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Abstract 

An under-actuated robot mlllipulator is a serial mechanism, 
in which the number of p i n t s  is greater than the number of 
actuators. Making use of the dynamic interaction between 
the passive joiats and actuated joints, the robot can provide 
dairable  motion and f o r c a  dynamically. In comparison to 
a fully actuated robot, the mndu-actuated system will be 
more compact in size and lomr weighted due to less a c t u s  
ton, and more efficient due to less energy consumption. In 
this paper, we intend to answer the following two questions: 
(1) What ia the dynamic coupling of the system and how 
to control the  system by using its dynamic coupling? (2) 
When the dynamic puameten u e  uncertrin/unknown in 
practice, and kinematics relationship is thus not accurate, 
what adaptive control scheme is feasible for thia nonlinear 
system where linear puuneterization docs not hold and lin- 
tu structured adaptive control scheme is not d i d ?  

1 Introduction 

For a conventional robot manipulator, the number of joints 
is equal to the number of actuators, or actuated joints; such 
a fully driven serial mechuism is  called a full-actuated sys- 
tem. If the total number of joints is greater than the number 
of actuators in the  mechanism, the system is referred to as 
an under-actuated system. A. well known that  the rnutial- 
arts superstar Bruce Lee used to play a pair of numbchucks 
(three-link-sticks) u his favorite weapon. Each numbchuck 
is composed of two passive p i n t s  that connect three had- 
wood segments together. I t  is fascinating to see that  by ma- 
nipulating the bottom segment, Bruce Lee could fast project 
the tip of each numbchuck to a target, producing a tremen- 
dous impact force acting on the target, iu shown in Figure 
1. Now. consider Brucc lace w an actuated manipulator 
and tlic sticks as passivc hnhgCS; the system becomes a 
typical under-actuated system. 'I'his shows that by use of 
the dynamic interaction of the under-acluated system, the 
position or force of the system may still be controlled. 

Mote examples of such under-actuated systems u a  be 
found in a vuiety of applications. although they may not be 

rcfkrd to u the under-actuated systems, nor be realized 
as a dur of popular mechanisms. An inverted-pendulum 
(cutpole  system) is the simplest example of a twejoint 
undu-actuated system. McCeer's pusive walker is known 
u a fully passive system which completely takes advantage 
of dynamic coupling of all the links [13]. Another example is 
the body control of a gymnast. &/she does not control all 
joints of his/her body in an exercise; instead, the gymnatt 
only controls fewer p i n t s  to balance the whole body (14). 
The McCeer's walking robot da ign  and T h h i m a ' s  gym- 
n u t  motion analysis show that the under-actuated systems 
have great potential in robotic r w u c h  and applications. 

Fig.1 Bruce LCC and his numbchucks 

There are a number of advantages to the use of the 
under-actuated systems. First. reducing the number of ac- 
tuators for a robot manipulator wil l  niinimizc cncrgy con- 
sumption, and will be potentially attractivc to the applica- 
tions where energy efficiency is a Iiiajor concern, such as for 
space robots. Second, eliminatiiig romc actuators will allow 
more compact design leading to both ovcrall size and total 
weight reductions. This will ultinrately reduce the manu- 
facturing cost and running power. 
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Not only the under-actuated system is useful in practice, 
but also the concept is important in analysis of a das of 
systems that  can be considered as virtual under-actuated 
systems. For example, a freeflying space robot system (161 
is useful for maintenance taka and EVA missions in a space 
station and/or a satellite. T h e  concept of under-actuated 
systems provides an  approach to modeling dynamic iyrtems 

question and to resolve the aforementioned parameter un- 
certainty problem, we will propose an extended dynunic 
model, and b d  on this model, develop a normd form 
augmentation approach to daptively control the under- 
actuated systems with parameter uncertainty. 

- -  

2 Extended Dynamic Model with either fret bases, fret ends, or free joints. Some of these 
mechanisms can be potentially utilized in space and under- 
water applications [12]. 

To study an  under-actuated system, two primary ques- 
tions should be addressed: "Under what conditions CUI i t  
be controlled?" and "How is it controlled?" Arai m d  T x h i  
(1 11 discussed the controllability issue of the passive pinta  
based on linear system theory and dynamic equilibrium. 
However, their conclusion has certain limitations due to the 
linear system assumption, while most under-actuated sys- 
tems are obviously nonlinear. Vukobratovic and his t e m  
[17] presented a control scheme to control unknown statu 
by dynamic equilibrium and applied i t  to biped postud sta- 
bilization. Based on the same principle, Arai and T d i  (11) 
proposed another control scheme and applied i t  to a two- 
DOF system when the passive joint WM braked or releued. 
The  most interesting work has been done by N W u k i ,  Fu- 
jinioto and Yamafuji (IS] recently. They actually built a 
model of a three link under-actuated system and performed 
three interesting experiments: (1) filling down and then 
standing up, (2) locomotion by peristaltic motion, and (3) 
w e n d i n g  a step. Their prototype w u  the first experimen- 
td setup for testing the under-actuated system. 

Much more research work, however, must be done. One 
of the most serious problems is that  the kinematic relation- 
ship for an under-actuated system is dynamically depen- 
dent. In other words, the kinematic mapping from a given 
Cartesian space specification to the joint space is a function 
of dynamic parameters, such as the muses,  centroid coor- 
dinates and inertia moments of the links. To cope with the 
parameter uncertainty, an adaptive control d e m e  L needed 
[7]. However, most existing adaptive control K b e m a  devel- 
oped for full-actuated robot systemr are not applicable to 
the under-actuated syrtems due to  the nonlinear puune -  
terization (16). In this paper, we intend to deal with this 
problem for precisely controlling the under-actuated sys- 
tems under parameter uncertainty. 

I t  has been shown that a fully actuated manipulator 
system is always exactly lineuisable [1,2]. However, for an 
under-actuated dynamic system, due to the fact of deficient 
input channels, the entire system is nnlineuizable. This re- 
sults in a fundamental difficulty inherent in the control of 
under-actuated dynamic systems, Nevertheless, an under- 
actuated system can be decomposed into two subsystems: 
a linearizablc one and an unlinearizable one which is also 
called an  cnternol dynamic8 [1,2]. It can be observed that 
two subsystems are  virtuilly inseparable. This phenomenon 
has already been revealed in cl.srical mechanics, and is of- 
ten referred to as a non-hdonomic constmint problem ($61. 
For a non-holonomic system, how does the internal dynun- 
ics interfere the entire system stability? To ansmr this 

Consider an n-pint  robot mmipulator, in which some joints 
u e  passive. To model such an under-actuated system, we 
extend it to be a fully actuated system with zero torques on 
all the passive joints. This is J l e d  an extended dynamic 
model. T h e  number of input channels, in such an extended 
model, is equal to the number of active joints, while the  di- 
mension of the system state space is twice the total number 
of joints because the relative degree in each output channel 
of the system is two. 

For analysis rimpliaty, consider that  an under-rctuated 
system consists of two send rubmechanisms, one with all 
passive joints and the other one with all actuated joints. 
If the upper body is passive, it is called a lower-octuotd 
ryrtem, while the lower body is passive, i t  is called an upper- 
actuatedrystem. We assume that the lower body h s  1 joints 
and the  upper body haa m pints ,  and thus the total number 
of joints is  I+m. It is noted that any under-actuated system 
with mixed purivelactuated joints can be constructed by 
urembling a set of such models in series. Therefore, the 
analysis presented here will, in general, be applicable to  
any under-actuated system. 

. 

kt 9 = (91.*-9n)~ E Rn be the joint position vector 
for an under-actuated system with n-joints. The dynamic 
equation can be written as 

where the n by n matrix W is known aa the inertial matrir 
of the  system and is poaitive-definite and symmetric, and 

with an n by n matrix Wr defined by 

In (3), I is the n by n identity matrix, and @ is the Kro- 
necker product operator betwwn matrices. I t  is clearly seen 
that the first term W in (2) is symmetric, and the second 
term f ( W f  - Wr) is skew-symmetric. Thus, the matrices 
C in (2) and W have the following identity for any z E R": 

1 
2 

tTCz = - * = w z .  (4) 
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3 Inertial Matrices 
With the extended dynamic model, the n by n inertial m& 
trix W for m under-actuated dynunic system can be par- 
titioned into four blocks, 

where WII  is an J by J symmetric submatrix attributed by 
the lower body, WZZ is ur m by m symmetric block aa an 
inertial matrix of the upper body with raped to the fixed 
b w ,  and WIZ  = Wg is an 1 by m submatrix np racn t ing  
the interaction between the lower m d  upper M e a  of the 
under-actuated system. 

where urp E Rm and uto E 9? u e  the actuated p i n t  torque 
inputs for the upper-actuated urd  lower-actuated systems, 
respectively. Clearly, the location of the zero vector, 0, on 
the right-hand side of the above equationr is the main dis- 
tinction between the two casea. 

The  kinematic relationship of an under-actuated system 
can be developed b w d  on the  extended model. Suppose an 
m-dimensiond Cutaian displacement of the system end- 
d e c t o r  with respect to the fixed b w  b chosen M an output 
m t o r  which M a diflerentiable €unction of the join( position 
Q = (qto qrP), urd b denoted by SI = h(q) E R". The 
Jacobian matrix of 8 h determined by 

3.1 Inertial Matrix of Upper-Actuated Systems 

in the lower body. Umng the partitioned form (51, we write 
the inverse of the inertid matrix W [lo] aa W-' = 

where J1 = ahJaq4. is of m by I, JZ = ah/aqur is of m 

*ectors for the lower body .nd the upper body of the sys- 
tem, respectively. Similarly to the effective inertial matrix 
definition, we define an effective Jacobian rnatrir by 

Consider UI Upper-&€hIated Sy8tem with 1 P k V C  joints by m, urd qIo E e qur E Rm are the joint 

32 = JT1z = Jz - J1 WG1 Wlz (13) 

w;1 -w~'~wlzw~l 
W;;l 

(6 )  
where 

which is referred to  II) an effective inertid m a t e  of the 
upper-actuated system. We c m  show that  this matrix is 
positivcdefinite and symmetric, and thus always invertible 
[W. 
3.2 Inertial Matrix of Lower- Actuated Systems 

If a lower-actuated system with m passive joints in the 
upper body is considered, then using the same partitioning 
form of the inertial matrix W in (S), but through an dte r -  
native inversion [IO], we can write the inverse of W for a 
lower-actuated system M W" = 

W?z = Wza - W& w;' wizI (7) 
for the upper-actuated system, and define 

.iI = JTzl = J1  - Ja W;' W2, (14) 

for the lower-actuated system, in which the output y = h(q) 
is 1-dimensional. 

The definitions of the effective-Jacobian matrix j a  or .h 
and the effective inertid matrix W?Z or W11 show that the 
motion of under-actuated systems, unlike a full-actuated 
dynamic system, is determined by not only the actuated 
body itself, but dso the interaction from the passive body 
motion. 

Using the effective Jacobian matrix concept dong with 
the dynamic equations (10) and ( l l ) ,  we can deduce 

(."..> J i +  JW-'(Cq - r,) = JW" (8) 
) ( *:' -*;I w12 w;' 

- W;' Wzl W;' + W;' Wz1 WE' W1a W;' 

where 

which is called the effective inertid matrix of the lower- 
actuated dynamic system. Likewiw, we can show that  L%'ll 
is also positive-definite and symmetric. 

f i l l  = Wll - wlzw~lwzl (9) = €zW;luup = Da(r)u,, (15) 
for the upper-actuated systems, md 

Jtj + JW-l(c+j - r,) = Jw-1 (u:) 

4 Input-Output Linearization = 31 WG1uto = Dl(r)uro (16) 
for the lower-actuated systems. In the above two equations, 
Dz(Z) = 3zfizz i s o f m  by m and Dl(r) E: jifill is d( by 1, 
both are cdled the decoupJinp mat&, while I = (q' q')' E 
en is the  state vector. 

B u d  on derivation of the extended dynamic model wua- 
tion i n  Section 2, the upper-actuated m d  the lower-actuated 
systeni equations can be written, respectively, as follows: 

and 

In order to linearize thc under-actilated systems I)y US- 

ing the input-output linearization procedure [ 1,2], let US de- 
fine a new input u = + = J i +  34. Substituting JG = (1- 54 
into either (IS) or (16) results in 

(lo) 



I ' where 

m ( z )  = D " ( ~ ) [ J w - ' ( c ~  - rg) - jiI 
a ( z )  = D"( t ) .  (18) 

I 

1 Equations (17) and (18) are notation-unified for both the 
upper- and lower-actuated systems, i.e., u b either uUp or 
wo, and D ( t )  is either &(t) or Dl(z). 

As the counterpart of (la), a full-actuated system which 
is exactly lineuizable is shown that 

I 
ao( r )  = c ~ - w J - ' J ~  
@,(t) = WJ-' .  (19) 

Comparing (la) to  (19), we conclude that  for an under- 
actuated system, due to the existence of non-trivial internal 
dynamics, the property of linear parameterization in a(.) 
and @(t )  is no longer valid. This results in a fundamental 
difficulty to design an adaptive control scheme [7,12,16] for 
a n y  type of under-actuated dynamic system. Furthermore, 
the existence of internal dynamics also raises difficulty in 
justifying the control system Stability if the control law (17) 
with (18) is adopted. To overcome the problems, a nonnol 
jo rm augmentation opproach will be investigated in the next 
section. 

5 Normal Form Augmentation 
Approach 

Since the operating t u k  for an under-actuated ryskm b 
usually specified in terms of Cartesian displacement of ita 
end-effector, we may choose the Cartesian displacement as 
a system output y = h(9) E 92" for an upper-actuated rye- 
tem, or y = h(q) E R' for a lower-utuated ryrtem. Now, 
for an upper-actuated system with totally n = 1 + m pints ,  
since there are In-2m = 21 unobservable variables that  con- 
stitute states of the internal dynamics, the 1 joint positions 
in ql0 of the passive, lower body and their timederivatives 
may be the best choice of states to represent the internal 
dynamics. Thur, we u e  motivated to define an augmented 

output vector Y. = (lo) E R", and ita timederivative 

Pnmultiplying (22) by J,@W-' yields 

The above equation can be decompostd into two parts 

. .  

and 

i t o+  ( I  o)w"(Ci - ro) = ( I  0)W" ( ) . (25) 
@UP 

Equation (24) repreaenta the lineuizable subsystem of 
the rystem, while (25) describes the internal dynamics. If 
the dotic rtote-fdhck control low (17) is applied to  the 
subsystem (24), it can be immediately obtained that  6 = 
w, provided that all link dynamic parameters are known. 
Therefore, if we define the output error function as e ( t )  = 
Yd(r) - Y(t), urd 

V i d  + k.2: + Ape, (26) 
the dynamics of the lineuizable subsystem is equivalent to 

L + kut + kpe = 0, (27) 

where tu and tp are two constant gains which can be chosen 
such that the linear error equation (27) is Hurwitz. How- 
ever, this justifies only the stability of the linearkable part, 
and the stability effect due to the internal dynamics is still 
to be investigated. 

Since the complete set of equations including the lin- 
euized portion and the internal dynamics is conventionally 
called the nomot f o m  (1,2], we refer to the definitions of 
1. md J,a, m d  thederivation ofequation (22) u a normal 
fonn augmentotion opproach [8,9]. 

Likewise, we can derive the augmented equation for a 
lower-actuated system by defining 

and the inverse of J,,1 becomes 

where I is the 6 by 6 identity matrix and 0 U the 6 by 
m zero matrix. The n by n square Jacobian matrix Jan 
defined in (20) can be inverted to be 

for l-r-actuakd dynunic syrtem. 
It can be Ken from equations (23) and (29) that by 

the normal form augmentation approach, an entire under- 
actuated system can be viewed as a full-actuated system, as 
if the internal dynamics dirappearr, as long Y the following 
two conditions hold: 

1. All the pYrive joint poritionr. velocities and acceler- 

(21) 

if Jz in J = ( JI J a )  is nonsingulv. Udng fa = J,ai+J,,,ai 
and substituting i = Jr$(fa - J , @ i )  into (IO), we obtain 

ations u e  measurable; and 
2. All the purive p i n t  t o r q u a  are equal to zero in the 

equations. wJ,;g. - wJ;-j.@* + cq - r, = ( 0 ) . (22) 
U-P 
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6 Direct Adaptive Control 

Motivated by t h e  above point of view, we will develop an 
adaptive control scheme for UI upper-actuated system exe- 
cuting trajectory-tracking tasks a g ~ n r t  dynamic parameter 
uncertainty. We will also show that  the propod rcheme 
asymptotically s t a b h a  the system. The  simulation and 
experimental verification will be curied out in the neu  fu- 
ture. 

Let an augmented output error function between the  - 

desired (ya)d = (E) and the actual 9. = 

e. = (g.)d - Ya = (;). Furthermore, let an rr tendd 

ougmented e m r  be defined by 

where e = yd - 1 E Rm ia the output error function, and 
k. > 0 is the constant grin. Then, we define a reference 
output velocity 9 and a reference output d e r a t i o n  i M 

follows, 

Comparing (31) with (30) yields 

a = q - i . ,  and i=( L + k.i ) = + - $ a .  (32) 

We now define E = f a T M a  to represent an extended 

1 1 E = a f M i  + -*=Ma = srM+ - ,'Mi. + -aTMa,  (33) 
2 2 

' where M = JGrW JG1 is called the Cartesian inertial ma- 

error energy, and then, 

trix. 

Bued on (22) and (I), (33) can be derivcd to be 

We now define a following control law: 

where Wm and C m  represent the inertial matrix W and the 
matrix C in a model plant, respectively, and 

Mm = J,:: Wm 

and 
C m  = Ja$Cm Jz - MmJ.e JI',:. 

In (35), H is an  m by m positivedefinite and symmetric 
constant weighting matrix. 

T h e  rector 6 E & in the control law (35) playa a key im- 
portant role in murence of the Koond condition, aa stated 
in the last section. In fact, since 

the control law (35) cm be splitkd into two portions, 

0 = (Wii Wiz), J,Gi+( 31' I ) C m r l + J ~ t l ( i + t V c ) + 6 - r g r .  

and 

s a p  = (WZI Wn)mJ,>i+(J,' O ) C m r l + J ~ H ( i + k . ~ ) - r g ~ ~ .  

It is clear that  since 6 odv appeua in (36), 6 can simply 
be evaluated to ensure tha t  (36) vanirhs. Therefore, equa- 
Cion (37) becomes the control input to the upper-actuated 
dynamic system. 

To develop a dynamic parameter adaptation law, let 4 
be the parameter column vector that lists dl real physi- 
cal objective paruneten to be identified. Let Cm be the 
comrponding p u u n e t e r  vector for the model plant of the 
under-actuated system. Now, substituting the control law 
(35) into (34), we further obtain 

. (36) 

(37) 

C=.rY4-a'( H ( i  + k.e) > ,  

where Y# = (M - Mm)+ + (G - Gm)9, and Y is a matrix 
function of 9,  9, C, and Y d ,  i d  and fa, and is indepeadcnt 
of the objective phyrical parameters, while 4 = ( - (m is 
the p u m e t e r  deviation vector between the  red plant and 
the model plant. 

Now, the adaptation law can be defined as 

4 = -Ws. (39) 

where r b a constant odoptotion gain mofrir and is also 
poritive-definite and symmetric. Then, a following Lya- 
punov function can k adopted to justify the stability of 
the system with the control law (35) and thc adaptation 
law (39), 

vL = E + p ~ r - ~ d  1 = ~ J M ,  + p f r - l d .  1 (40) 2 
Clearly, VL > 0, and Vt = 0 only at the equilibrium point of 
thia adaptive system, i.e., (e' if)' = 0 and 4 = 0. Taking 
t imderivat ive for VL, we have 

= -(i + kve)TH( i  + k v e )  (41) 

which is negative-definitc and is zero only at thc eqiiilibriuin 
point. 

Therefore, the control law (37) and tlle adaptation law 
(39) arymptof idly rtobilize the entire uppcr-actuated sys- 
tem to track a desired trajectory described in terms of ya, 
$4 and $4. Since JG' is  heavily involved in the control law 
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and adaptation law, the  stability also q u i r e a  that  J1 be 
nonsinguiar. 

Using the same way, the above result can be extended to 
a lower-actuated system, and the  control input mia in given 
bY 

 io = ( ~ 1 1  Wll)rnJ.<:fi+(JT O)Cmrl+JTtl(d+).e)-s*(o, 
(42) 

where the dimensions of H, e and 2, and 1 and fi should be 
accordingly redefined to match the lower-actuated case, and 

the joint torque to = (%) c a d  by gravity dm h u  

two parts rpio E 8' and roup E Rm. While the adaptation 
law for the lower-actuated system CUI we t h e  same formula 
as shown in (39) for the upper-actuated one. 

A simulation study and results have been demonstrated 
in (91 to verify the proposed adaptive control scheme for 
a space robot system which is m example of the upper- 
actuated system. Therefore, the normal form augmentation 
approach can solve two fundamental problems for an under- 
actuated dynamic system, Le., the parameter nonlinearity 
and tlic entire control stability. However, it is necessary 
lo measure the position, velocity and accelerations of dl 
passive joints. 

7 Conclusion 

The under-actuated robot systems have a great potentid 
in the applications where energy-effiaency, low weight and 
compact size are demanded. The  concept is  J.0 useful as 
an analyticd tool for a variety of hybrid pu ive / rc t ive  syc  
tems, such as space robots with floating base systems. In 
this paper, we proposed the extended dynamic model com- 
posed of two  parts: a lower-body and a upper-body; one of 
the two bodies is passive. Bued on the  model, the p r o p  
ertica of the inertial matrix and Jacobian matrix m r e  diu- 
cussed. The  model dlows us to gain more insight into the 
dynamic interaction in the system, the effect of the internal 
dynamics, and the difficulty in the controller d&n. 

Through the input-output linearization on the model, 
we have shown the non-trivial internal d y n u n i a  that makes 
the fundamental difference between the under-rctuakd and 
full-actuated systems, and dm reveals the nonlinear parun- 
eterization property. T h e  feedback control d u n e  b u d  on 
the exact linearization technique is then developed, urd a 
normal form augmentation approach is propond. This a p  
proach makes i t  possible to attack two fundamental prob- 
lems in controlling under-actuated sys tem,  i.e., the entire 
control system stability under the exirtence of non-trivial 
internal dynamics and the adaptive control d a i g n  under 
the dynamic parameter nonlinearity. 

Finally, we have shown the rrymptotical stability of the 
direct adaptive control =heme developed for both upper- 
and lower-actuated dynamic systems. The rtability u guar- 
anteed if the square Jacobian matrix is invertible and rll the 
passive joint positions, ve lod t ia  and accelerations are mea- 

surable and bounded. As a result of the parameter adapta- 
tion, the kinematics relationship can be updated simultannc 
ously, and the mapping from task space to joint space will 
be more ucurate .  

References 
A. Lidori, Nontinrr Control S~rtemr,  2nd Edition, 
Springer-Vaiq, New York, 1989. 

J. Slotine and W. Li, Applied Nontinur Control,' Prentice 
H.U, New Jeraey, 1991. 

M. W. Spongand M. V i d y u y u ,  Robot Dvnamicr and Con- 
trol John W h y  & Sonr, New Yodc, 1989. 

Y. L. Gu and N. K. Loh, "Dynamic Modeling and Control 
by Utiliaing an krryinur Robot Model", IEEE Journal  of 
Roboticr and Automation, Vol. 4, No. 8,  pp. 532-540, Oct. 
1988. 

L. D. Landau and E. M. Lifrhitr, Meckaaicr, Addiron- 
Waley, 1960. 

V. I. h o l d ,  MatAematicd Methodr of Clrrrical Mechanicr, 
Springe~Vuly, New York, 1976. 

S. Sum and M. Bobon. Adaptive Control: Stabilitv, Con- 
rrr)cncc. and Robrrtnerr, Preatice Ha, 1989. 

Y. L. Cu, "A Direct Adaptive Control Scheme for Under- 
Actuated Dynamic Systems". Pmc. Jlnd IEEE Conference 
on Decision and Control, SUI Antonio, TX, Dec. 1993, pp. 

Y. L. Cu and Y u y r h u y  Xu, " A  N o d  Form Aug- 
mentation A p p d  to Adaptive Control of Space Robot 
Systems", Proc. I993 IEEE International Conference on 
Robolicr and Automation, Atl.at., GA, May 1993, pp. 731- 
737. 

P. Lvlcuter and M. TismenerrLy, The T h e o q  01 Matricer. 
Sccond Edition, Academic Preu, he., New York, 1985. 

H. Arai and S. T d .  "Position wntml of a manipulator 
with p 4 w  joints using dyaunic coupling", IEEE Ttsnr. 
ou Robotio and Automation, Vo1.7(4), 1991. 

Y. Ndmrnumand R. Iwuroto, "Stabilization of the rhape of 
.p.a adt ibody  s t ~ c t u x e  with free pinta", in Proceedinrr 
oJ IROS, 1993. 

T. M c C m ,  " P u i v e  dynamic wdking", Interrational Jour- 
n d  of Roboticr Rerurrh, Vd.9(2), 1990. 

S. T.brhinu, "CaatroI of m t  on high bun, in Pro- 
corlinfr of IROS, 1991. 

K. N.luLuki and H. Fhjimoto and K. Y d u j i ,  "Motion 
oatrol of mbot COIIIPO.Cd of three d d  linkr with curved 
eontod, in Proeeedin#r of Iaternalional CorJcnnce on Ad- 
* a n d  hfdatronicr, 1993. 

Y. XU and T. W e ,  Space dot ier :  dynamicr and con- 
trol, Kluwer Academic Publisher, 1991. 

M. Vukobrrtwic and D. Stokic, "L dynamic control needed 
in mbotic aystenn. and if w, to what extent?", fnietnai ionol  
J o r n d  of Roboticr Rerearch. Vol.2(2), 1983. 

1625-1627. 


