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Abstract

Knowledge of position in the context of its surrounding is
necessary for robots to build maps and develop path plans.
Limitations in odometry and the lack of a priori knowledge
reduce the effectiveness of a single robot to retain a sense
of position for any extended duration. The problem is only
compounded when the scale of the robot is reduced.
However, by employing multiple robots we can exploit
their distributed nature 1o provide an external context in
which to evaluate sensor readings for mapping and
localization. We have designed a team of centimeter-sized
rubotrs that coordinate sensing and action ro establish and
maintain position: as they move throughout space. By
atilizing low-cost ultrasonic sensors. the team is able to
measure the range benween each robot pair. We pose these
measurements in terms of a position likelihood and
combine them to find a global solution that best maximizes
the position likelihood of each robot. We also address a
unique multi-path interference mode that arises as a direct
result of the reduced scale of the robot team. We present
our experiences with localization and control of a small
robot team.

1. Introduction

One of the most significant skills a robot can master is the
ability to localize itself in the world. Knowledge of position
and orientation in the context of its surrounding is
necessary for avoiding obstacles and developing path plans.
Moreover, without knowledge of position, it cannot exploit
previous sensor readings or build maps. In an unknown
environment, limitations in odometry and the lack of a
priori knowledge reduce the effectiveness of a single robot
to retain a sense of position for any extended duration.
High-end solutions, such as video-based landmark
detection, place significant burdens on the processing, size,
cost and power requirements of a single robot. These
restrictions become even more significant in terms of size
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and power when the scale of the robot is decreased.
However, a team of robots can exploit distributed
information about each other to regain effective position
determination. Teams can share information and
functionality as well as provide an external context in
which to evaluate local and coordinated sensor readings. To
this end, we have designed a team of small robots, called
Millibots, which coordinate action and sensing to establish
and maintain position as the team moves throughout space’.
Once equipped with this skill, they are able to accomplish
missions such as the mapping and exploration of unknown,
hard -to-access spaces.

To achieve the ability to self-loculize, we have equipped
each robot in the team with a smail, low-cost beacon

trancceiver that allows the robot to deiermine its range to
other members in the group. Being able to measure range
allows us to express a

robot’s position in terms of a

Figure 1. The Millibot Team
likelihood function that correlates estimated robot position
to measured range readings. Given multiple range readings,
we express the position likelihood of the robot as the
product of the multiple, individual likelihoods. We find the
most likely position of the robot by finding the maximum

'»see www.contrib.andrew.cmu.edu/~rjg/millibots/ millibot_project.htm.



of these products. Since we assume the beacon readings
exhibit a Normal distribution, we can utilize optimization
techniques to reduce the complexity of the computations.
By taking the log of a series of probabilities, we reduce the
equation from the product of a set of Gaussians to the sum
of a series of square errors. In this way we can correlate the
maximization of the products of likelihoods, to the
minimization of the square error terms of those Gaussians.
This reduction also allows us to exploit an optimization
algorithm  called  Broyden-Fletcher-Goldfarb-Shanno
(BFGS). The BFGS algorithm finds a set of solutions that
minimize the global error of a series of square errors while
reducing the chances of becoming trapped in local minima.
Tests in simulation have yielded very promising results on
the team’s ability to localize from an arbitrary geometry and
maintain position as it moves throughout space.

Alas, experiments in the real world have exposed the
susceptibility of the localization algorithm to outliers in the
beacon measurement distribution. This problem is
compounded by a unique multi-path interference mode that
arises from the small scale of the robot team. Being so
close to the ground opens a reflection path that results in
distinct regions where interference causes significant error
in the beacon measurements. Knowing this, we develop an
interference model to adjust the beacon distribution utilized
by the likelihood function. This correctior alone reduces
the sensitivity of the localization algorithm to small
outliers. Given the same interference model, we ithen
introduce methods for exploiting the kinematics of each
robot to detect and filter for extreme outliers in the beacon
measurements making the system more robust. Coupled
together, we have been able to regain the effectiveness of
the team to localize and maintain its sense of position as the
team moves throughout space.

2. Maximum Likelihood Estimator

Measurements are obtained by coordinating transmission
and reception of beacon signals between robots in the
group. Each robot in turn generates and transmits a series of

beacon range readings

Figure 2. Localization of a Robot
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beacon signals which are detected by the remaining robots
in the group. By correlating the time between the signals,
each receiving robot is able to derive its position with
respect to the corresponding transmitting robot. Each robot,
in turn, acts as the transmitter in order to collect distance
pairs between all the robots in the group.

Visually, a single distance reading between two robots can
be perceived as an annulus emanating from the
corresponding receiving robot (readings around the end of a
circle with radius equal to the measured distance). The rings
of the annulus represents all the possible places the
transmitting robot could have been in order to generate the
measured distance. By adding additional measurements
from other robots at different locations, we can constrain
the possible positions and localize the robot.

Explicitly, we pose the likelihood that a robot at a given
position could generate the measured distance as the
probability function:
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where : Xi,yi is the position of the first robot
Xi,yi 1s the position of the second robot
dii is the measured distance between the two
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From here, we can employ a spatial search to find the rnost
likely positicn of the robot. Since each measurement pair is
independent from the others, the most likely position for a
given robot is simply the product of all the corresponding
individual likelihood probabilities. Maximizing the product
of the combined set finds the most likely position of the
robot. In practice, we simplify the calculations by taking the
log of the total likelihood function for a given robot (the log
of the product of a set of Gaussians). The solution reduces
from a product of Gaussians to the sum of a set of square
errors. Since the log function is monotonic and we are
interested only in the global maximization of the
probability, finding the minimum of the square errors is
equivalent. Reducing the algorithm from a product to a sum
also allows us to utilize a variable metric method of
optimization called Broyden-Fletcher-Goldfarb-Shanno
(BFGS). The BFGS algorithm finds a set of solutions that
minimize the global error while reducing the chances of
becoming trapped in local minima. It achieves this property
by iteratively developing a quadratic estimate of the both
the objective function and its derivatives [3]. Iterative
estimation has a desired property that we can ensure that
even far away from the solution, the algorithm always
moves us in the right direction. Closer to the solution, the
estimation  becomes better and enjoys quadratic
convergence.




3. Anomalies in the Beacon Model

Unfortunately, distance measurements are obtained with
real sensors that rarely exhibit ideal characteristics.
Ultrasound-based sensors suffer from well-known failure
modes such as specular reflection and multi-path from
multiple objects [1]. For the most part, these failure modes
are well understood and can be compensated with
conventional filtering techniques such as mean and median
averaging and rejection of extreme readings. However, the
small size of the Millibots introduces a new systematic
failure mode that is not so easy to detect and reduces the
teams ability to localize. To understand the significance of
the size issue, we must first look at the way range detection
is accomplished for the Millibot team and how this mode of
sensing is compounded by the scale of the team.

Millibots achieve robot-to-robot ranging by equipping each
robot with a ultrasonic beacon transceiver (Figure 3a) and
by coordinating sensing between multiple robots. A radio
message is generated by the team leader that alerts the
members about the beginning of a beacon sequence. One
robot is identified as the transmitter and the remaining
robots configure as receivers. Upon receiving the start
command, the transmitter robot emits a single radio pulse
immediately followed by a burst of ultrasonic pulses.
Almost instantly, the receiving vobots detect the radio pulse
and immediately start their local ttimers. Shortly after, the
receiver robots detect the ultrasonic burst and stop their
local timers. The elapsed time is proportional to the time-
of-flight of the ultrasonic burst.

Inteference Model

£oinel we Weasured

Ideally, the recorded time measured by each of the
receiving robots is proportional to the distance between it
and the transmitting robot. A plot of actual distance-vs-
measured time should be linear. However, the reduced size
of the team places the beacon transmitter very close to the
ground - on the order of a few centimeters. A secondary
reflection path arises that travels from the transmitting
robot, reflects off the ground and continues to the receiving
robot (Figure 3a). Because the reflected wavefront must
travel a slightly longer distance, it arrives at the receiving
detector at a later time and different phase than the
wavefront travelling the direct path. The result is the signal
detected by the receiving sensor is the superposition of the
signal from the direct and indirect path (Figure 3b). When
the difference in path length is a multiple of the wavelength
the two signals combine to produce a stronger response.
However, when the difference in path length is on the order
of a half wavelength, the two wavefronts are out of phase
and will cancel. The result at these points is that no beacon
signal is detected.

Figure 2c¢ shows the distance vs. time plot for a given robot
pair. Ten readings were collected at 10cm increments up to
a distance of 1.2m. Given a simple interference model, we
would expect to see the beacon plot exhibit linear behavior
everywhere except where the two signals are sufficiently
out-of-phase. At these points, we would expect no event to
be detecred at all. Indeed, anomalies occur at the predicied
distances. However, instead of simply failing to produce a
reading at these distinct locations, we see a spread in the
measured times (Figure 3c). To understand why the sensor
readings produce multiple readings at these nodes, we have
to look closer at the detection circuitry.
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Figure 3. a) Test setup for a beacon measurement (upper left). b) Superposition of direct and indirect bursts as a
function of distance (lower left). c) Plot of time-of-flight vs distance (middle). d) Schematic of peak detector (upper
right). e) Output of peak detector (showing threshold level) with and without interference (lower right).
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Detection of the ultrasonic burst is accomplished using a
threshold circuit that triggers when the signal received by
the detector exceeds a set amount. Incoming pulses are
amplified and converted to a dc voltage proportional to
peak amplitude of the ultrasonic pulses (Figure 3d). The
sensor element is made from a piezo electric crystal that
provides excellent rejection of unwanted sound so only the
desired ultrasonic burst is heard. This feature eliminates the
need for additional filtering circuitry and minimizes circuit
size. However, good rejection comes at the cost of transient
response. It takes several ultrasonic pulses to build the dc
component above the threshold. Therefore, if the indirect
pulses arrive before the direct pulses accumulate above the
threshold, the direct and indirect pulses cancel and the dc
component will not exceed the threshold. Therefore, a
beacon event will not be detected.

Figure 3e shows the dc component of the burst at the output
of the peak detector both with and without the multi-path
interference. Without interference. the output of the peak
detector builds quickly and triggers a detection (Figure 3e
tracel). However, in the case of interference (when the
indirect path is sufficiently out-of-phase with respect to the
direct path), the build up from the direct pulse fails to
exceed the threshold before interference commences
(Figure 3e trace2). Since a beacon sequence is of finite
duration, ihe direct burst eventually ends. However, the
indirect burst, having arrived at a later time, still remains.
Now without interference from the direct burst, the dc
component of the peak detector begins to build again. The
result is a longer detection time than the non-interference
case. Experiments shown this effect results in an equivalent
measured distances that ranges from 0 to 30 cm above the
actual distance between the two. We verified this
interference mode! by performing the same experiment with
the robot raised on platforms. In this case, the indirect pulse
was several wavelengths delayed from the direct pulse and
did not produce interference. In the raised state, no
anomalies were detected and the resultant plot generally
exhibited linear behavior.

The implications of the interference model are profound.
We estimate the position of the robots based on the
assumption that we can express their position likelihood by
modeling range measurements as Gaussian. We correlate
the maximization of the product of these likelihoods to the
minimization of their square errors and enjoy a guarantee of
quadratic convergence in our search algorithm. However,
the multi-path phenomenon breaks the Gaussian assumption
and produces outliers in the distance measurement
distribution. These outliers cause significant errors in the
estimation of position. As a matter of fact, the errors are so
significant that even a single outlier can generate such poor
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estimations that the team becomes lost and cannot recover
without completely starting over. Unfortunately, we cannot
distinguish between good and bad measurements based on
the readings alone.

4. The Motion Model

If we exploit knowledge of the kinematics of the robot, we
can develop an independent means for determining the
expected position of the robot after any given command.
This knowledge can be leveraged in two ways. First, we
utilize the position from dead reckoning to test and filter for
potential outliers in the distribution of robot-to-robot range
readings. Second, we define a closed-form probability
distribution for the position estimate itself and apply that as
an independent set of constraints for the localization
algorithm.

The motion model is based on the tread design of the
Millibot team. Millibots employ two long rubber treads
mounted on either sidc of the robot. Encoders provide
feedback about both the velocity and number of turns of
each of the motors. Many robot groups have developed
precise motion models that integrate the incremental data
reported from encoders [2]. However, limitations in local
processing power and communication bandwidth make the
implementation of an 1terative motor model infeasible.
However, we regain eftectiveness of the motion-based
approach by limiting robot motion to a series of polar steps.
That is, the robot first rotates to the desired angle and then
drives straight for the desired distance. By constraining
robot motion to a single polar step between localizations,
we can describe the uncertainty of the position estimation in
a closed form as the product of two Gaussians - one
representing rotation and one for translation (equation 2).
The distribution of position after any given move is an
ellipsoid.
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d = commanded distance
z = actual distance of travel
8 =commanded rotation
th = actual rotation of robot

where :

We exploit the motion-derived position estimation as an
independent test against the individual distance pairs
generated by the beacon sensors. We compare the
measurement circle generated from a distance pair with the
ellipsoid generated by the motor medel. If the two curves
do not intersect, we assume the distance pair represents an



extreme outlier and reject it as an input for localization.
Furthermore, since we can describe the ellipsoid in terms of
a probability distribution of position, we can use the
motion-based position estimation directly as a candidate in
the localization algorithm. Simply in terms of simultaneous
equations, we have added one more constraint to the
derivation of position.
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Figure 4: Localization Geometry

Motion-based position estimation has a potentially greater
utility for effective localization in the nature of its
distribution geometry. Consider the fashion in which range-
based postitions are derived. In essence the distribution of
position is represented by the regions around the cumulative
intersection of independent circles obtained via range
measurements. If the range measurements are obtained
from robots that are well spread out. the angles between the
tangents of the intersecting circles are great (Figure 4 left).
The corresponding geometry of the distribution is a small,
confined region in space. However, when the team is not
well spread out with respect to the robot being localized
(Figure 4 right), the angles bctween the tangent
measurements are small. The corresponding distribution
geometry exhibits a largely distributed ellipsoid. Position
estimation is then sensitive to small perturbations in the
range measurements and limited precision in the search
algorithm. On the other hand, the geometry of the motion-
based derivation is independent of the geometry of the
team. By adding the constraint of the motion command to
the derivation, we can reduce the geometry of uncertainty
even when the robot is not in the most idea position. This
becomes especially important during exploration where the
moving robots may need to move along the outside of the
group. Motion-based position derivations allow the team to
relax its dependence on team geometry while still being
capable of localizing.

5. Reducing Sensitivity to Outliers

The addition of a motor model reduces the changes of an
extreme outlier from completely disrupting the estimation
of position. However, this correction only minimizes
extreme outliers but does not eliminate them.
Unfortunately, the BFGS in its current form is very
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sensitive to outliers. However, if we adjust the objective
function to account for the anomaly, we can regain the
effectiveness of the localization algorithm.

To achieve the new objective function, we adjust the model
of probability to account for the small likelihood that a
robot is actually closer than implied by its distance
measurement (the returned distance is equal to or greater
than the real distance). Now rather than relating than
relating the Gaussian distribution to the sum of the square
errors, we explicitly take the log of the likelihood function
to produce the cumulative error term. Computation is more
expensive but the system is less susceptible to outliers.
Experiments show the addition of a uniform position
likelihood reduces the sensitivity to outliers in the
localization process. The team is able to localize even with

the occasional outlier produced during distance
measurements.
1 (r—d)2
(rid)=a ex -1 3)
Sl N ey
where : o= 0.9 (10% chance of robot being anywhere)

r = range reading of robot
d = actual distance between robots

6. Applications

Providing techniques for establishing and -maintaining
position, gives the team a context in which to share range
and sonar information. Figure 5 shows the composite map
generated by a team of four robots exploring a smail space
both with and without global localization. The yellow lines
represent the true objects and were added by hand only for
verification. In the first image, we give the team
information about the starting points of each robot. Beyond
that, the team must rely on independent odometry to
determine robot positions. By the time the robot team

reaches the bottom corridor, odometry error has
accumulated sufficiently enough that the team no longer has
a viable context in which to share information.

Furthermore, without knowing where it is, the team, as a
unit, cannot agree on what it sees or coordinate to determine
where to go. In the second image, the team has been placed
in an arbitrary starting configuration. By applying the
localization algorithm, it has been able to establish a
common reference frame in which to share data. By
coordinating sensing and action, they are able to compose a
consistent map that allows them to continue operating and
exploring the world.

Many researchers have proposed solution to establishing
and maintaining robot position using various high-end



Figure 5. Team Maps

techniques such as employing high accuracy laser sensors
[8], utilizing high-bandwidth, video processing [9] or
matching sensor profiles to pre-defined maps [4]. While
these systems enjoy potentially greater accuracy, speed and
range, they are difficult to employ on smaller robots. We
have developed a low-complexity alternative to these
methods that is capable of localizing a team by measuring
the distances between individual robots. Moreover, the size
of the detector allows it to be employed by small robots
with limited local processing.
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