudling is also schema based. An instance of the error schema is created to describe each
error encountered by the system. error-spec schemata may be defined that specify how to recover
from each kind of error.

In order to support large applications, a database system is integrated into SRL. Schemata are
s:or.;fc! :. dnf&ase urXJ they ar? accc?sr;zl, at v+iiich t ims they are imught in:d !.isp A m c t w of Vie
most r-G:ccnt!y accessed schemata re k p t in Lisp foi quick access. When the C ~ I C I I ~ becornes too
large, schemata arc swipped back to the database usirig a reccncy n'gorlthm.

2.2. Extensions lo t h e Lstiguzge
SRL serws as the core of a knowledge nngineeriiq environmcnt called lslisp (ISL 1984). It offers a

nurnbw uf infcrerrce tools t!iai cperate on schemata: HSRL, PSRL, OSKL, ESRL., and KBS. tiSRL
(Mcn 2 Wright 1983) tnkes I-ICPHVR(Chcster 1980), a logic proorarr) i,ifcrpreter, an(! 2llers it io use
X I - mudcls as its axioms. The system combines the modus ponens irifererice of logic programming
systems with the representation power of SRL. In addition, the inheritance mechanism provides
default reasoning, not available in logic programming environments.

Similarly, PSRL is a production rule interpreter that operates on S R L models (Rychener 1985).
Production rules and their parts are represented by schemata. A subset of PSRL provides the form
and execution pattern of OPS5 rules (Forgy 81). OSRL provides a schema-based object
programming facility similar to Flavors (Weinreb e(Moon 1981). ESRL. (EL 1984) provides an event
mechanisrn which enables the user to schedule events to occur either in a simulated or normal
operating mode. KBS, a knowledge-based simulation system (Reddy 8 Fox 1982) uscs ESHL to
Derform discrete simulations of systems modeled in SRL. Simulation objects are represented as
schemata. An object's associated events and behaviors are represented as slots and values in the
schema. An object's event behavior may be inherited along relations which link it to other schemata.

In addition to inference tools, system building tools are provided. RETINAS (Greeriberg 1983) is a
schema based window system. Schemata for windows; displays, and canvases are instantiated to
build an interface. Default specifications for windows, etc., may be inherited from the prototype
schemata. KBCI (ISL 1984) is a schema based command system. Again, the command schema is
instantiated to create commands. A conimand interface is defined by a collection of command

3

EXPERIENCES WITH SRL

scheinrita organized in a SUR-COMMAND-OF hierarchy. CPAK (ISL 1984) is il 2-D grapliics package
based on the CORE definition. A business graphics facility is provided on top of CPAK.

2.3. A pp I i c a t ion s
E:lc:h of the following applications are supported by one or more corporations with the goal of

transferring the technology for internal use. Each system uses S R L as its rnocleliny language and
malies extensive use of the RETINAS, KBCI, and graphics package for user interfacing.

o Callisto: A project managemerit system which focuses OR the semantic representation of
activities and product configurations (S:tthi et al. 198Sa; 1985iO). Callisto rncikes
ex t t. n s ive i i ~ e of t h e S R L ’ s met a- i n form at i o n , search spec i f i ca t i c n s, user- d ef i n cd
relatioils, and context. In addition, it uses FSRL for representing n i m a y e r i ~ l project
rnmagernei ~t heuristics, and ESRL for project scheduling. Portions of Callisto are in field
test.

o INET‘“‘: A corporate distribution analysis system which models and simulates a
corporation’s manufacturing, distribution, and sales organization (Reddy 8 Fox 1983).
INET uses SRL’s meta-information and context mechanism. OSRL is the simulation
vehicle, and PSRL is used to represent post-analysis heuristics. NET is now being
tran:fcrred t;) til.: :pr,n:;or.

o ISIS: A producticn management systclrn which models, sct’iedules, dlid moni!crs activities
(Fox 1983; F-ox & Smith 1384). G ! S us3s 211 of SRL’s facilities, wi!h TIic majority c-f ;lie
search s!gxithr,i i ~ i ! p ! ~ ~ \ ~ e f i k d in Lisp. ISiS is ~ G V J b!:lric~ trancferred in Li:c sparsor.

o PES: A rule-bxetl architecture for the seitsor-based diagnosis of physical processcs
(Fox et at. 10G3). PDS uses the basic schema repmentation only. PDS is in production
use.

e Rome: A quantitative reasoning system for long range planning (Kosy et ai. 1983; Kosy &
Wise 1984). Rome uses SRL’s meta-information, context mechanism, and user-defined
relations. HSHL is a primary inference mechanism.

What are some of the characteristics of the applications to which SRL has been applied?

0 Size: The number of schemata in a system are large enough to exceed their praclical
storage directly in memory.

Complexity: The cgrnplexity of decision making required by an application requires the
incorporatiori of many of the types of semantic primitives that have evolved in the field,
including time, causality, states, actions, etc., and corresponding inference techniques.

e Efficiency: The efficiency of the language is important. Response must be provided in a
reasonable amount of time, whether for realtime control or interactive support.

EXPEFIIENCES VJiTH SRL

3. Experiences
This section discusses the experiences we have had building knowledge based systems in SRL.

Our results have been mixed. Some facilities have proven surprisingly useful, while otliers remain
almost entirely unused. The discussion is organized by facility.

3.1 . User-Defined Relations
Definition. User defined relations allow the user to tailor the inheritance defiriition of their relations

to t h o needs of their application. I lie iiiheritnnix
sernmtics of a relation arc specified using iiiheri tancr specs. There ;ire five kinds of irilieritance
specs that allfiw the user to finely tailor the inheritance of their relations.

in c i c f s io n

-. Each relation is represented by a schema.

Specifies s!ots and vaiiies that should be inherited unchanged.

exclusion Specifies slots and values that are specifically excluded.

elaboration Specifies a one to many mapping of slots. Values rnay not be inherited along an
elaboration.

T h a revious-cctivity relatioil embodies same o i this functicnality.

5

EXPEnIENCES WITH SRL

({ previous-activity
IS. A : " relation "
DOMAIN: (type "is-a'' "activity")
RANGE: (type "is-a'' "activity")
MAP: "previous-activity-map"
INCLUSION: "previous-activity-inclusion"
INVERSE: "next-activity"
T ~ A i m n v i n : (repeat (step "previous-activity" all) 1 inf))}

({ p revi r) 11 s - activity - map
comment: "the finish-time slot in the range schema of the relation is

mapped onto t h e start.time slot of the dormin schema.
Hence, the finish time of the preceding activity
becomes the start time of the following activity."

IS-A: "map-spec"
DOMAiN: "start-time"
R A NGE : "fin ish -time " }}

-1-1 - _-I__--_-_-_ ~ - . - -

'The previous-activity relation allows two kinds of inheritance. First, it maps the previous activity's
finish time to the next-activity's start time. Second, it allows the inheritance of the SUB.ACTIVITY-OF

slot and its values along the relation.

Reflections. User defined relations have proven to be one of the most extensively used features of
SRL. They have been exploited by most of the applications yet built using the language. Wc have
several theories as to their usefulness. First, their use has enabled more inference to take place
automatically in the systems. In many applications, relations peculiar to a domain (e.g., next-activity,
child-of, E;tc.) will be used often. Inheritance along these relations could not be suplJorterf by other
languages since only a few relations (e.g., is-a, instance, part-of) would be provided. To overcome
this deficiency, the user would have to provide code in their inference engine to dzduce what
information could have been inherited. But in SRL, the user may define their own relations and their
inheritance semantics, and use them where needed.

Second, they allow the terminology of the models to resemble more closely that of the model
builder. Separate relations might be constructed for SUB-CLASS, IS-A and KIND-OF which have the
same inheritarice properties to make models more under3tandable.

6

EXPERIENCES WITH SRL

A third point is perspicuity. A relation incapsulates all the information required to use it, including
restrictions on its domain and range of use, its inheritance semantics, and its transitivity. Even local
overides to its general definition are defined in the schema (e.g., a platypus is-a mammal but does not
lay eggs).

Making the user defined relations work with reasonable speed took a numlscr of itera!ions. In the
first implementalion, inheritance specs could be inherited along the relation type hierarchy (Le.,
relations could form type hierarchies of arbitrary depth). The second
irnpleinentation restricted the definition of relations to avoid excessive searching. That is, ~1 new
relation had to be related directly to the "relation" schema via an "is-a" relation. Spced was
obtained, but thr? restriction on the definition of the facility was too great. The third iniplemeittation
introduced a compiler for relations. This allowed a return to the more general definition of relations.
Compiling relations combines the best of both worlds. It has the speed of t h e limited represmtation,
and the power of the general representation. The only sacrifice is that relations cannot be altered
dynainically. This compromise yields a powerful and useable system.

This was far too slow.

3.2. Demons
Dafinition. Demons provide a facility for reactive processing within S R L . They may be placed in

m y slot's rniila-schema and are executed based on the SHL furiction used to access the slot.
f.wIioiis may bo inherited frorn other sehemata in a manlier similar to that of values. Each demon
spgcifies what slot axess functions causes it to fire. Each deinon has an action slot that contains
m y number of Lisp functions. Thtly are exzcuted either before or after the slot access is performed.
There are three kinds of dcmo~.ts. First, ihe "side-dfeci" demon has no direct effect on the slot
8ccess. Secorid, the "alter-value" demon alters the values that :he access furiction is using. Third
t h c "block" dzmon stops the slot access function from executing. They are only valid before the
function is perfornmJ. The ACCESSOR, ACCESS.VALUE, and CURRENT-VALUE hold inforniation about
it-& call for use by the ACTION !unctions. The deinon schema is defined as follows.

{{ demon
ACCESS: <access> +

range: (type "is-a" "SRL-access-fn")
ACCESSOR:
ACCESS-VALUE:
CUR RENT- VALUE:
WHEN:

range: (or before after)

range: <Must be a function definition>

range: (or alter-value block side-effect) }}

ACT1 ON :

EFFECT:

Figu:e 3-2: Demon Schema

~ ~ ~~ ~~~~

Reflections. Demons have fallen into disuse because they are very expensive. When the facility is
enabled, SRL must attempt to inherit demons on every slot access. This slows the system down by an

7

EXPESIENCES WITI-1 SRL

order of magnitude, as often many slot access functions are. performed internally, for each call to
SRL.

All attempts to use demons have used them sparsely. The user found a way to avoid denions
eventually, to speed up their program. There are two reasonable approaches to using denions within
SRL. The first is to limit their functionality. This would entail restricting inheritance of demons, or the
S H L functions that check for demons. If only a subset of the slot access functions of SRL checked for
demons, then the system might run at a reasonable speed. The second approach is to use demons
extensively. For insiance, if most slots had demons for most slot ilcct'ss functions, then the user
wou!d not be paying for a facility they were not using.

3.3. Restrictions
Definition. SRL provides a mechanism, for restricting the domain and range of a slot. It is possible

to restrict the domain of the slot, the range of the slot, and the number of values in the range.
Domain, range and cardinality restrictions are placed in the meta-schema associated with a slot. Also
like demons, the values of the various restrictions may be inherited along a meta-schema's relational
network.

tlcflectior!c. Automatic restriction ckieckirq is nct used far tile same reasons that c?criioris are not
used. 00 w a y atteinpt io aiiw the contents Df a slot, SRL. must attempt ?o inherit eacl: f x e t uszd ior
rer;tr-iction. Restrictions d 3 iiot merit til? associated cost. Hestriction chec!<ing SlO\iiS + h e system
down by ai c;rcl:.:r d insgnitude.

A facility fo: rnaniially cbecking restrictions is used, particularly to chnck us?r iaput. M a n t ~ ~ l
rcstric&c\ti clicckiri!~ gives wc;rs the benefit of restriction checking when they need it. but avoids the
cxessivo ovarlir?ncl. FiiII restriction testing is usually turned on ditring the debgggii ICJ phase of a
system only. much like army boundchecking is provided in a compiler.

3.4. Paths for Transitivity

are related by a particular relation. For example, the transitivity for the instance relation is:
Definition. Transitivities are an important part of SRL, as they allow the user to test if two schemata

(list (step "instance" all) (repeat (step "is-a" all) 0 inf)) .

This path specifies to step one INSTANCE relation, and any number of IS-A relations. Using this path,
it is possible to determine if one schema is an instance of another. It is also possible to find all the
schemata which are related to a particular schema by a relation.

Reflections. Transitivities are used by all SRL applications, some extensively. Both types of
transitivities are used. Two factors combine to make transitivities an important addition to SRL. First,
they are a very expressive and powerful for model definition. Second, they do not add any fixed cost
to other SRL accesses. Therefore transitivities are expressive and economical.

a

EXPERIENCES WITH S R L

3.5. Paths for Search
Definition. Paths are of the same form as transitivity paths, and are used as an added parameter to

slot-value access functions in SRL. A path specification can be used to restrict the relations along
which inheritance is to be performed for the particular slot access.

Reflections. Search paths have been gradually introduced to most projects. There are two
reasons for restricting the search. The first is selective inheritance. For instance if one path for
inheritance is correct at the current state of the user's program, this may be specified by a path
rtrgurnent. Consider the situation wliere a "dog" schema is related to both "pet" arid "guard" vid an
" is - a" re Inti o n .

{{ dog
ISA: "pet" "guard" }}

{ { Pet
DISPOSITION: docile })

{ {guard
DISPOSITIOFJ: 1??€?a11)}

Figure 3-3: Search Paths

Depending on what role t h e dog is playitiy, the \/alae of its G i w t m - r i o r d slot (!i;!k>r:j, Ssarch paths
enablc the user to specify dong which relations inheritance is to be performed.

The second reason for focusing the search is to avoid searchirig branches wt,ich the user knows
are irrelevant. This is used to improve performance by avoiding an exhaustive search. The user
community views paths first as a method for improving efficiency, and second as a tool for selective
inheritance. Only one project has ever used search paths for selective inheritance, while most
projects use them to speed up their programs.

3.6. Meta-information
Definition. Each schema, slot and value may have a schema attached to it in which "ineta-

information" is placed. These schemata are manipulated in the same manner 2s other schernata.
Meta-schemata enable the user to embed a wide variety of information in a model. k i n g nieta-
information, it is easy for -a user to associate semantics with the elements of a model. Meta-
information is used to maintain dependencies of slots and values, when they are inherited. It is also
used to define facets like DEMON and RANGE.

Reflections. Meta-ififormation is used by all applications, some more extensively than others.
Usage falls into three categories: restrictions, documentation, and dependencies. Meta-schemata
attached to slots provide information restricting the domain and range of the slot (see section 3.3).
Meta-schemata also document who created the schema, slot or value, when and why. Meta-
schemata attached to values usualiy provde deperdency information, which describes how the value

EXPERIENCES WITH SRL

was derived. The BRUTUS facility (Adam et at. 1984), which was just impleincnted, uses
dependencies to provide both truth (Doyle 1979) and belief (van Melle 1980) maintenance at the
meta-level.

There have been divided opinions on the efficiency of meta-information. Using it adds a fixed cost
to some kinds of inheritance, but it adds a great deal of power to SRL. The result is thzt automatic
generation of meta-information has been separated from maintaining dependencies. This means that
users can now itse rneta-information without increasing the cost of inheritance. This compromise will
m:ke mcAa-information cheap to use, as ti1c;e is no werliead unless a user wants to maintain
dependencies for in hcrited information.

3.7. Contexts

schemata. Contexts are defined in 2.1
Definition. SRL has a context facility, that allows the user' to have ciiffereiit daia spaces for

Rcflections. The primary use of contexts has besri to support version management of knowledge
bases, and "what-if" reasoning. In the former, new contests are sprouted, in a hierarchical fashion,
a.s zltwnative or successive versions of the knowledge hase are created. This has been cluitc useful
during mode! Suilcliny and testiiig in INE-l' and !WS, in gmeral. Other system:; sitch a5 I3OhlE use ii to
supp9,rt reasonifig about altcri7ative scenarios. 1r.t this rclz, !tie use of cmtcxts is lin\it?cl, since tlicre
docs not exist the ability io i-elatc: schemata in two clifferx? contexts.

3.8 . Data b a 5 c? In le r ac t io ti
Dnfirtiiiori. SRL uses a database in order to deal with very large Itnowledge bases. This dlriws

model:; which mc! lnrger ttmn the nremory available to LISP. It also provides a convenient facility for
saving knowledge bxzs . SRI- iises a cache for fast access of the most recently used schemata. The
database system greatly extends the upper limit on the size of a Itnowledge base.

Reflections. There are two performance problems with using a database. First, schemata must be
copied in and out of the database. This is a reasonably expensive operation. In addition to copying
schemata, there is added expense to determine that a schema is not in the knowledge base, as the
database must be checked. This was a problerri when determining whether a slot WHS a relation
involved looking at the possibly nonexistent schema which represents the dot. Secondi users can
no? have pointers to schemata, became Got all schemata are resident in memory. l h i s means that a
user's reference to a schema must be converted into a schema every time the user calls SRL. Never-
the-less, without the database, the large applications to which SRL has been applied would not be
"doable. "

3.9. Efficiency
Definition. Efficiency, as defined by the speed with which information may be created and

accessed, has become increasingly important as the complexity of the models in SRL increased.

Reflections. As soon as people started writing real programs in SRL, speed became a constant
issue. Some projects push SRI- to be as fast as possible. Many design decisions balance efficiency

10

EXPERIENCES W I rt-i SRL

versus functionality. To increase the speed of SRL, the decision was made to compile relations, and
male many of S R L ' s features selectable via user switches. For example, value caching, restriction
checking, demon execution, meta-information creation, dependency maintenance and other facilities
are user selectable. This has provided a good balance between those who require speed and those
who require power.

4. Conclus ion
A number of features have proven uselul in niost of Gur applicntioris. hi particular, iJser-defir,ed

relations for adapting the representation to the user's doniaiti, meta-ki tov/lcdye such as
dependencies and facets, relational path specifications for both transitivity checking and search
restrictions, contexts for knowledge-bass version control, arid the caching system foi inanrtging large
schema bases.

Efficiency has been the overriding concern governing the acceptability of a particular feature in
SRL. Both demons and restriction checking have fallen into disuse (except the latter for debugging)
because they "overload" schema access functions. While such concerns may be ignored in lieu of
faster machines, the inherent complexity of relational search (when information is non-local) in large
!iTiov.l!t?~Jr:c:.h~~ss inv,?Iidates stJch approxhzs. Two so!i.iticnc. present themselves. The first is 2n
k k r i m so!!ltion. Current technology enables the creation ef an "SFiL macl?ine." It would be a
I ti i c r o - ci r c) y r a in me d , I r i u I? i . p roc ess o r d c, t ai; as8 m tlc h i r i e w t i i c h 1) e r f o r m s sc h E m a 2.c c ess es ;?I7 d
.c,e-:ri;h. The longer term sohilion I k s id the work of connection :na.chincs as prog-'osetl ty Falilman et
ztl. (1953) alicl I-lillis (1R61).

11

5 References

Adam, D., E. Allen, M. Fox, and P. Spirtes. 1984. "Brutus: A System for Dependency and Belief
Maintenance." Technical report, Robotics Institute, Carnegie-Mellon University.
In preparation.

Allen, 6. P., and J. M. Wright. 1983. "Integrating Logic Programs and Schemata." Proceedings of
the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany.

Bartlett, F. C. 1932. Remembering. Cambridge: Cambridge University Press.

Bobrow, D. B., and M. Stefik. 1983. "The LOOPS Manual." Xerox PARC, Palo Alto, California.

Bobrow, D., and T. Winograd. 1977. "KRL: Knowledge Representation Language.'! Cognitive
Science 1, no. 1.

Bobrow, D., and T. Winograd. 1977. "Experience with KRL-0, One Cycle of a Knowledge
Representation Language." Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, 21 3-222. Cambridge, Mass.

Brachinan, R. J. 1977. "A Structural Paradigm for Representing Knowledge." Ph.D. thesis, Harvard
University.

Chester, D. 1980. "HCPRVR: An Interpreter for Logic Programs." Proceedings of the National
Conference on Artificial Intelligence.

Fahlman, S. E. 1977. "A System for Representing and Using Real-World Knowledge." Ph.D. thesis,
Artificial Intelligence Laboratory, MIT, AI-TR-450.

Fahlman, S. E., G. E. Hinton, and T. J. Sejnowski. 1983. "Massively Parallel Architectures for AI:
NETL, Thistle, and Bolttmann Machines." Proceedings of AAAI-83 109-1 13.

Forgy, C. L. 1981. "OPS5 User's Manual." Department of Computer Science, Carnegie-Mellon
University .

Fox, M. S. 1979. "On Inheritance in Knowledge Representation." Proceedings of the Sixth
International Joint Conference on Artificial Intelligence 282-284. Tokyo, Japan.

Fox, M. S. 1983. "Constraint-Directed Search: A Case Study of Job-Shop Scheduling." (Ph.D.
thesis.) Technical report, Robotics Institute, Carnegie-Mellon University.

Fox, M. S., S. Lowenfeld, and P. Kleinosky. "Techniques for Sensor-Based Diagnosis."
Proceedings of the International Joint Conference on Artificial Intelligence.
Karlsruhe, West Germany.

1983.

Fox, M., and S.Smith. 1984. "ISIS A Knowledge-Based System for Factory Scheduling."
International Journal of Expert Systems 1 , no. 1.

12

General Electric. 1983. "Delta/CATS-1 .'I Artificial Intelligence Report.

Genesereth, M. R., R. Greiner, and D. Smith. 1980. "MRS Manual." Computer Science Department,
Stanford University.

Greenberg, M. 1983. "RETINAS User's Manual." Internal report. Robotics Institute, Carnegie-Mellon
University.

Greiner, R. 1980. "RLL-1: A Representation Language Language." HPP-80-0, Computer Science
Department, Stanford University.

Hillis, W. D. 1981. "The Connection Machine." Technical report 646, MIT AI Lab., Cambridge, Mass.

IntelliGenetics. 1984. "KEEtm User's Manual." Third edition. Palo Alto, Cal.: IntelliGenetics, Inc.

-

ISL. 1984. "Intelligent Systems Lab.oratory Software Systems Manual." Internal report, Robotics
Institute, Carnegie-Mellon University.

Kosy, D., and V. S. Dhar. 1983. "Knowledge-Based Support System for Long Range Planning."
Technical report, Robotics Institute, Carnegie-Mellon University.

Kosy, D., and 6. Wise. 1984. "Self-Explanatory Financial Planning Models." Proceedings of the
American Association for Artificial Intelligence. Austin, Texas.

Lenat, D. 1976. "AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic
Search." Ph.D. thesis, Computer Science Department, Stanford University.

McDermott, J. 1980. "R l : An Expert in the Computer Systems Domain." Proceedings of the First
Annual . National Conference on Artificial Intelligence 269-271. Stanford
University.

Minsky, M. 1975. "A Framework for Rgpresenting Knowledge." Psychology of Computer Vision,
P. Winston (Ed.). New York: McGraw-Hill.

Reddy, Y. V., and M. S. Fox. 1982. "KBS: An Artificial Intelligence Approach to Flexible Simulation."
CMU-RI-TR-82- 1, Robotics Institute, Carnegie-Mellon University.

Reddy, Y. V., and M. S. Fox. 1983. "INET: A Knowledge-Based Simulation Approach to Distribution
Analysis." Proceedings of the IEEE Computer Society Trends and Applications.
National Bureau of Standards, Washington, D.C.

Roberts, R.B. , and I.P. Goldstein. 1977. "The FRL Manual." MIT AI Lab. Memo 409, MIT,
Cambridge.

Rychener, M. 1984. "PSRL User's Manual." Technical report, Robotics Institute, Carnegie-Mellon
University. Internal report.

Sathi, A., M. Fox, M. Greenberg, and T. Morton. 1985a. "Callisto: An Intelligent Project Management
System." Technical report, Robotics Institute, Carnegie-Mellon University.

13

Sathi, A., M. Fox, and M Greenberg. 1985b. "The Application of Knowledge Representation
Transactions on Pattern Analysis and Techniques to Project Management."

Machine Intelligence.

Schank, R., and R. Abelson. 1977. Scripts, Plans an# Understanding. Hillsdale, NJ: Lawrence
Erlbam Assoc., Inc.

Stefik, M. 1979. "An Examination of a Frame-Structured Representation System." Proceedings of
the Sixth' International Joint Conference on Artificial Intelligence.

Stolfo, A. 1982. "ACE: An Expert System Supporting Analysis and Management Decision Making."
Technical report, Computer Science Dept., Columbia University.

van Melle, W. 1980. "A Domain Independent System that Aids in Constructing Knowledge-based
Consultation Programs." Ph.D. thesis, STAN-CS-80-820, Computer Science
Dept., Stanford University.

Weinreb, D., and D. Moon, 1981. "Lisp Machine Manual." Fourth edition. Cambridge: Symbolics,
Inc.

William, C. 1983. "Advanced Reasoning Tool: Conceptual Overview." Inference Corp., Los Angeles,
Cal. .

Wright, J. M., M. S. Fox, and D. Adam. '1984. "SRL/1.5 Users Manual." Technical report;Robotics
Institute, Carnegie-Mellon University.

14

