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Abstract

An under-actuated robot manipulator isaserial mechanism,
in which the number of pints iSgreater than the number of
actuators, Making use of the dynamic interaction between
the passive joints and actuated joints, the robot caa provide
desirable motion and forces dynamically. In comparison to
a fully actuated robot, the ander-aciuated system will be
more compact in size and lower weighted due to less actua-
ton,and more efficient due to less energy consumption. In
this paper, we intend to answer the following two questions:
(1) What is the dynamic coupling of the system and how
to control the system by using its dynamic coupling? (2)
When the dynamic pazameters u e uncectain/unknown in
practice, and kinematics relationship is thus not accurate,
what adaptive control scheme is {easible for this nonlinear
system where linear parameterization does not hold and lin-
ear structured adaptive control scheme is not valid?

1 Introduction

For a conventional robot manipulator, the number of joints
Bequal to the number of actaaters, ar actuated joints;such
a fully driven serial mechanism is called a full-actuated sys-
tem. If the total number of joints isgreater than the number
of actuators in the mechanism, the system is referred to as
an under-actuated system. As well known that the martial.
arts superstar Bruce Lee used t0 play apair of numbehucks
(thres-link-sticks) ws his favorite weapon. Each numbchuck
s composed of two passive pints that connect three haed-
wood segments together. 1t iS fascinating to see that by ma-
nipulating the bottom segment, Bruce Lee could fast project
the tip of each numbchuck to a target, producing a tremen-
dous impact force acting on the target, as shown in Figure
1. Now. consider Bruce Lee 22 an actuated manipulator
and the sticks as passive linkages; the system becomes a
typical under-actuated system. ‘I'his shows that by use of
the dynamic interaction of the under-actuated system, the
position or force of the system may still be controlled.

Mote examples of such under-actuated systems caa be
found in a variety of applications. although they may not be
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referred to a5 the under-actuated systems, nor be realized
as a ¢lass of popular mechanisms. An inverted-pendulum
(cazt-pole system) is the simplest example of a two-joint
under-actuated system. McGeer's passive walker B known
s afully passive system which completely takes advaniage
of dynamic coupling of all the links (13}. Another exampla is
the body control of a gymnast. !e/she does not control all
joints of his/her body in an exercise; instead, the gymnast
only controls fewer joints to balance the whole body [14).
The McGeer’s walking robot daign and Takashima's gym-
nut motion analysis show that the under-actuated systems
have great potential in robotic research and applications.

Fig.l Bruce Lee and his numbchucks

There are a number of advantages to the use of the
under-actuated systems. First. reducing the number of ac-
tuators for a robot manipulator will niinimizc cncrgy con-
sumption, and will be potentially atiractive to the applica-
tions where energy efficiency is a majoc concern, such as for
space robots. Sceond, eliminating some actuators will allow
more compact design leading to both overall size and total
weight reductions. This will sl<imately reduce the manu-
facturing cesi and running power.
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Not only the under-actuated system is useful in practice,
but also the concept is important in analysis of a class of
systems that can be considered as virtual under-actuated
systems. For example, a free-flying space robot system {16)
is useful for maintenance tasks and EVA missions in a space
station and/ot a satellite. The concept of under-actuated
systems provides an approach to modeling dynamic systems
with either fret bases, {rae ends, ar freejoints. Some of these
mechanisms can be potentially utilized in space and under-
water applications [12}.

To study an under-actuated system, two primary ques-
tions should be addressed: **Under what conditions can it
be controlled?" and ""How is it controlled?"* Arai and Tachi
(11] discussed the controllability issue of the passive joints
based on linear system theory and dynamic equilibrium.
However, their conclusion has certain limitations due to the
linear system assumption, while most under-actuated sys-
tems are obviously nonlinear. Vukebratovic and histem
(17) presented a control scheme to control unknown statu
by dynamic equilibrium and applied it to biped pestual sta-
bilization. Based on the same principle, Arai and Tachi (11)
proposed another control scheme and applied it to a two-
DOF system when the passive joint was braked or released,
The most interesting work has been done by Nakakuki, Fu-
jimoto and Yamafuji (18] recently. They actually built a
model of a three link under-actuated system and performed
three interasting experiments: (1) filling down and then
standing up, (2) locomotion by peristaltic motion, and (3)
ascending a step. Their prototype was the first experimen-
tal setup for testing the under-actuated system.

Much more research work, however, must be done. One
of the most serious problems is that the kinematic relation-
ship for an under-actuated system is dynamically depen-
dent. In other words, the kinematic mapping from a given
Cartesian space specification to the joint space is a function
of dynamic parameters, such as the maasses, centroid coor-
dinates and inertia moments of the links. To cope with the
parameter uncertainty, an adaptive control scherme is needed
(7). However, most existing adaptive control schemes devel-
oped for full-actuated robot systemr are not applicable to
the under-actuated syrtems due to the nonlinear parame-
terization (16). In this paper, we intend to deal with this
problem for predssly controlling the under-actuated sys-
tems under parameter uncertainty.

It has been shown that a fully actuated manipulator
system is always exactly linearizable [1,2). However, for an
under-actuated dynamic system, due to the fact of deficient
input channels, the entire system is unlinearizable. This re-
sults in a fundamental difficulty inkerent in the control of
under-actuated dynamic systems, Nevertheless, an under-
actuated system can be decomposed into two subsystems:
a linearizable one and an unlinearizable one which is also
called an internal dynamics (1,2). It can be observed that
twosubsystems are virtuilly inseparable. Thisphenomenon
has already been revealed in ¢lassical mechanics, and is of-
ten referred to as a non-holonomic constraint problem (5,6].
For a non-holonomic system, how does the internal dynam-
ics interfere the entire system stability? TO aaswer this

question and to resolve the aforementioned parameter un-
certainty problem, we will propese an extended dynunic
model, and based on this model, develop a normal form
augmentationapproach to adaptively control the under-
actuated systems with parameter uncertainty.

2 Extended Dynamic Model

Consider an n-joint robot maaipulator, in which some joints
are passive, To mockel such an under-actuated system, we
extend it to be afully actuated system with zero torques on
all the passive joints. This is called an extended dynamic
model. Thenumber of input channels, in such an extended
model, is equal to the number of active joints, while the di-
mension of the system state space is twice the total number
of joints because the relative degree in each output channel
of the system is two.

For analysis simplicity, consider that an under-actuated
system consists of two serial submechanisms, one with all
passive joints and the other one with all actuated joints.
If the upper body is passive, it is called a lower.actuated
system, while the lower body is passive, itiscalled an upper-
actuated system. We assume that the lower body has 1joints
and the upper body has mpints, and thus the total number
of jointsisi+m. Itisnoted that any under-actuated system
with mixed passive/actuatad joints can be constructed by
assernbling a sat of such models in series. Therefore, the
analysis preseated here will, in general, be applicable to
any under-actuated system.

Let ¢ = (q1---9n)” E R" be the joint position vector
for a» under-actuated system with n-joints. The dynamic
equation can be written as

Wi+Ci—ry=r, (1)

where the n by n matrix W is known as the inertial matriz
of the system and is positive-definite and symmetric, and

C= -;-W + %(wf - W) @)
with an n by n matrix Wq defined by
it g
e

In (3), | is the n by n identity matrix, and ® is the Kro-
necker product operator between matrices. It isclearly seen
that the first term W in (2) is symmetric, and the second
term %(W}' = W) is skew-symmetric. Thus, the matrices
Cin (2) and W have the following identity for any : € R":

W, =u@¢f)-‘?£i = (3)

sTCs = %zTWz. (4)
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3 Inertial Matrices

With the extended dynamic model, the n by ninertial ma-
trix W for an under-actuated dynunic system can be par-
titioned into four blocks,

Wi
W=
(Wn

Wiz

we). 0
where Wiy is ar ) by J symmetric submatrix attributed by
the lower body, W3z is ur m by m symmetric block ¢ an
inertial matrix of the upper body with respect to the fixed
base, and Wia = W4, is an { by m submatrix represanting
the interaction between the lower and upper bodies of the
under-actuated system.

3.1 Inertial Matrix of Upper-Actuated Systems

Consider an upper-actuated system with [ passive joints

in the lower body. Using the partitioned form (5), we write
the inverse of the inertial matrix W (10 as W= =

(w,',’ +WE W Wo WEWS! Wi W ) ,
-Wa WiaWy, Wa

(6)

War = Way = WHW T 'Wha, (7
which is referred to as an effective inertid matriz OF the
upper-actuated system. We can show that this matrix is
positive-definite and symmetric, and thus always invertible
{8.9).

3.2 Inertial Matrix of Lower-Actuated Systems

If a lower-actuated system with m passive joints in the
upper body is considered, then using the same partitioning
form of the inertial matrix W in (5), but through an alte:-
native inversion (10], we can write the inverse of W for a
Iowzr-actuated system as W™ =

Wy W Wy Wy
—Wn WaWi' Wil TWRlwa Wilw,wgt )

where

(8)
where
finn =W = WiaWa'Wy (9)
which is called the effective inertial matrix of the lower-
actuated dynamic system. Likewise, we can show that Wy,
is also positive-definite and symmetric.

4 Input-Output Linearization

Based on derivation of the extended dynamic model equa-
tion in Section 2, the upper-actuated and the lower-actuated
system equations can be written, respectively, as follows:

W6+C¢i—r,=(u?w). (10)
and
Wi+Ci—r1y= ("(‘;). (11)

where 4., E 87 and uio E R w1e the actuated pint torque
inputs for the upper-actuated urd lower-actuated systems,
respectively. Clearly, the location of the sero vector, 0, on
the right-hand side of the above equations is the main dis-
tinction between the two cases.

The kinematic relationship of an under-actuated system
can be developed based onthe extended model. Szppcse an
m-dimensional Cartesian displacement of the system end-
eflector with respect to the fixed base is chasen as an output
vector which is adifferentiable {unction of the join{ position
g = (dto gup), urd b denoted by y = h(g) E R™. The
Jacobian matrix of g is determined by

8h

= 3; =/ 22),

where Jy = 8h[qo is of m by |, Ja = @hf8qup is of m

by m, and g, € R' 2 g, € R™ are the joint Position
vectors for the lower body and the upper body of the sys-
tem, respectively. Similarly to the effective inertial matrix

definition, we define an effective Jacobian rnatrir by

(12)

h=JTu=J0 —LWtW, (13)

for the upper-actuated system, and define

=T =y = hWg'wy, (14)
for the lower-actuated system, in which the output y = k(g)
is 1-dimensional.

The definitions of the effective-Jacobian matrix Jz or Jy
and the effective inertial matrix Waa or Wy, show that the
motion of under-actuated systems, unlike a full-actuated
dynamic system, is determined by not only the actuated
body itself, but also the interaction from the passive body
motion.

Using the effective Jacobian matrix concept dong with
the dynamic equations (10) and (11), we can deduce

Ji+ IWNCj—r,) = JW"™! ( 0 )

Uup

= f,W,‘,'u., = Dz(t)ll..p (15)

for the upper-actuated systems, and

JitIW = (Cé = 1) =IW™} ("6")

=Wt uwe = Di(z)uie (16)
for the lower-actuated systems. In the above two equations,
Da(z) = JaWaz is of m by m and D (z) = JiWh, isaf I by |,
both are called the decoupling matriz, whilez = (¢7 ¢7)7 €
R3" is the state vector.

In order to linearize the nunder-actnated systems by us-
ing the input-output linearization procedure [1,2], let us de-
fine anew input v =T = J§+ J¢. Substituting J§ =v=~Jg
into either (18) or (16) results in

u = a(z) + B(z)v, (17)
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where

a(z) = D7'()IWNC{ - 1) — Jd)
B(z) = D7'(z). (18)

Equations (17) and (18) are notation-unified for both the
upper- and lower-actuated systems, i.e., u b either uqp or
%o, and D(z) is either D2(z) or Di(z).

As the counterpart of (18), a full-actuated system which
is exactly lineuizable is shown that

as(z) = Cg-WI'J§
Bo(z) wJ (19)

Comparing (18) to (19), we conclude that for an under-
actuated system, due to the existence of non-trivial internal
dynamics, the property of linear parameterization in e(z)
and £(z) is no longer valid. This results in a fundamental
difficulty to design an adaptive control scheme [7,12,16] for
any type of under-actuated dynamic system. Furthermore,
the existence of internal dynamics also raises difficulty in
justifying the control system Stability if the control law (17)
with (18) is adopted. To overcome the problems, a normal
Jform augmentation approach will be investigated in the next
section.

5 Normal Form Augmentation
Approach

Since the operating task for an under-actuated ryskm is
usually specified in terms of Cartesian displacement of ita
end-effector, we may choose the Cartesian displacement as
a system output y =h(9) € R™ for an upper-actuated sys-
tem, or y = h(q) € R' for alower-actuated ryrtem. Now,
for an upper-actuated system with totally n =1*+m pints,
sincethere are 2n—=2m = 21 unobservable variables that con-
stitute states of the internal dynamics, the { joint positions
in gio Of the passive, lower body and their time-derivatives
may be the best choice of states to represent the internal
dynamics. Thur, we ar¢ motivated to define an augmented

output vector y, = € R”, and ita time-derivative

. (v NX_[Nh & Gio \ _ .
(2 (¢ B)(E) e

where | is the 6 by 6 identity matrix and O is the 6 by
m zero matrix. The n by n square Jacobian matrix Jeea
defined in (20) can be inverted to be

Jo! o 1
.92 = J;l —J;']‘

ifJ2inJ = (J Ja) Bnonsmgulu Using fa = Joqa§+Juq2d
and substituting § = J3(Fa ~ Jugad) into (10), we obtain

= (2).

(20)

(21)

WIdia “WI ki TCi - (22)

_

Premultiplying (22) by Jo@W ™" yields
ic - Ju?q. + J",W-l(Cq' - T,) = J‘ﬂw-l (u?.p) ' (23)
The above equation can be decompased into two parts

§-Ji+IW ™ (CG—1) =IW™! (":’) = D7 (z)uup,

(24)
and

fio+(I OYW™(Ci = r5) = (1 W™ (u° ) (25)
up

Equation (24) represents the linearizable subsystem of
the rystem, while (25) describes the internal dynamics. If
the static state-feedback control low (17) is applied to the
subsystem (24), it can be immediately obtained that § =
v, provided that all link dynamic parameters are known.
Therefore, if we define the output error function as e(t) =
va(t) —y(t), and

v = §a+ koé + kge, (26)
the dynamics of the linearizable subsystem is equivalent to
etk Thoe=0, (27)

where ky and k, are two constant gains which can be chosen
such that the linear error equation (27) is Hurwitz. How-
ever, this justifies only the stability of the linearizable part,
and the stability effect due to the internal dynamics is still
to be investigated.

Since the complete set of equations including the lin-
earized portion and the internal dynamics I conventionally
called the normal form [1,2], we refer to the definitions of
¥« and J,q, and thederivation of equation (22) as a normal
form augmentation approach (8,9].

Likewise, we can derive the augmented equation for a
lower-actuated system by defining

(v _(Nh &
’.—("’), and J."—(O 1),

aad the inverse of J,q1 becomes

o=t
J,,,_( o Y ‘).

Then, we obtain

(28)

Vo= Jii+ LoqW™(Cj = 1) = JoqW™? (u(;,) (29)

for lower-actuated dynamic systems.

It can be seen from equations (23) and (29) that by
the normal form augmentation approach, an entire under-
actuated system can be viewed s a full-actuated system, as
if the internal dynamics disappears, as long as the following
two conditions hold:

1. All the passive joint positions, velocities and accele:-
ations are measurable; and

2. All the passive joint torques are equal to zero in the
equations.
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6 Direct Adaptive Control

Motivated by the above point of view, we wili develop an
adaptive control scheme for aa upper-actuated system exe-
cuting trajeciory-tracking {asks against dynamic parameter
uncertainty. We Will also show that the proposed scheme
asymptotically stabllizes the system. The simulation and
experimental verification will be carried out in the asar fu-
ture.

Let an augmented output error function between the

desired (ya)e = Y4 ) and the acival VYo = ('
Qlo [ [
te = (Ya)d — ya = ; Furthermore, let an estended

augmented error be defined by

s=¢éq+ kyee = (é +ok'¢) €eR", (30)

where e =ya —y E R™ is the output error function, and
kv > 0 is the constant grin. Then, we define a reference
output velocity 9 aad areference output deration % as
follows,

".__(y"-:i-k.e) and ﬂ'=(i‘..!'k'é). (31)

Qto qio

Comparing (31) with (30)yields
s=n—-y, and i:( €+ok.é)=1'p—i.. (€2)

We now define E = %:"Mu to represent an extended
error energy, and then,

E=sTMs +%srb.ln =sTM# = s" My + -;-srﬂ:. (€3))
where M = JTW IR iscalled the Cartesian inertial ma-

trix.
Based on (22)and (4), (33)can be derived to be

0

Yyp

E=s"Mi+sTGn-s"3T ( ) ~sT1Tr, (34)

We now define a following control Jaw:

( 0 ) = JT Mot + G + (”(é‘;""))]-r,. (35)

Uyp

where We and Cwm represent the inertial matrix W and the
matrix ¢’ in a model plant, respsctivaly, and

Mm = JgWnlih

and
Gm = J.—';-CMJ;}‘) - Mm-’cﬂ‘];lﬁ

In (35), H is an m by m pesitivedefinite and symmetric
constant weighting matrix.

=
-

Therector 6 E R in the control law (35)playa a key im-
portant role in assurenace of the second condition, a stated
in the last section, In fact, since

r (I 1
’m-(J,f o)'

the control law (35) can be splitied IMto two portions,

0= (W11 Wia)mJiggi+(JT 1)Gma+JT H(é+koe)+6—1510
. (36)
and

Sep = (War War)mJiggi+(J7 O)Gmn+J] H(é+kee)—rgup.

(37)
It is clear that dnce 6 only appears in (36), 6 can simply
be evaluated to ensure that (36) vanishs. Therefore, equa-
Cion (37) becomes the control input to the upper-actuated
dynamic system.

To develop a dynamic pararmeter adaptation law, let &
be the patrameter column vector that lists all real physi-
cal objective parameters to be identified. Let &m be the
corresponding parametar vector for the model plant of the
under-actuated system. Now, substituting the control law
(35) into (34), we further obtain

E=’TY¢_,T(H(i‘:k.c)), (38)

where Y¢ = (M= Mm)i + (G~ Gm)n, and Y is a matrix
function of ¢, ¢, §», and v4, ¥4 and §a, and is indepeadcnt
of the objective physical parameters, while ¢ = & —&n is
the parameter deviation vector between the real plant and
the model plant.

Now, the adaptation law can be defined as

é=-TY7s, (39)

where T is a constant odoptotion gain matriz and is also
positive-definite and symmetric. Then, a following Lya-
punov funmction can b« adopted to justify the stability of
the system with the control law (35) and the adaptation
law (39),

- T el - 1 T Tr—
V;-E+%¢ r ¢—§a Ma+-;t¢ r='¢. (40)
Clearly, ¥ >0, and V. = 0only at the equilibrium point of

thia adaptive system, i.e., (¢ éT)™ = 0and ¢ = 0. Taking
time-derivative for V., we have

Vi .
—(i Thoe)"H(é T koe) (41)

which isnegative-definite and iszeroonly ai the equilibriuin
point.

E+éTI %= sTYé—~sT (”(é + k.c)) ~-3sTY¢

Therefore, the control law (37) and the adaptation law
(39) asymptotically stabilize the entire upper-aciuated Sys-
tem to track a desired trajectory described in terms of yq,
y¢ and §a. Since J;3! is heavily involved in the control law
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and adaptation law, the stability also requires that Ja be
nonsingular.

Using the same way, the above result can be extended to
a lower-actuated system, and the control input st is given
by

Ulo = (Wll Wl?)mJ.-;lj'l'*'(-,]T O)Gvn"",‘-’]ry(é‘.’k'c)-r!lo'
(42)
where the dimensions of H ,e and 2, and 5 and # should be
accordingly redefined to match the lower-actuated case, and
:"’) caused by gravity also has
fvp
two parts reo E R' and reup € R™. While the adaptation
law for the lower-actuated system cui uss the same formula
4 shown in (39)for the upper-actuated one.

A simulation study and results have been demonstrated
in (9] to verify the proposed adaptive control scheme for
a space robot system which is an example of the upper-
actuated system. Therefore, the normal form augmentation
approach can solve two fundamental problems for an under-
actuated dynamic system, i.e., the parameter nonlinearity
and tlic entire control stability. However, it is necessary
to measure the position, velocity and accelerations of all
passive joints.

the joint torque 74 =

7 Conclusion

The under-actuated robot systems have a great potential
in the applications where energy-effiaency, low weight and
compact size are demanded. The concept is also useful as
an analytical tool for a variety of hybrid passive/active sys-
tems, such as space robots with floating bass systems. In
this paper, we proposed the extended dynamic model com-
posed of two parts: a lower-body and a upper-body; one of
the two bodies is passive. Based on the model, the prop-
etties of the inertial matrix and Jacobian matrix wsre dis-
cussed. The model allows us to gain more iasight into the
dynamic interaction in the system, the effect of the internal
dynamics, and the difficulty in the controller daxign.

Through the input-output linearization on the model,
we have shown the non-trivial internal dyaamics that makes
the fundamental difference between the under-actuated and
full-actuated systems, and also reveals the nonlinear patam-
eterization property. The feedback control scheme based on
the exact linearization technique is then developed, and a
normal form augmentation approach is proposed. This ap-
proach makes it possible to attack two fundamental prob-
lems in controlling under-actuated system, i.e,, the entire
control system stability under the exirtence of non-trivial
internal dynamics and the adaptive control desiga under
the dynamic parameter nonlinearity.

Finally, we have shown the asymptotical stability of the
direct adaptive control scheme developed for both upper-
and lower-actuated dynamic systems. The stability is guar-
anteed if the square Jacobian matrix isinvertibleand all the
passive joint positions, vele<ities and accelerations are mea-

surable and bounded. As aresult of the parameter adapta-
tion, the kinematics relationship can be updated simultane-
ously, and the mapping from task space to joint space will
be more accurate,
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