
Configuration Management for Multi-Agent Systems

Joseph A. Giampapa
Robotics Institute, Carnegie

Mellon University
Pittsburgh, PA 15213

garof@cs.cmu.edu

Octavio H.
Juarez-Espinosa

Robotics Institute, Carnegie
Mellon University

Pittsburgh, PA 15213

ojuarez@cs.cmu.edu

Katia P. Sycara
Robotics Institute, Carnegie

Mellon University
Pittsburgh, PA 15213

katia@cs.cmu.edu

ABSTRACT
As heterogeneous distributed systems, multi-agent systems
present some challenging con�guration management issues.
There are the problems of knowing how to allocate agents
to computers, launch them on remote hosts, and once the
agents have been launched, how to monitor their runtime
status so as to manage computing resources e�ectively.
In this paper, we present the RETSINA Con�guration

Manager, RECoMa. We describe its architecture, how it
uses agent infrastructure such as service discovery, to assist
the multi-agent system administrator in allocating, launch-
ing, and monitoring a heterogeneous distributed agent sys-
tem in a distributed and networked computing environment.1

1. INTRODUCTION
Managing the allocation and run-time status of even tens

of software agents with di�erent operating requirements in
a heterogeneous, distributed, and networked computing en-
vironment can be a complex task. Part of the problem lies
in what is called the connection problem[1] | �nding the
computer with the resources that match an agent's con�gu-
ration requirements. One way of solving this problem is to
use matchmaking techniques that can automatically match
the description of an agent's requirements for its runtime
environment with the descriptions of the resources o�ered
by the di�erent computers under control of the multi-agent
system administrator[2, 3]. Inherent in this solution are the
di�culties of anticipating which descriptions to provide, and
how they should be represented. Once agents have been al-
located to their host computers and launched, there is then

1The authors would like to acknowledge the signi�cant con-
tributions of Matthew W. Easterday in his earlier and ex-
haustive implementations of con�guration management pro-
grams and CM design proposals. This research has been
sponsored in part by DARPA Grant F-30602-98-2-0138 and
the O�ce of Naval Research Grant N-00014-96-16-1-1222.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montr´eal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

the problem of how to monitor the runtime status of the
agents, and how to monitor the constantly-changing avail-
ability of the platforms on which to run them. Doing all of
the above from a single point of control and with a uniform
logical interface adds further complexity to the problem.
In this paper we present the RETSINA Con�guration

Manager, RECoMa, which is our �rst attempt at addressing
these problems of multi-agent system con�guration man-
agement by matchmaking agent descriptions with the de-
scriptions of the computer platforms on which they can be
launched and executed. Through the use of an agent control
language, agents and RECoMa are able to dialogue so as to
provide the multi-agent system administrator fast and accu-
rate knowledge of the runtime status of the MAS under his
administration. And by con�guring computers to load the
RECoMa launcher every time they startup, the administra-
tor can know, in real time, the availability and description
of the computers on which he can allocate, launch and run
agents.

2. RECOMA ARCHITECTURE
The RETSINA Con�guration Manager is organized in a

client-server architecture. RECoMa servers are installed one
per computer and are automatically launched whenever the
computer is started. The server provides a pro�le that de-
scribes its host computer's resources, and receives requests
to launch agents with platform-dependent operating param-
eters. The pro�les represent features of the execution en-
vironment that could be requirements for agent execution,
such as available memory, the versions and paths of the in-
terpreters and virtual machines, graphics libraries, or even
the type and resolution of the screen. The pro�les are en-
coded in XML so as to permit a structured representation of
the data and so that �elds may be added, deleted, renamed,
or restructured, as needed.
When the RECoMa server receives a request to launch an

agent from the RECoMa client, the request arrives in the
form of an XML environment description. The environment
description contains the de�nition of environment variables,
launch parameters, and the command line speci�cation for
how to launch the agent on that computer. The server trans-
lates this XML description into a platform-speci�c execution
�le, such as a shell script or batch �le, which it then uses to
spawn a subshell from which the agent is launched.
The RECoMa client provides the multi-agent system ad-

ministrator with a single point of control for the whole, dis-
tributed system. The client provides pro�les that describe

Figure 1: The RECoMa Graphic Interface

all of the agents known to him, that he may or may not be
able to launch on a target machine. Although the agent pro-
�les represent requirements for host platforms, they do not
contain the speci�c launch environment descriptions, such
as path setup, environment variables, and command lines.
Those are generated when the client matches and merges the
host platform description with the agent pro�le description.
Figure 1 illustrates the RECoMa client interface. The top

left box shows the host pro�les and the top right box shows
the agent pro�les. Each pro�le entry can be expanded to re-
veal more detail about the host platform or agent. When the
user selects a computer, those agents which can be launched
on it are represented by a larger icon. Similarly, when a
user selects an agent pro�le, the RECoMa client shows the
computers to which it may be assigned as a larger icon.
Once the user assigns an agent to a computer, the assign-
ment appears in the bottom box of the �gure, which shows
the agent-computer allocation and runtime status. To facil-
itate the launching of non-RETSINA agents and non-agent
components, such as a web browser, we also added launch
\order" and launch wait \time" parameters to the table.
The RECoMa clients discover the RECoMa servers via

the SSDP service discovery protocol. This dynamic RE-
CoMa server discovery process keeps the clients aware of
the current availability of agent platforms. While not a part
of the RECoMa system, per se, having the service discovery
protocol part of all RETSINA agents dramatically simpli�es
their management. This is because agent services, such as
log facilities, Agent Name Services, and Matchmakers, can
be launched in any order relative to each other and other
agents. Figure 2 illustrates one way in which agent discov-
ery can occur.

3. CONCLUSIONS
RECoMa has been applied to manage an agent applica-

tion consisting of 30 components on 8 computers: RETSINA
agents, non-RETSINA agents, and non-agent applications.
This work is signi�cant for a few reasons. It is possible to
reduce some of the overhead in matching agents to com-
puters and vice-versa by using matchmaking techniques to
match agent resource descriptions with pro�les that describe
the computer platforms on which they may be launched.
This matching technique tolerates arbitrary descriptions of

Figure 2: Infrastructure Discovery

agent requirements and pro�le descriptions, so that either
can change ad hoc and over time.
We show that agent discovery is helpful to MAS con�g-

uration management in three ways. First, it permits the
MAS administrator to maintain up-to-date knowledge about
which computing platforms are available for running agents,
as the computers become available or go o�-line. Second, it
reduces the number of launch-time parameters that must be
passed to the agents by allowing the agents to discover their
infrastructure resources, such as Agent Name Services and
Matchmakers. A third way in which agent discovery helps
CM is that it eliminates the need for launch-order depen-
dencies. An agent can start and wait for other agents that
it depends on during runtime execution, without crashing.
Needless to say, this feature also renders an agent system
more robust to failures or crashes.
A �nal signi�cant feature of our work involves the human

interface to MAS CM. The RECoMa interface makes it easy
for the user to visually identify the computers to which he
can assign agents, and for identifying the agents that can be
run on a computer. The interface also makes it easy for the
user to identify the runtime status of the agents, and o�ers
commands so that the agents can be restarted, shutdown,
or suspended. Most importantly, a heterogeneous multi-
agent system, composed of agents and non-agents written in
di�erent computer languages, can be controlled from a single
interface, irrespective of the operating system and remote
execution environment of the host computer.
As interest in multi-agent systems increases, the resolu-

tion of the heterogeneous MAS con�guration management
problem will also become more critical. We feel that RE-
CoMa is the right model for beginning to address such issues.

4. REFERENCES
[1] R. Davis and R. G. Smith. Negotiation as a metaphor

for distributed problem solving. Arti�cial Intelligence,
20(1):63{109, January 1983.

[2] K. Sycara, K. Decker, and M. Williamson.
Middle-agents for the internet. In Proceedings of
International Joint Conferences on Arti�cial
Intelligence (IJCAI-97). IJCAI, Inc., 23-29 August
1997.

[3] K. Sycara, M. Klusch, S. Wido�, and J. Lu. Dynamic
service matchmaking among agents in open information
environments. Journal ACM SIGMOD Record (Special
Issue on Semantic Interoperability in Global
Information Systems), A. Ouksel, A. Sheth (Eds.),
28(1):47{53, March 1999.

