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ABSTRACT 

niis paper describes an aigoritlitr1 to obtaitl local surface orierltatiorr frofti the apparetlt surface-pattertl 
distortion in an image. 

We propose a spherical projection to model perspctiue imaging. A trtappitlg is debtled based of1 the 
measurement of the local distortions of a repeated known rexture pattern due Io the image projection. 
77tis mapping maps an apparent shape on the image sphere lo a locus of possible surface orienrations 
on the Gaussian sphere. 

A n  ireratiw constraint propagation algorithm with the orientations at occluding boundaries reduces 
possible surface orientations to a unique orientation. 7 l i s  algorithm can recover local surface 
orientation as well as interpolate surjace orientations where no information is auailable. ?Xis 
algorithm is applied to a real image ro demonstrate its perfontlance. 

0. Introduction 

Information about surface within boundaries comes from various sources such 
as stereopsis, shading, high-light and texture gradient. This information is 
converted into local surface orientation, often referred to as a 2-1/2 D sketch 
[2,3], or a needle map 141. This paper concentrates on making this 2-1/2 D sketch 
from texture gradient . 

This domain, referred to as the shape-from-texture problem, has been 
studied extensively [5-121. Historically, Gibson pointed out the role of texture 
as a basis for the recovery of surface orientation [5 ] .  He proposed the density 
gradient as the primary basis for surface perception by humans. 

Formalizing the shape-from-texture problem requires modeling the image- 
forming system. Mainly two kinds of projections have been commonly used: 
the orthographic projection and the perspective projection. Kender [7], 
Kanade [SI, and Witkin [ 101 explorzd the domain under the orthographic 
projection. Kender formalizes the relationship between local surface orien- 
tation and two perpendicular texture elements assumed to have the  same 
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length [7]. Kanade proposes to use skewed symmetry 191 to recover local 
surface orientation [8]. The angle between a skewed-symmetry direction and 
the opposite direction can be a constraint to reduce possible surface orien- 
tations. Witkin determines the most likely surface orientation, based on the 
observed angular distribution of the texture assuming that the texture elements 
have random direction [lol. 

Kender (1 11 and Ota [ 12) address the shape-from-texture problem under 
perspective projection. Kender determines surface orientation from many 
parallel lines observed on a plane. Ota proposes to use area ratio of 
texture elements for recovering surface orientation of a planar surface. 

We shall derive a new texture gradient map under perspective projection. 
We use spherical projection to formalize perspective viewing. Under this 
projection the  apparent distortion of a known pattern is used to recover local 
surface orientation. A new texture gradient map is derived that is invariant 
both to surface rotation of a texture element and the distance changes between 
the viewer and the texture element. Since our texture gradient map has a 
similar characteristic to the reflectance map [13], we can use the constraint- 
propagation technique [ 13-16) to solve this problem. 

The usual smoothness assumptions are used in the shape-from-texture prob- 
lem. Local information is available only where a texture element exists. Thus, it 
is necessary to interpolate information at the  place where no texture elements 
exist. The surface-smoothness assumption gives us a tool for interpolation as 
well as for constraint propagation. Namely, if we can assume that the  observed 
surface is smooth, neighboring points must have nearly the same orientation. 
Thus, the propagation algorithm based on the smoothness assumption can 
perform the interpolation operation at the same time as the algorithm deter- 
mines local surface orientation. 

1. Basic Tools 

1.1. A spherical perspective projection 

We propose a spherical perspective projection [17, 181 to model image-forming 
systems. An observer is located at the sphere center. All image contours are 
projected on this sphere through its center. We shall use the term image sphere 
as opposed to image plane. All lines of sight are extended radii of the sphere, 
and thus are perpendicular to the image sphere (see Fig. 1). 

Let a point in space be (r cos 4 sin 8, r sin (b sin 8, r cos e), where r is the 
distance between the point and the viewer. 8 and (b are respectively the zenith 
and azimuth angle of the  point. To avoid image inversion, it is convenient to 
think of the image sphere in front of the  viewer. The point is projected as 
(cos qJ sin 8, sin qJ sin 8, cos 8). 

An infinite line in space is projected as a part of a great circle (see Fig. 2(a)). 
This great circle passes through the two vanishing points of the line. Two infinite 
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FIG. 1. An image sphere. All contours are projected on the image sphere through t h e  center. 

parallel lines in space are projected as two great circles. These great circles 
intersect each other at the vanishing points. An infinite plane is projected as a 
hemisphere. A line on the plane has vanishing points on the boundary of the 
hemisphere. The normal direction on the plane corresponds to the center of 
the hemisphere (see Fig. 2(b)). 

1.2. Comparison with other image projections 

Two image-forming models have been commonly used; the orthographic and 
perspective projections. This paper refers to the conventional perspective 
projection as plane perspective projection. 

1.2.1. Orfhographic projection 

If the size of the objccts is small compared to the viewing distance, then the 
image-forming system can be approximated as an orthographic projection. To 
standardize the image geometry, the viewer direction is aligned with the 
z-axis. The object point (x, y ,  z )  maps into image point (u, u )  where u = x and 
u = y (see Fig. 3(a)). 

1.2.2. Plane perspective projection 

Fig. 3(b) illustrates a plane perspective projection. The object point (x, y ,  z) 
maps into image point (u, u )  where u = (x / - z )  and u = (y/-z). 

Both the orthographic projection and the  spherical perspective projection 
have lines of sight perpendicular to the image plane (sphere). Thus, neither thc 
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FIG. 2. Characteristics of thc sphcrical pcrspcctivc projcction. 

orthographic projection nor the spherical perspective projection have any 
image distortion due to a pattern's position on the image plane. On the other 
hand, under the plane perspective projection, the angle between the line of 
sight and the image plane depends on the location of the image point. Thus, 
the  shape of the  projected pattern will generally vary with its location, even 
though the line of sight maintains the same angle with the  pattern's surface 
normal. 

Both the spherical perspective projection and the  plane perspective pro- 
jection have only one viewing position. The two perspective projections exhibit 
the distance effect: a far object projects a smaller image than a near object. 
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FIG. 3(a). The orthographic projection. 
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FIG. 30) .  The plane perspective projection. 

Y v = - -  z 

The orthographic projection, with infinite focal length, does not exhibit the 
distance effect. 

The spherical perspective projection has several advantages over the plane 
perspective projection. 

(1) We can use a uniform-texture gradient map at every point on the image 
sphere. 
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Lines of sight are everywhere perpendicular to the  image sphere. Thus, all 
contours on  the image sphere are foreshortened only due to the relationship 
between the line of sight and the surface normal. On the other hand, the plane 
perspective projection distorts a pattern twice. The first distortion is due to the 
angle between the surface normal and the line of sight. The second one occurs 
due to the angle between the line of sight and the  image plane. The second 
distortion depends on the position of a pattern on  the image plane. 

(2) We can make smooth mosaic images taken from the same position but in 
different viewing directions. 

The spherically projected pattern of an object does not change when the 
viewer direction changes provided that the viewer and the object maintain 
constant position. This is not the case with the plane perspective projection 
where the image plane is rigidly fixed to the viewing direction. The image-plane 
direction changes the apparent pattern of an object, even though neither the 
object position nor the viewer position change. Thus, we cannot make 
meaningful mosaic images taken in diferent directions under plane perspective 
projection. 

(3) The spherical perspective projection has psychological validity. 
The most sensitive area of the retina extends to only 3-4 degrees over the 

visual field. Eye movements (and head movements) are required to examine 
patterns in different directions. Thus, the line of sight is always perpendicular 
to the image plane. Several examples favor the spherical perspective pro- 
jection. 

Example 1.1. Consider an infinite plane surface covered with small squares 
parallel to the image plane under the plane perspective projection (Fig. 4). The 

THE VIEWER 

FIG. 4. A defect of perspective projection. The perspective projection does not exhibit fore- 
shortening for objects on planes parallel to the image plane. 



SHAPE FROM REGULAR PATTERNS 55 

squares on the plane always project as squares on the image plane, no matter 
where the squares lie on the surface. While under the spherical perspective 
projection the squares would appear as various rectangles depending on their 
positions on the surface, which is more similar to our observation. 

Example 1.2. If we were to observe a laser beam projected from the ground to 
the sky, the lighting locus would be a circle connecting the ground with the 
zenith. An infinite line in space is projected as a great circle. 

Example 1.3. We observe the horizon as a circle. This is because an infinite plane 
(the ground) is projected as a hemisphere. The horizon is the vanishing l ine of the 
ground. 

Example 1.4. Many kinds of insects have compound eyes that give rise to a 
projection like that in the image sphere. 

The usual man-made image-forming system has a planar sensitive area. This 
is the reason why the plane perspective projection is often used. However, the 
image on the image plane can be easily converted into the image on the image 
sphere. Let a point on the image plane be (u, v ) .  Then the point is mapped into 

(up/ 1 + u’ + v’, v/v 1 + u’ + v’, l/V 1 + u’ + v’) . 

1.3. Gaussian sphere and image sphere 

Surface orientation is expressed using the Gaussian sphere [14]. The Gaussian 
sphere is a sphere of unit radius whose z-axis is taken as an extended line 
through the north and south poles of the sphere. Assume that we put a surface 
patch of an object at the center of the sphere and that the direction of the 
viewer is the direction from the center to the north pole. The surface patch 
faces some point on the sphere. For example, if a surface normal has the same 
direction as the north pole, the surface patch is perpendicular to the line of 
sight. All possible orientations of a surface patch are represented on the 
Gaussian sphere. Thus, we can describe local surface orientation o n  an object 
in terms of points on the Gaussian sphere. 

Note that there are two spheres: the image sphere and the Gaussian sphere. 
Consider, now, Fig. 5.  The image sphere is a viewer-centered spatial coordinate 
system with which the image is specified. The Guassian sphere is also viewer- 
centered, and measures surface orientation relative to t h e  north-south axis of 
the sphere, which always points at the viewer. When a pattern is at the south 
pole of the  image sphere, the  coordinate system on the  Gaussian sphere is the 
same as the  coordinate system of the  image sphere. When a pattern exists at 
some other point on the image sphere, then one must rotate the Gaussian 
sphere so that its north-south axis aligns with the viewing direction. Appendix 
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FIG. 5. The Gaussian sphere and the image sphere. All possible orientations of a surface patch on 
the image sphere are represented on the Gaussian spheres based on the local direction of the 
viewer. 

B gives a formalized relationship between the  Gaussian sphere and the image 
sphere. 

2. Measuring Texture Distortion due to Surface Orientation 

2.1. Definition of the problem 

We shall determine surface orientation from the apparent distortion of regular 
patterns on an image sphere, provided that: 

(1) The surface is covered with uniformly repeated texture elements. We call 
the uniform texture a regular pattern. 

(2) Each texture element is small, compared with the distance between the 
viewer and the element. If the texture element is small, the element can be 
regarded as projected onto a tangential plane of the image sphere. 

(3) Each element is small, compared with a change of surface orientation 
there. Each texture element is assumed to lie in the. plane of the viewed 
surf ace. 

(4) The original shape of the texture element (a generator) is known. Since 
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we shall decode surface orientations from the  apparent distortion of a pattern, 
it is necessary to have a standard pattern with which to compare the distorted 
pattern. This requirement is similar to that of the albedo ratio in using the 
reflectance map. If one does not know the albedo ratio, one cannot make a 
correspondence between actual intensities and brightness values on t he  
reflectance map. 

2.2. A measure for distortion in regular patterns 

This section examines the relationship between surface orientation and ap- 
parent pattern distortion. Fig. 6 shows the  spherical projection of squares in 
various orientations on a plane inclined 45 degrees in the vertical direction. Even 
though the  generators (squares) lie on the  same tilted plane, their images are 
different from each other. Their distortion depends on two factors. One factor is 
the surface orientation. This is what we arc interested in. The other is the 
orientation of the squares in the plane of the  surface. This 'in-surface' rotation 
causes the variations shown in Fig. 6. Our goal is to find some intrinsic 
measurement that depends only on surface orientation. 

If two perpendicular axis vectors can be associated with a texture element in 
a.unique manner [8], we can use this pair of vectors as a kind of generalized 
texture element (see Fig. 7). When a pattern is distorted because of the angle 
between the  surface normal and the line of sight, the two vectors will also be 
distorted. This distortion of two axis vectors is the  same as t h e  distortion of the 
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FIG. 6. Projection of squares. All squares lie on a plane inclined in north-south 45 degrees and 
east-west 0 degrees. Their distortion depends on both the orientation of the surface and the 
orientation of the squarcs in the planc of the surface. 
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regular pattern, because the axis vectors are fixed on the regular pattern. We 
shall, therefore, concentrate on distortion of two axis vectors. 

The calculation in Appendix A shows us that the  magnitude of the 
cross-product of two axis-vector projections is proportional to cos w and the 
sum of squares of their lengths is proportional to 1 + coszw where w is the angle 
between the direction of the viewer and the direction of the surface orien- 
tation. These two values depend only on the surface orientation; and they are 
independent of the 'in-surface' rotation angle of the regular pattern. For 
example, the patterns in Fig. 6 will yield the same value since they exist on the 
same tilted surface. 

The ratio of two axis-vectors' cross-product to their squared length sum is 
the desired measure for the regular pattern gradient map. The length of a small 
object on the image sphere depends on the  distance between the viewer and 
the object. A distant object is small while a near object is large. Both the 
cross-product and the sum of squares of length depend on the distance, but 
these effects cancel when their ratio is taken, as shown in Appendix A. Thus, 
the ratio is independent of the distance between the viewer and the pattern. 
This ratio is also independent of the viewer's orientation, because of the 
spherical perspective projection. The ratio only depends on the angle between 
the line of sight and the surface normal. This means that we can use the same 
regular pattern gradient map everywhere on the image sphere. 

We shall call I in (1) the distortion value. 

I = f g  sin T/V + g') 

. . . . .  
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FIG. 7. Pairs of axis vectors. 



59 SHAPE FROM REGULAR PAITERNS 

where f and g are the observed lengths of axis vectors on the image sphere and 
T is the angle between the two projected axis vectors. f, g, and T can be 
measured directly from an image. Thus, I can be obtained from an image, no 
matter how the pattern is rotated or reduced due to distance. I has the 
following relation with surface orientation: 

I = cos W/(l + COS’W) 

where w is the angle between the line of sight and the surface normal. 
If the two axis vectors have different three-dimensional lengths, this 

difference can be corrected at the time of measurement since the  projected 
length of each vector is proportional to its actual length. Namely, g‘ = rg where 
g is the measured length of the second axis vector and t is the  ratio of the 
three-dimensional length of thc first axis vector over the length of the second. 

2.3. A regular pattern gradient map 

We can associate the distortion value I with points o n  the Gaussian sphere. 
Since the distortion value I depends only o n  the angle between the line of sight 
and the surface normal, I is a function of the zenith angle of the Gaussian 
sphere. Thus, we have circles of constant distortion values on  the Gaussian 
sphere. 

Fig. 8 shows our regular pattern gradient map. For graphical clearness, a 
Gaussian sphere is projected onto a plane using the stereographic projection 
[ 191. (Appendix C explains the stereographic projection.) The curves shown 
are contours of the constant distortion value. This map always applies to the 
shape-from-regular-pattern problem. This is analogous to a situation in the 

THE VIEWER 

THE STEREUGRAPHIC 
PLANE 

THE GAUSSIAN S?tERE 

FIG. 8. The regular pattern gradient map. Each circle corresponds to a constant distortion value I. 
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shape-from-shading problem where the surface is known to be a Lambertian 
reflector and the  light source is known to be near the viewer. 

Fig. 9(a) illustrates how to use the map on the Gaussian sphere and the 
image sphere. The locus of possible surface orientations for a particular 
distortion value is a circle o n  the  Gaussian sphere. The circle center cor- 
responds to the direction of the line of sight. The radius of the circle is 
obtained from the distortion valuc I. 

Fig. 9(b) shows three square pieces of paper imaged from three vantage 
points. Distortion values 11, 12, I ,  were calculated using (1). 

The stereographic projection preserves circles (a circle on the image sphere 
projects to a circle on the stereographic plane). Thus, we can work with circles 
on the  stereographic plane instead of circles on the image sphere. Their centers 
are the projected viewing directions, and their radii can be calculated from the 
distortion values I and the projected viewer directions (f, g) (see Fig. 9(c)). 

Threc circlcs intcrscct cach othcr at a point which gives the surface orien- 
tation. 

J 
FIG. 9(a). The regular pattern gradient map and the image sphere: spatial configuration. The circle 
denotes possible surface orientations. The center of the circle is the direction of line of sight in the 
image sphcre (a spatial coordinate systcm). Thc radius of thc circle is obtained from the distortion 
vnluc. 
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FIG. 9(c). The regular pattern gradient map and the image sphere: loci on the stereographic plane. 
Each locus on the Gaussian sphere is projected on  the same stereographic plane. Since the 
stereographic projection is a circle-preserving mapping [19]. we also obtain a circle on the 
stereographic plane. The center position and radius of each circle can be obtained using the 
definition of the stereographic projection in Appendix C. 

3. Constraints and the Propagation of Constraints 

3.1. The smoothness constraints 

Surface smoothness requires that the surface orientation be continuous over 
the image sphere. Our smoothness requirement is equivalent to the require- 
ment that the surface height function be c' on the image sphere [14): 

(1) Surface is continuous on an image sphere (co w.r.t. height). 
(2) Surface orientation is continuous on an image sphere (c' w.r.t. height). 
The definition of continuity can be expressed in a more convenient form: 
A function F, is continuous at (xo, yo) if,  given E > 0, there exists a S such that 

when (x - x0)' + 0, - yo)2 < 8, then ' 

If, given a particular E, we can find a single value of 6 for all points in the 
region of interest, then the function is uniformly continuous. 

We shall tessellate an image sphere into a discrete grid. If we take the grid 
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interval So smaller than 6, then we can guarantee that: 

IFXxo+ 60, yo) - E(xo, yo)\ -= E and ~F, (XO,  yo+ SO) - E(xo,  YO)^ < E .  

(3) 

Note that surface orientation is assumed to vary continuously o n  the  image 
sphere. A more extended discussion can be found in [9]. 

3.2. Regular pattern gradient map and a propagation algorithm 

The smoothness constraint can be used to reduce the locus of possible 
orientations on the Gaussian sphere. Each distortion value corresponds to a 
circle on the regular pattern gradient map. A propagation algorithm from the 
smoothness constraints reduces this locus of possible surface orientations to a 
unique orientation. 

We can measure the departure from 'smoothness' as follows: 

The error in the regular pattern gradient map can be stated this way: 

( 5 )  p. = [ I . .  - R(F.. G..)]' 
11 11 'I' v 

where F and G denote surface orientations. Iij is a distortion value measured 
at ( i , j ) .  R is the regular pattern gradient map. A solution should minimize the 
sum of the  error terms over all nodes: 

e = c (si, + Arii) . 
i j  

The factor A weights the errors in the regular pattern gradient map relative to 
the departures from surface smoothness. 

We differentiate e with respect to F and G, obtaining exactly as in [14], 

, 
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3.3. Occluding boundary constraints (external constraints) 

The surface normal is uniquely determined at smooth occluding boundaries 
[14, 20, 211, being orthogonal to the line of sight and to the  contour (see Fig. 

The shape-from-shading work in [14] used the orthographic projection, while 
we  use the spherical projection here. However, since the image sphere is 
perpendicular to all lines of sight in the spherical projection, the occluding- 
boundary result holds. 

This occluding information gives us strong boundary conditions. The pro- 
pagation constraints only convey information. In other words, constraint pro- 
pagation determines a relative relationship between nodes but cannot create 
new information. The surface orientation is fixed at occluding boundaries. From 
these boundaries' we can propagate the information inward over the image 
points, adjusting the propagated value with the local constraints provided by 
the distortion value at each point. 

10). 

4. Experiments 

4.1. Experiment 1: a synthesized image 

Consider a plane covered by many squares. The squares are projected onto an 
image sphere using the spherical perspective projection. Fig. 11 shows the 
synthesized image in stereographic projection. Note that the infinite horizon line 
maps to a circle. For the purposes of this experiment, we take this circle to be 
equivalent to an occluding boundary and assume the surface orientation o n  the 
circle is fixed (Fig. 2(b)). 

THE VIEWER 

LINES OF SIGHT 

SILHOUETTE 

FIG. 10. Occluding boundary constraints. At an occluding boundary the surface normal is uniquely 
determined. This occluding information gives us the boundary conditions. 
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FIG. 1 1 .  A synthesized image (in stcrcographic projcction). A planc covcrcd by many squares is 
projected onto an image sphere. 

The process has three main stages. The first stage examines the image to obtain 
distortion values and surface orientations on the occluding boundaries. The 
second stage is the main one. This stage computes surface orientation for all 
points using the propagation method. Since the surface orientations obtained at 
the second stage are expressed in a viewer-centered coordinate system, the third 
stage converts the result to the representation in the spatial coordinate system. 

We get the distortion using (I ) .  The silhouette on the image sphere deter- 
mines orientation at the occluding boundaries. The distortion values and 
surface orientations are input for the propagation algorithm. Fig. 13 shows the 
distortion valucs and Fig. 14 shows surface oricntations at the occluding 
boundary. 

The propagation algorithm estimates surface orientation at each point and is 
applied iteratively at each point, using the values of surrounding points and the 
corresponding distortion value. These estimates are the input information to 
the next iteration. When the entire system of points reaches a stable state, the 
algorithm stops. 

Fig. 15 shows the needle diagrams obtained for a planar surface after 50 
iterations. They are expressed using the viewer-centered coordinate system, 
where the line of sight is taken as the  z-axis at each point. Note that the 
physical direction is different at each image point because of the spherical 
perspective projection. Fig. 16 is the planar surface depicted in the viewer- 
centered coordinate system. 
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FIG. 12. Three stages. ( I )  To obtain distortion values and occluding boundary surface orientations. 
(2) To compute surface orientation for all points. (3) To convert surface orientation in viewer- 
centered coordinates into the spatial coordinate system. (If an object is small compared with its 
distance this stage may be omitted.) 

FIG. 13. Distortion values obtained from the synthesized image. I = /g sin d(f2 + g*). 
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FIG. 14. Surface orientations from occluding boundaries. 
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FIG. 15. The resulting needle diagram. 

FIG. 16. A planar surface depicted in the viewer-centered coordinate system. 
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Fig. 17 shows the same surface in the spatial coordinate system. The main 
source of error comes from the  digitization of the  third process. 

4.2. Experiment 2: a real image (a golf ball) 

We shall compute the surface orientation for a golf ball using its surface texture. 
A golf ball has many small circles on its surface. The distortion of these circles can 
be used to recover local surface orientations. Fig. 18 shows the input picture. 

We can get distortion values from this picture by drawing two parallel lines 
in an arbitrary orientation tangent to each circle (see Fig. 19). We connect the 
resulting tangent points on each circle and use the connecting line as one of the 
axis vectors. We then draw a line parallel to the  tangential lines through the 
center of the first axis vector. The part of this line within the projected circle is 
the second axis vector. We can compute the distortion values using (1). Fig. 20 
shows the distortion values obtained. 

We can determine surface orientation by using the algorithm. In this case the 
object is very small compared with the distance between the viewer and the 
object. Fig. 21 shows the resulting surface in the spatial coordinate system after 
50 iterations. 

VIEW ANGLE tan-’ 10.0 

FIG. 17. The planar surface in the spatial coordinate system. 
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FIG. 18. A picture of a golf ball. The distortion of the small circles on the golf ball can be used to 
recover local surface orientations there. 

. 

\ 

FIG. 19. How to get a pair of axis vectors from a circle. 

FIG. 20. Derived distortion values. Each needle corresponds to a little circle on the golf ball and 
expresses how much the little circle is distorted there. 
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FIG. 21. A computed result. 

5. Conclusions 

REALSURFACE 

OBTAINED SURFACE FROM 
THE ALGORITHM 

(1) We proposed a spherical projection to model perspective viewing. 
(2) We defined a distortion value for a regular pattern and proposed a regular 

pattern gradient map using this measure. 
(3) We showed that the propagation algorithm can successfully determine 

surface orientations from regular pattern gradients using the spherical perspec- 
tive projection, the regular pattern gradient map, and occluding boundary 
constraints. 

Appendix A. Derivation of the Distortion Value Z 

Fig. A. l  shows the relationship between the viewer and a regular pattern; the 
viewer is at V =  (O,O,cos 0") and the texture element is at R = 
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NORMAL) 

FIG. A. l .  Relationship between the viewer and a regular pattern. 

(-cos 4" sin e,, -sin 4, sin e,, 0). Thus, the viewer vector V is 

V = (cos 4, sin e,, sin 4, sin e,, cos 8,) 

The surface normal of a plane on which the regular pattern lies can be denoted 
as 

N = (cos 4 sin 8, sin 4 sin 4, cos 8) 

in the spatial coordinate system. We can take the two base vectors of this 
surface as 

X = (sin 4, -cos 4,O) , Y = (cos 4 cos 8, sin 4 sin 8, -sin 8). 
(A.1) 

X is a unit vector which lies on the intersection between the image plane and 
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the surface on which the regular pattern lies. Thus, a general form for two axis 
vectors of the regular pattern is A,  B: 

A = ( X  cos a + Y sin a ) ,  B = ( - X  sin a + Y cos a) ( A 3  

where a denotes the orientation of the texture element in the surface. 
Variation of this a causes changes like those shown in Fig. 4. 

Projections u and b of axis vectors, A and B onto image plane are 

where k is a scale factor, which depends on the  distance between the  regular 
pattern and the viewer. 

We want to find an intrinsic value dependent on the surface normal but 
independent on the rotation angle a and the scale factor k. With this intrinsic 
value we will be able to construct a regular pattern gradient map. 

Consider the ratio of the cross-product of the two projected axis vectors over 
the sum of the square of the lengths of the two projections. 

The cross-product of the axis vector’s projection onto the image plane is: 

I U  X 61 = k’1X x X + ( V  x X ) (  Y * V) - (V x Y ) ( X  V)l 

= k21V’(XX Y)I (A.4) 

= k Z  cos w 

where w denotes the angle between the direction of the line of sight and the 
direction of the surface normal. Thus, the cross-product of the projected axis 
vectors does not depend on the rotation angle a, and is proportional to the 
cosine of the angle between the  direction of line of sight and the direction of 
the surface normal. 

The sum of the square of the lengths of the  projected vectors is: 

luI2+ lbl’ = k2(2 - (IX * VI’+ 1 Y - VI’)) 

= kZ( l  + (cos &cos 8 + sin &sin 8 cos(+ - &))z) (A.5) 

= k2(1 + coszw) . 

We can cancel the scaling factor by dividing (A.4) by (AS) obtaining the 
distortion measure I: 
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Appendix B. Relationship between the Gaussian Sphere and the Image Sphere 

Fig. B.l shows the relationship between the Gaussian sphere and the image 
sphere. (X, Y, 2) is the  spatial coordinate system on the image sphere. (x, y, 
V) is the viewer coordinate system on the Gaussian sphere. The axis V denotes 
a line of sight in t he  spatial coordinate system. In other words, V corresponds 
to a regular pattern's position on the image sphere. Formulas from spherical 
trigonometry give the following relationship: 

cos 8. = cos 8,cos w + sin &sin w c o s b  - -IT - d,), 
sin w s i n k  - IT - 4,) 

sin 8, sin(+, - 4n) = , 

t 
X 

(THE VIEWER COORDINATE 
ON THE GAUSSIAN SPHERE) 

FIG. B.1. 'Ihe Gaussian sphere and the image sphere. 
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FIG. C. I .  The stereographic projection. 

where w and p are the zcnith angle and the azimuth angle, respectively, of the 
surface normal in the viewer-centered coordinate system, 8, and 4, are the 
zenith and azimuth angle, respectively, of the  surface normal in the spatial 
coordinate system, and 8, and 4, are the zenith and azimuth angle, respec- 
tively, of the view vector in the spatial coordinate system. The Gaussian sphere 
rotates around the V-axis so that the x- V plane makes an angle 4, with Z- V 
plane. Thus, using (B.l) we can convert w and p i n t o  On and 6,. 

Appendix C. Stereographic Projection 

The stereographic projection puts one pole of the sphere on the stereographic 
plane and projects points on the  sphere to the plane through the other pole 
(see Fig. C.1). A more extended treatment may be found in [lo]. 

The stereographic projection maps circles on the sphere onto circles in the 
stereographic plane. Let the circle center and circle radius on the sphere be 
(cos 4 sin 8, sin 4 sin 8, cos 8) and w, respectively. The circle center on the 
sphere maps on the center (2 cos 4 tan iO, 2 sin 4 tan 48) on the stereographic 
plane. The circle radius is [tan fO - tan i(8 - w)l. 
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