DP - Format of the Drawing Files

Dario Giuse

CMU-RI-TR-85-16

The Robotics Institute
Carnegié-Mellon University
Pittsburgh, Pennsylvania 15213

September 1985

Copyright © 1985 Carnegie-Mellon University

This research was supported by the Robotics Institute, Carnegie-Mellon University.

Table of Contents

1. Introduction
2. Main Objectives of the File Definition
2.1 Portability

2.2 Onc-pass Scanning
2.3 Files as Independent Entities

3. Graphic Elements in DP Drawings
3.1 Primitive Graphic Elements
3.2 Symbols
4. Description of the Format
4.1 Coordinate System
4.2 Bounding Boxes

4.3 General Format
4.4 Structure of a DP File
5. Tree Structure
5.1 Format
5.2 Example
. Font Information
. Layers Information
. Marks Information
. Grids Infarmation
0. Symbol Definitions
10.1 Beginning of Symbol Definition
10.2 End of Symbol Definition
11. Top-level items
11.1 Straight Lines
11.2 ASCII Strings
11.3 Arcs and Circles’
11.4 Ellipses
11.5 Splines
11.6 Polygons
11.7 Pins
11.8 Instance of a Symbol

12. BNF Description of the Format
13. Example of a Drawing File
14. Compatibility with Previous Versions

- ©O 00 N O

weoo ® 9o OO Lk B www b =

N = = e - - md mh wd
NO O RERECLORE AL w200

Abstract

DP is a highly interactive graphics editor that runs on a personal workstation and can produce general-
purposc illustrations as well as circuit drawings. The main purpose of this document, which is a complete
specification of the format and semantics of DP drawing files, is to encourage the development of application
programs that can read and generate drawings in the DP format and thus exchange information in graphics

form.

1. Introduction

DP is an interactive graphics cditor that can produce arbitrarily complex drawings and runs on a scientific
personal computer, Perq System Corporation’s PERQ workstation (see Giuse’s DP - Command Set[3] for a
general description of the program). DP deals with graphics objects such as lines, strings of text, circles, ctc.,
as oppusced to being purely bitmap-oriented. All the information entered by the user is preserved in the
drawing; this makes it possible, for instance, for a program to analyszc a drawing and to extract from it
graphical and scmantical information.

As an example of information cxtraction, DP drawing files can be fed into a set of post-processors that extract
circuit information from drawings (sce Giuse for a description of two such post-processors [9] [7]).
Application programs are frec to assign their own semantic interpretation to any drawing; DP only dcals with
the syntactic rules that determine the appearance of graphic items in a drawing.

DP drawings are stored on secondary memory as files, where e¢ach file correcsponds to one drawing. This
document describes the format of drawing files as generated by DP version 6.10; please contact the author if
you are running a different version of the ptogram.

The main objectives in the design of the DP file format and the technical reasons behind some of the
decisions are described in section 2. Portability, completeness, and the ability to input drawing files in one
pass were the primary considerations that influenced the design.

The primitive graphics elements used in DP drawing files and the symbol mechanism, which allows drawings
to contain hierarchical structures that can be nested arbitrarily, are described in section 3.

‘The remaining sections of the document describe the coordinate system, the general structure of drawing files,
and the detailed syntax and semantics of each DP graphics item as represented in drawing files.

Section 12 contains the formal description of the syntax of DP files. This description uses an extended BNF
grammar.

Finally, presented in section 13 is an example of a simple drawing and the complete listing of the
corresponding DP drawing file, illustrating some of the more important points of the format.

2. Main Objectives of the File Definition

‘The design of the format of DP files cvolved from a few objectives that were considered cssential. ‘These
objectives were often dictated by observations and experience with previous drawing programs (SUDS [8],
Draw [4], Markup [5], and SI1.[6]). Most of these programs ran on the Alto, an carly bit-mapped personal
workstation developed by the XEROX Palo Alto Rescarch Center.

The main objectives can be summarized as follows:

e Portability: drawing files should be portable to different machines and to different operating
systems. It should be easy to rcad or gencrate drawings using different programming languages;
the representation of a drawing should be independent of the particular program that generated it.

e Completeness: drawing files should be completely self-contained and should not depend on any
external library. A single file should correspond to a single drawing; the file should not have any
external dependency.

o Simplicity: drawing files should be simple to interpret and should have a direct correspondence to
the graphics operations they describe. It should be possible for a program to read a drawing file in
just onc pass, without the need for elaborate multiple-pass operations that may bc time-
consuming and difficult to implement.

e Separation of concerns: drawing files should be a purely graphical description, without any
embedded semantic knowledge about what the drawing rcpresents. The interpretation of a
drawing should be left to the uscr and to appropriate application programs; this achieves complete
separation between the "meaning” of a drawing and its graphical appearance, thus increasing the
overall flexibility of the system.

2.1 Portability

The main mechanism to achieve portability of drawing files is the choice of using exclusively ASCII
characters in the format. The requirement that DP files be text files was considered very important and was
central to the development of a large number of application proérams that can read and generate DP files. It
was clear that this choice would cause files to be somewhat larger than binary files, and that the time required
to parse a file would also be longer. On the other hand, a number of reasons that justified the choice of text
files exist; those reasons are briefly presented here.

A purely ASClI-based file format makes it easy to transfer and store files to different machines. Format
changes between successive versions are easier than in the case of binary files. ASCII files are completely
machine independent, while binary files may embed assumptions about machine word size or number
representations that may be difficult to eradicate.

ASCII files are typically easier for a program to read, no matter what language the program is implemented
in. Several programs have been written that generate simple drawings;1 DP files can be created using

1For instance, the program that generates the image of chips on a board described in Giuse [9).

standard 170 statcments available in most programming languages, without any knowledge of the internal
representation of graphics objects.

Finally, as a side-cffcct, DP files may be edited using standard text editors. While this is not a recommended
procedure, it has proven uscful in a few cases where a simple text substitution in a very large file could for
instance change the name of a symbol. Morcover, this procedure can be used to salvage drawings that were
damaged duc to filc system errors.

The fact that DP files are pure text files was onc of the main reasons that made it possible to interface DP to
Mint, the Spice document preparation system, in less than two days. The task would undoubtedly have been
much harder if binary files had been used.

As a side remark, a comparison with SUDS [8) drawings files (which arc binary files) showed that DP files are
actually 45% smaller than SUDS files, in spite of the fact that they arc entirely ASClI-based. This is because
the representation used by SUDS is extremely bulky; a careful choice of representation would of course result
in a binary file being shorter than the corresponding text file.

2.2 One-pass Scanning

It was considered essential for the file format to support one-pass scanning: it should be possible to read a
drawing in just one pass through the file, and no information should be used before being defined. For an
example of another format that supports single-pass reading, see the description of the CIF format in [2).

The main device to achieve one-pass scanning is the ordering of symbol definitions. Symbol definitions are
always output before any of the correspondent symbol calls; moreover, symbol definitions cannot contain
other symbol definitions. Each definition appears at the top level in the file, and all the symbols that are used
inside other symbols are always output first.

This convention requires more work to generate a file, but it makes reading the file much faster. Since a file
may be read several times but is only written once, it was decided to favor reading at the expense of longer
writing times. In the case of DP, for instance, the measured overhead for generating files in this order is less
than 15 percent of the total time to write a file; this is certainly an acceptable overhead, given the significant
savings in reading time.

2.3 Files as Independent Entities

Some drawing systems (see, for instance, [8]) allow drawings that are composed of multiple files, or drawings
that contain embedded references to external libraries. The raticnale is to reduce the size of drawing files by
sharing common definitions among many drawings. Drawings that contain references to external files,
however, present two important problems:

o Transferring a drawing to a different machine may be difficult, since all the imported files
(including possibly files that are imported indirectly) should also be transferred.

e Modifications to a file may have totally unpredictable effects on drawings that import it. This is
especially dangerous in the case of library files, i.e., files that contain collections of commonly
used symbols and definitions.

It was thus decided that DP drawings should be totally self-contained entitics: no reference to external files is
allowed. 'This makes it extremcly easy to transfer a drawing (o a different machine.

Totally sclf-contained drawings must contain the definitions for all the symbols they use; this results in
somewhat larger files, since commonly used definitions may have to be duplicated in scveral files. 1t was felt,
however, that this would not constitutc an important problem and that the advantages far outwcighed the
possible drawbacks.

1t may scemn that self-contained drawings make the problem of change propagation worsc, since the only way
to change a commonly uscd dcfinition is to change all the drawings that usc it. 1t should be noted, however,
that external references do not address the problem of change propagation in a multi-machine environment
anyway, and this is by far the most severe aspect of the problem. 1t is probably safer 10 let the user worry
about change propagation explicitly; for instance, a pmgram2 has been written that changes the definition of
one or more symbols in a sct of DP files, This approach allows selective propagation of changes to some of the
files, as opposed to the common-library approach which affects all the drawings that usc a library symbol.

?The program is named NewSymbol.

3. Graphic Elements in DP Drawings

Only a limited sct of basic elements can appear in drawing files: such elements are used to create more
complex drawings. All the basic clements represent a geometric concept (a line, a circle, and so on); cach
drawing is thought of as a collection of geometric clements.

DP does not usc bitmaps as representations for objects: it is impossible, for instance, to describe a curve by
tracing it on the screen with the cursor. Smooth curves are defined gcometrically, in terms of control points,
Extensive use of geometric representations makes DP drawings independent of the particular characteristics
of the device the drawing was created on.

3.1 Primitive Graphic Elements
The primitive clements used by DP are

e lines: finite-length straight line segments,

e circles and arcs: full circles or arcs of circles,

o cllipses: full cllipses or arcs of ellipses,

e splines: 3rd order B-splines, i.c., parametric curves that interpolate a sct of points,

e polygons: filled polygons identified by a set of vertices and a filling pattern,

o text strings: scquences of printing ASCII characters in a given font, and

e pins: used inside symbol definitions to provide connection points. Each pin has a pin number
associated with it.

3.2 Symbols

Primitive clements may be composed through the Symbol mechanism. When a set of objects is made into a
symbol, the latter becomes equivalent to a primitive element. All the operations that apply to primitive
elements apply to symbols as well; in particular, symbols may be nested inside other symbols.

The following two mechanisms are provided:

o definition of a symbol: definition of a group of elements that determine the shape of the symbol.
A definition in itself does not add any element to a drawing: it simply defines how to draw a
group of elements if required. A definition can be considered as a template that describes how to
draw a picture.

e instance of a symbol: creation of a copy of a symbol in a drawing; each instance defines the
global offset and the transformation parameters. Creating an instance is equivalent to adding to
the drawing the whole set of elements that form the symbol; if transformations are used, the
elements may appear rotated or scaled.

4. Description of the Format

Plcase note that in the rest of the document the phrases "the Reader” and "the 1P Reader” will be used to
indicate the portion of code in DP that reads drawing files and converts them into graphic items.

4.1 Coordinate System

DP files use a Cartesian coordinate system: abscissas increase to the right, and ordinates increase to the top.
All coordinates are cxpressed as pairs of integers in basc 10, in the range -32767 through 32767; the origin is at
the point (0, 0). For consistency, numbers other than coordinates are also expressed as decimatl int(:gcrs.3

Angles arc always measured in minutes of arc, starting from 0 for the positive X direction and growing
counter-clockwise. For instance, an angle of 90 degrees (corresponding to the north) is expressed as 90*60 =
5400 minutes; south is expressed as 270*60 = 16200 minutes. The valid range for an angle is [0..21600], with
the first and last values representing the same angle. Angles outside the range are always normalized by
adding or subtracting 21600.

4.2 Bounding Boxes

The bounding box of an object is defined as the smallest rectangle that completely encloses the object. The
edges of the rectangle are parallel to the cartesian axes.

The bounding box of an instance is always computed after the necessary transformations have been applied;
for this rcason, the dimensions of the box may not coincide with the size of the symbol definition.

4.3 General Format

In general, a text line in a DP file describes one graphic element; some lines are used differently, for instance
as comments or as non-graphical information. Lines are terminated by the normal end-of-line convention,
and different ficlds of a line are separated by one blank.

The first character in a line determines what kind of object the line represents. The first character of a line
may be ane of the following:

e Capital letter: the line describes a basic element or a symbol definition.
¢ Semicolon: the line is a comment.
e @: the line contains special non-graphical information.

The interpretation of individual fields depends on the particular kind of item and is explained in the
following sections.

In order to identify DP files as such, a special convention is used: the first line of the file must be a comment
of the form

3 With the exception of transformation parameters for symbol instances, which are floating-point numbers.

; DP ver, 6.9
The DP Reader requires this line at the beginning, and will abort the Read opcration if the first characters do
not match cxactly the string "; DI ver.". This linc has the double function of rejecting non-DP files and
informing DP of what version of the program created the file;? all the characters after the first ten are
considered part of the version number.

Except for this special convention, comment lincs may appear anywherc in the file.

4.4 Structure of a DP File

The following order is used in all DP files. Since the DP Reader depends on this particular order in a few
placcs, files that do not follow this order are considered illegal.

o Version number: the special comment line mentioned above.

¢ Time stamp: an optional comment line with the date and time of creation of the file.

o Tree structure: an optional set of comments that describe the tree of symbol definitions and
specify dependencies on other symbols. This information is only used by the "i" (Read Symbol
From File) command.

e Font information: definition of all the fonts used in the drawing. This section is absent if no
strings are used.

e Layer information: dcfinition of all the layers that constitute the drawing.

e Marks information: list of all the spccial position markers in the drawing. This section is absent if
no mark is used.

e Grids information: list of mouse and display grids used when creating the drawing.

e Symbol definitions: list of all the symbol dcfinitions used within other symbols and at the top
level. The definitions are ordered so that lower-level definitions precede higher-level definitions:
a symbol is always defined before it is used. This section is absent if the drawing is "flat”, i.e., it
contains no symbols.

¢ Top-level items: all the objects (primitive graphics elements and symbol instances) that appear at
the top level in the drawing, i.e., are not nested inside symbols.

4Some details of the format are different in previous versions, and the DP Reader must deal with the differences.

5. Tree Structure

The purpose of this scction is to describe dependencics among symbols. This information is used only when a
single symbol is rcad from a filc by the Reader. Application programs arc free to ignore this section
altogether; all the lincs in the section are preceded by a semicolon and as such they may be considered as
comments.

The special command that rcads onc symbol from a DP file uses this information to avoid multiple passes
over the file. When a symbol is read, all the nested symbols must be read as well; this procedure is potentially
recursive, since it is impossible to know what symbols are needed before reaching the top-level definition.
The Tree Structure provides the Reader with this information: in particular, each symbol is listed with the
transitive closure of all the symbols it uses. This information is preccomputed when the file is first created, so
that cach symbol contains the names of all the symbols it uses cither directly or indirectly.

During the "Input One Symbol” command, the DP Reader simply scans the file and enters the symbols that
were listed in the Tree Structure as used by the required symbol. Everything else is discarded; the Reader
stops after the required symbol has been read.

5.1 Format
For cach symbol definition two comment lines are used in the Tree Structure section:

o :SYMBOL.: SymbolName
o ;CALLS: list of all the nested symbols, separated by blanks

All the symbols have an entry in the Tree Structure entry. Leaves of the tree, i.e., symbols that are entirely
composed of primitive elements, have an empty ";CALLS: ’ field.

5.2 Example

Imagine a drawing that contains symbol TOP, which imports the two other symbols SYMBOL1 and
SYMBOL2; imagine also that both SYMBOL1 and SYMBOL?2 import symbol LEAF. The Tree Structure
section of the drawing would then look like this:

;SYMBOL: TOP

;CALLS: SYMBOL1 SYMBOL2 LEAF
;:SYMBOL: SYMBOL1 '
:CALLS: LEAF

;SYMBOL: LEAF

;CALLS:

;SYMBOL: SYMBOL2

:CALLS: LEAF

6. Font Information

This scction of the file describes the fonts used by the strings in the drawing. The main purposc of the section
is o define Jocal font numbers, i.c., numbers that uniquely identify a particular font. This is the only place in
a file where font name, size, ctc., are explicitly mentioned; all further references arc through the unique local
font number.

Local font numbers arc only meaningful within one file: the same font entry may well have a different local
font number in a diffcrent file. Whenever the file is read, the DP Reader automatically converts the local font
number into a global font specification.

A font entry specifies two distinct pieccs of information: the abstract font specification (c.g. TimesRoman 12
boldface) and the name of a Perq font used to display that font on the Perq screen. Giuse [3] and Sproull [1]
give more dctails on font spccifications. Two lines are used for cach font entry: the first line contains the
abstract font specification, the second linc identifies the Perq font file.

The format of the first line (abstract font definition) is the following:
@font FontNumber Face Size Rotation Family

FontNumber: a small positive integer that uniquely identifies this font. This number will be used in all
the strings that use this font, and is mcaningless outside the file. Local font numbers are
unique, but they are not guaranteed to be contiguous or monotonically increasing.

Face: one or two lower-case characters that identify the font face (see Giuse {3} for more details).
‘The characters {r b i} are currently used to indicate Roman, Boldface. and Italics.
Characters may be combined when this is meaningful (for instance, bi stands for boldface

italics).)

Size: a positive integer that specifies the size of the font (in points). Big numbers indicate large
fonts; see Sproull [1] for more details.

Rotation: the font rotation, in minutes of an arc (see section 4.1); normally 0.

Family: the name of the font family (e.g., "Bodoni" or "NewHelvetica™). Case distinctions in the

family name are ignored, i.e., "Gacha™ and "GACHA" are equivalent.

The format of the second line (Perq font) is the following:
@perqfont FontNumber FileName

FontNumber: must match one of the local font numbers that appear in a @font statement. Note that in
files generated by DP this line follows immediately the corresponding @font line, and the
FontNumber is thus redundant.

FileName: the file name of a valid Perq font. The font must be present on the Perq disk when this line
is read; if this is not the case, the Reader prompts the user for an alternative file name.
Note that including absolute path names in this file name is likely to impair the portability
of the DP file and should be avoided.

10

7. Layers Information

This scction defines the layers usced in the drawing and specifies the valuc of the paramecters for cach layer (see
Giuse [3] for more details on layers). Note that if a layer name is already in usc before the file is read, old and
new layer arc merged and old and new items appear on one layer. In other words, layer names are global to
all DP files; it is impossible to define two different layers with the same name,

In the case of symbol instances, layers act as filters. Imagine for example that a symbol on layer A contains
items that arc on layer B: if both layers A and B arc visible, the items will be displayed. If layer A is made
invisible, though, the items will not be displayed even if their own layer (B) is still visible, Since the symbol at
the upper level is invisible, none of the objects inside it are visible: fayer A is "filtering” all the items
contained in symbols that appcear on it.

Each line in the Layers Information section defines onc layer. The format of each line is the following:
@layer LayerNumber Name Options
LayerNumber: a small positive integer that uniquely identifics this layer. This number will be used by all

the following items, and is meaningless outside the file. Local layer numbers arc unique
but are not guaranteed to be contiguous or monotonically increasing.

Name: the ASCII name of the laycr, converted to all upper casc. No blanks are allowed in the
name. .
Options: a sequence of characters encoding the options sctting for the layer; ail characters are upper

case. If an option is ON, the corresponding character is present. The current set of
characters is: R (the layer is Readable), W (the layer is Writable), and O (the layer will be
output when the drawing is written to a file), For example, RO means that the layer can be
displayed and output but cannot be altered.

11

8. Marks Information

Marks provide a convenient mechanism to position a drawing around meaningful reference points. Fach
mark has a number associated with it; this number is currently unused (see Giuse [3] for more details on
marks).

The format of a mark entry is the following:
@pageMark x y number

Xy position of the mark, in absolute coordinates.
number: a unique integer associated with the mark (currently unused).

12

9. Grids Information

This section contains information about the mouse and display grid settings that were in use when the
drawing was created. This information is not needed for the correct interpretation of the drawing, and is only
provided as a convenicnce to the user. It is often the case that a drawing is cdited using a non-standard grid,
causing potential alignment problems if a different grid is used during subscquent cditing.

When the Reader encounters the Grids Information section, it sets the current mouse and display grids to
match the ones specified in the drawing.

The format of the grid entry is the following:
Qgrids mouse-grid display-grid

mouse-grid: value of the mouse grid, as a positive intcger. This indicates the distance between the two
ncarest points at which the mouse can be located.
display-grid: value of the display grid, as a positive integer. This indicates the distance between points

of the grid that DP uses to facilitate item alignment.

Note that only one grid entry is present in a DP file, even though many mouse grids can be used during a DP
cditing session. Only the current mouse grid is saved in the file,

13

10. Symbol Definitions

Symbol definitions arc collections of items cnclosed by a begin-end pair and identified by a unique name.
Symbol dcfinitions describe how to draw symbol instances and can be thought of as templates; similar
pictures can be gencrated from the same template (symbol definition) by scaling, rotating, or mirroring the
basic definition.

Coordinates within definitions arc relative, ie., they neced a translation before they can be displayed; the
translation is specified at the time the symbol is instantiated. Coordinates within a symbol definition are
stored so that the center of the symbol is the point (0, 0); the “center of the symbol” is defined as the center of
the bounding box of the symbol. In other words, all the items appearing in symbol dcfinitions are centered
around the point (0, 0).

10.1 Beginning of Symbol Definition

This line starts the definition of a new symbol. The format of the line is the following:
D width height name

width, height: width and height of the bounding box of the symbol in its non-transformed definition, i.e.,
when the rotation is 0 and the scaling is 1.0, 1.0.

name: the unique name of the symbol, in upper-case characters. This name is the only way this
symbol can be referred to in the future.

After this line the primitive elements that constitute the body of the symbol definition are listed, each one in
its normal format (see section 11). Every basic element can appear here, including instances of other symbols;
symbols may be nested at any level. The end of the symbol is marked by the End of Symbol Definition.

10.2 End of Symbol Definition

The format of this line is the following:

F
This line marks the end of a symbol definition. The symbol being defined is closed and entered in the list of
definitions. This line will typically be followed by either the beginning of a new definition, or by the first
top-level item in the drawing.

14

11. Top-level items

By default, all items that are not part of a symbol definition arc considercd to be at the top level of the
drawing. All top-level items usc absolute coordinates, unlike items that arc part of a symbol definition.

Several ficlds are common to various item types; their meaning is described only once and will not be
repeated for individual items. The common ficlds are:

Thickness:

Color:

Layer:

Line-Style:

a positive intcger that indicates the thickness of lines, circles, cllipses, and splines. By
convention, the thinnest item has thickness 1; in the current implementation, the thickest
item has thickness 7. Numbers greater than 7 are currently interpreted as 7.

a positive integer that specifies the color of an item. By convention, color ‘1 indicates a
black item. Colors other than 1 are preserved and used for devices that support colors;’ in
the current implementation all items cxcept Polygons are displayed in black on the Perq,
regardless of the color specified in the file. The meaning of the color information is likely to
change in future versions.

a local layer number, i.e., a reference to an @layer statement. This indicates what layer the
item belongs to. In the case of a symbol instance, this is the layer of the instance, and may
act as a filter for nested items.

a small integer that determines the line style to be used for lines, circles, cllipses, and
splines. The default line style is solid and is indicated by line-style 0. Linc-style 1 indicates
dotted, which is a pattern of equally spaced short dashes. Line style 2 indicates dashed,
which is a pattern of equally spaced long dashes. Line style 3 indicates dot-and-dush, which
is a repeating pattern of short and long dashes. Line styles greater than 3 are cusrently
undcfined.

The following sections contain the description of all the different types of items and the format of the
corresponding entries in a DP file. Remember that all numbers are integers, unless otherwise specified.

11.1 Straight Lines

L x1 yl x2 y2 thickness color layer line-style

x1,yl:
x2,y2:

coordinates of the first endpoint of the line.
coordinates of the second endpoint of the line.

11.2 ASCII Strings

S xlI yl x2 y2 font color layer string

x1,yl:
x2,y2:
font:

string:

coordinates of the lower-left corner of the bounding box of the string.

coordinates of the upper-right corner of the bounding box of the string.

the local font number for this string. This number must match one of those defined in the
section on fonts (section 6).

the actual text string, truncated to 80 characters and terminated by the end of the line.

SCurrently the HP 7221A Plotter is the only device that supports colors.

15

The size of a string is computed undcr the assumption that the specified font is used to display the string;
using a different font would result in a different size. ‘The reference point is, at any rate, the lower-left corner
of the string: the upper-right point can always be computed from the lower-left corner. If a different font
must be used for a different device, the string should be positioned in such a way that its lower-Icft corner
cnds up at the point (x/, yI).

11.3 Arcs and Circles

A xy radius anglel angle? thickness color layer line-style

XY: coordinates of the center of the circle,
radius: radius of the circle.
anglel: first angle of the arc, i.c, first angle cncountcred on the arc when scanning it

counterclockwisc; the starting point is on the pesitive X axis, at (radius, 0) from the center.
The angle follows the usual convention explaincd in section 4.1.
angle2: sccond angle of the arc. If angle2 is equal to anglel the arc is a full circle.

Note that a full circle is normally indicated by anglel = 0, and angle2 = 21600.

11.4 Ellipses
E xy radiusl radius2 anglel angle2 thickness color layer line-style

X,y: coordinates of the center of the ellipse.

radiusl: horizontal radius of the cilipse, i.e., half the horizontal diameter.

radius2: vertical radius of the ellipse.

anglel: first angle of the arc of ellipse, i.e., first angle encountered on the arc when scanning it
counterclockwise; the starting point is on the positive X axis, at (radiusl, 0) from the center.
The angle follows the usual convention explained in section 4.1.

angle2: second angle of the arc; same conventions as before. If angle2 is equal to anglel the arc is a
full ellipse.

A full ellipse is normally indicated by anglel = 0, and angle2 = 21600. Note that this representation does
not allow an ellipse whose major and minor axes are not parallel to the cartesian axes, but such an ellipse can
be represented by nesting it into a symbol and then rotating the symbol.

11.5 Splines

B x y n k thickness color layer line-style x1 yl x2y2... xnyn

Xy: global offset of the spline.

n: number of control points in the spline.

k: degree of the spline; always equal to 3 for 3rd order B-splines, which is the default in DP.
Other types of splines are not completely supported for the time being and are not
documented here.

x1yl: coordinates of the first control point, relative to (x,y).

x2,y2: coordinates of the second control point, relative to (x,y).

xn,yn: coordinates of the last control point.

16

11.6 Polygons

By convention, an n-sided polygon is rcpresented by n vertices: the first and last vertices are considered
connccted.
Y xy thickness color layer x1 yl x2 y2 ... xn yn

XY global offsct of the polygon.

color: this parameter is uscd to sclect a pattern that fills the polygon. Polygon patterns are
predefined and arce intended to emulate different shadces of gray. Only colors in the range 1
through 17 are supported; color 1 corresponds to solid black, color 17 is solid white.
Numbers in between represent intermediate shades of gray, color 8 being an intermediate

“solid” gray.
xLyl: coordinates of the first vertex of the polygon, relative to (x,y).
x2,y2: coordinates of the sccond vertex, relative to (x,y).
xn,yn: coordinates of the last vertex of the polygon, relative to (x,y).

Note that the thickness parameter is ignored.

11.7 Pins
P xI yl number position color layer
x1lyl: abscissa and ordinate of the pin.
number: an integer corresponding to the pin number.
position: an integer in the range 0 through 3 that specifies the quadrant the pin number should be

displaycd in.% Position 0 corresponds to the first (upper-right) quadrant, position 1
corresponds to the upper-left quadrant, and so on.

Pin numbers are ignored by many programs that process DP drawings. A pin contained in a symbol acts as a
gravity point in DP, independent of its pin number.

11.8 Instance of a Symbol

This line creates an instance of a symbol. Instantiating a symbol is equivalent to calling a procedure that has
been defined and stored away. The instance specifies the global offset and transformations for the symbol;
the transformations are applied first, and the offset is applied later. If nested symbols are contained in the
definition, each offset/transformation is applied in order, from the innermost to the outermost levels,

Transformations are additive: if a symbol has rotation R1 and calls another symbol with rotation R2, the final
result is the same as if the nested symbol were directly called with rotation (R1+R2). The order of
application of transformations is generally irrelevant, with one exception: when a symbol is non-uniformly
scaled in the horizontal direction, this scaling should be applied before the rotation. This ensures that the
shape of the symbol does not change for different rotations.

6Even if this is not an angle, it is used as such when the pin appears inside a transformed symbol.

17

The format of a symbol instance is the following:
C xyangle scale-x scale-y layer name

X,y
angle:
scale-x,scale-y:

name:

abscissa and ordinatc of the center of the symbol, i.c., global offset.

rotation of the instance (sce 4.1 for angles conventions).

(these are two real numbers): scaling factors for the instance in the X and Y directions. A
scaling factor of 1.0 means the same scale as the definition; a negative factor implics a
mirroring opcration. Notc that because of the order of application of symbol
transformations, these factors indicate the scaling of the symbol before the rotation is
applied, i.c., they indicate the scaling factors relative to the symbol’s own X and Y axcs.
reference to a symbol definition, This string must match exactly the name in a symbol
definition, and thus it must be in all upper-case characters. The symbol must be already
defined; forward references are not allowed.

18

12. BNF Description of the Format

"This is the description of the format of DP drawing files in an extended BNF syntax. ‘The following
additional notations have been used:

{ <item> }:’ <item> may appcar from 1 to infinite times.
{ <item> } <item> may appear any numbecr of times, including 0.

<char, not defined here, is essentially the whole ASCH printing set minus EOL. (End-Of-Line).

<DP file> ::="; DP ver.” <string> {<line)}'

{comment> a="" {<char>}' EOL

{string> ::= {<char>} EOL

<{number> =" "<integer> | " -" <integer>

<integer> ;= {KdigiD}

<real> ::= <number> "." <integer> | <number>

<digit> x=0]1)2131415]6]7]819

<point> ;= <number> <number>

<parameters_> :: = <number> <number> <\number> <number>
<line> :: = <symbol definition> | <ENV line> | <DP line>
<ENYV line> ::= "@font" <number> {<char>}* <number> <number> <string> |

"@perqFont” <number> <string> | “@layer” <number> {<char>} * <string> |
"@pageMark" <number> <number> <number> EOL |
"@grids" <number> <number> EOL

<DP line> ::= "L" <point> <point> <parameters> EOL |
"A" {point> <number> <number> <number> {parameters> EOL |
"E" <point> <number> <number> <number> <number> <parameters> EOL |
"B" {point> <number> <number> <parameters> {<point>} * EOL|
"Y" <point> <number> <number> <number> {<poin>}* EOL|
"§" <point> <point> <number> <number> <number> <{string> |
"P" <point> <number> <number> <number> <number> EOL |
"C" <point> <number <real> <real> <number> <{string) |
<{comment>

<{symbol definition> ::= "D" <number> <number> <string>
{<DPline>}*
IIFII EOL

19

13. Example of a Drawing File

The present section contains an example of an actual drawing file. The drawing in the cxample is shown in
fig. 13-1.

Y Axis

R1 R1

.............

X Axis
Figure 13-1: The drawing in our example

The complete text of the DP file is also shown. Several points are worth discussing:

e Most of the drawing is on the STANDARD layer, except for the axes system in the graph at the
right which is on the FRAME layer instead. This layer includes the two axes and the two strings
"Y Axis" and "X Axis"; the layer is currently non-writable, as indicated by the absence of the W
parameter from the last field of the line "@layer 2 FRAME RO".

¢ Two instances of the symbol named PICTURE are used; the two instances appear in the left half
of the drawing. The instance at the bottom is scaled down (the scaling parameters are equal to
0.75 and 0.75) and rotated 180 degrees counterclockwise (as indicated by a rotation angle of 10800
minutes).

o The symbol PICTURE is composed of two instances of the symbol RECT, one instance of the
symbol TRIANGLE, one instance of the symbol COMPOSITE, four straight dotted lines (having
line-style 1), and four straight lines that describe the box around the picture. The four lines have
thickness 3 and line-style 0, i.e., they are solid.

o The symbol RECT consists of four straight solid lines (having thickness 1) and of the string "R1".
This string is drawn in font Gacha 7 Roman, as indicated by the font number (1) which points to
the definition line "@font 1 r 7 0 Gacha".

20

» ‘The graph at the bottom-right is drawn as a single 3rd-order B-spline, described by the line
B2-168 5631110311 12040 108 112 24 6 0 218
‘The spline is defined by the § control points (311,1) (204,0) (108,112) (24.6) (0,218) and is drawn
in thickness 1.

s DP ver. 6.10

; 09-Jul-85 12:54:17

:SYMBOL.: 7404

:CALLS:

SYMBOL.: PICTURE

:CALLS: COMPOSITE RECT TRIANGLE
SYMBOL.: COMPOSITE

{CALLS: RECT TRIANGLE

SYMBOL: TRIANGLE

;CALLS:

:SYMBOL: RECT
'CALLS:

@font 1170 Gacha
@pcrqFont 1 gacha7.kst
@font 4 r 12 0 TimesRoman

@perqFont 4 gacha7.kst
@layer 1 STANDARD RWO
@layer 2 FRAME RO
@pageMark 41 -121 1
@pagecMark -187 3
(@pageMark 41 -121 2
(@grids 16

D 3048 RECT
$-7-185-9111R1
L15-2415241110
1.15-24-15-241110
L-15-24-15241110
L1524-15241110

F

D 36 78 TRIANGLE
L18396-391110
L6-39-18-151110
L-18-1518391110

F

D 96 80 COMPOSITE
C8018900111TRIANGLE
C-33-80111RECT

F

D 231179 PICTURE
C24-5703.13844 11 RECT
1.10875-30751111
L-30-22-30751111
L108-22-30-221111

L 108-22108751111
L11681-115813110

21

1.-115-89-115813110
1.116-89-115-893110
I.116-89 116813110
C-84-570111RECT
C-82340111TRIANGLE
C29500111COMPOSITE
F

D 45 24 7404
$-222-1611111A
P-1501111
S1712310111Y
A1103990091501110
[.-15-12801110
L-1512-15-121110
L-1512801110
P1402411

F
C-223990111PICTURE
A 248118 44 5400200561110
1 189174189611110
1.295982481181110
1.2481702481181110
L306174306611110

L 3061741891741110
L30661189611110
A248118520216003110
C71310111 7404
L55131211311110
C70131011 17404
L841311171311110
L-9131-511311110
L37173371311110
C7017301117404
L55173371731110
L841731171731110
B2-16853111031112040108 1122460218
C-223 -89 10800 0.75 0.75 1 PICTURE
L-464-4-1671120

L 338-167-4-1671120
L357-4641120
L-1257-4641120
S26316240412Y Axis

L 323-171338-1671120

L 323-164338-1671120
S280-189 316 -180 4 1 2 X Axis

22

14. Compatibility with Previous Versions

The present document describes the format of DP files for internal purposes only; no guarantee is implicd as
to the stability of the format itsclf, Although the format has remained substantially unchanged for long
periods of time, changes and extensions to DP have required various adaptations and additions to the format,

In particular, it should be noted that changes and extensions may make new formats unrcadable by older
versions of DP. It is typically impossible to read files whose version number is higher (ncwer) than the
version of DI one is using. The DP Reader, on the other hand, is written in such a way as to be compatible
with older versions; all versions of DP can read files whose version number is less than or cqual to the
particular version being used.

This is belicved to apply to all existing versions of the program, including local modifications that you may be
using. If this is not the casc, plcase contact the author reporting the version number of the instance of DP you
arc using, the version number and creation date of the drawing filc, and information about how you obtained
your version of the program.

1

[2]

3]

[4]

(51

6]

ul

[8]

9]

23

References

Robert F. Sproull,
Font Representations and Formals.

Technical Report, XEROX Palo Alto Rescarch Center, October, 1980.

R.W. Hon, C.H. Sequin.
A Guide to 1.51 Implementation.
Technical Report, XEROX Palo Alto Rescarch Center, January, 1980.

Dario Giuse.
DP - Command Set.
Technical Report CMU-RI-TR-82-11, Carncgic-Mcllon University, October, 1982.

Patrick C. Baudclaire.
Draw Manual.
Technical Report, XEROX Palo Alto Research Center, 1978.

William M. Newman.
Markup User’s Manual.
Technical Report, XEROX Corporation, Palo Alto, 1978.

C.P. Thacker, R.F.Sproul], R.D.Bates.
SIL, ANALYZE, GOBBLE, BUILD - Reference Manual.
Technical Report, XEROX Corporation, Palo Alto, Ca., 1979.

Dario Giuse.
SL: a hierarchical wire-lister for DP drawings.
Technical Report, Carnegie-Mellon University, March, 1982,

Joseph M. Newcomer.
SUDS - User’s Manual
Carncgie Mellon University, 1980.

Dario Giuse.
DP : post-processing a circuit drawing
Carnegie-Mellon University, 1981.

