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Life in the Fast Lane 
The Evolution of an Adaptive 

Vehicle Control System 

Todd Jochem and Dean Pomerleau 

Giving robots the ability to operate in the real 
world has been, and continues to be, one of the 
mpst difficult tasks in A1 research. Since 1987, 
researchers at Carnegie Mellon University have 
been investigating one such task. Their research 
has been focused on using adaptive, vision-based 
systems to increase the driving performance of 
the Navlab line of on-road mobile robots. This 
research has led to the development of a neural 
network system that can learn to drive on many 
road types simply by watching a human teacher. 
This article describes the evolution of this system 
from a research project in machine learning to a 
robust driving system capable of executing tacti- 
cal driving maneuvers such as lane changing and 
intersection navigation. 

For the past decade, researchers in the Navlab 
Project at The Robotics Institute at Carnegie 
Mellon University (CMU) have been conduct- 
ing research on autonomous navigation of 
automotive robots. This research has included 
investigating route planning, obstacle avoid- 
ance, and position estimation. Perhaps the 
most dramatic improvement over the decade 
has been in the area of vision-based lane 
keeping-using a video camera to extract road 
information, such as lines and edges, that is 
used to keep the vehicle centered in its lane. 

Early vision-based lane-keeping systems, at 
CMU and elsewhere, were model based: The 
programmer decided what information or fea- 
tures were important for driving and devel- 
oped specific algorithms to detect these fea- 
tures. These systems typically looked for 
features such as asphalt-colored regions and 
lane markings to determine where the road 
boundaries were located. These systems 
worked well when the features they were pro- 
grammed to  detect were clearly visible but 
had difficulty when these features were 

obscured or absent. Other challenges occurred 
when the road's appearance changed dramati- 
cally, for example, from a city street to an 
interstate highway. In these cases, the system 
had to  be reprogrammed to  use the new 
road's features, a tedious and time-consuming 
task. A system that could handle noisy, real- 
world data and quickly adapt to new roads 
would clearly be useful. 

A lane-keeping system with these capabili- 
ties began to take shape in the fall of 1987 as 
part of a project on machine learning using 
supercomputers. At that time, the WARP super- 
computer was being developed at CMU's 
School of Computer Science. The parallel pro- 
cessing this computer could perform was well 
suited to the back-propagation learning algo- 
rithm, a basic neural network training tech- 
nique. Dean Pomerleau, a first-year graduate 
student at the time, decided to use the WARP 
to investigate mobile robot control using neu- 
ral networks, and the idea of ALVINN (au- 
tonomous land vehicle in a neural network) 
was born. 

As ALVINN began to take shape, the method 
of training the  system's neural network 
became the central research issue. Pomerleau 
wanted the system to be capable of learning 
to drive on many different road types, and 
over the course of the next several years, he 
developed a method to achieve this capabili- 
ty. ALVINN would learn to  associate road 
images with steering wheel direction. It 
would learn by watching a person drive, 
using hidher actions as a training signal. If 
the person steered to the right in response to 
a particular road scene, ALVI" would associate 
this scene with a particular angle of the steer- 
ing wheel. After watching and learning from 
many of these associations, it would be able 
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Figure 1 .  ALVINN’S Network Architecture. 

to drive by itself. When driving on a new 
road was desired, the system could simply be 
retrained by watching the person drive again. 

Testing and debugging continued, and 
when the WARP computer was placed on the 
Navlab 1, a converted Chevrolet panel van, 
ALVINN got its “learner’s permit.” From this 
first unsteady drive down a paved bike path 
near campus, ALVINN has gone on to drive 
thousands of miles in eight different vehicles 
with researchers from four different institu- 
tions. ALVI” has been rewritten at least four 
times, going from a centralized process to a 
distributed architecture and back again. It no 
longer needs a supercomputer to r u n - a  486- 
class machine works just fine. It has driven 
test-bed vehicles forward and backward, using 
video cameras, laser range finders, and 
infrared sensors. 

The system, which served as the basis for 
Pomerleau’s Ph.D., has been used by him for 
lane-keeping and roadway-departure warning 
experiments and research into neural net- 
work learning and sensitivity analysis. ALVINN 
was also the basis of another Ph.D. disserta- 
tion. This thesis, by Pomerleau’s first graduate 
student, Todd Jochem, extended the capabili- 
ties of ALVINN to include tactical driving tasks 
such as lane changing and intersection navi- 
gation. To accomplish these tasks, Jochem 
used a geometric model of image formation 
that allowed images to be created from arbi- 
trary locations in the world using pixels from 

the actual image. Because canonical, or virtu- 
a1 images, could be created at any location in 
the scene, this framework allowed ALVINN to 
focus its lane-finding capabilities on the areas 
of the scene most relevant for the task at 
hand. For example, if lane changing was to 
be performed, this enhanced version of 
ALVINN could be used to track each lane. Simi- 
larly, for intersection navigation, each branch 
could be identified. 

The following sections describe Pomer- 
leau’s original ALVINN system and its accom- 
plishments and shortfalls on the Navlab 
series of vehicles and Jochem’s extension, 
which allowed it to evolve into more than 
just a lane-keeping system. 
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ALVINN 
This section describes the architecture, train- 
ing, and performance of the ALVI” system. It 
demonstrates how simple connectionist net- 
works can learn to precisely guide a mobile 
robot in a wide variety of situations when 
trained appropriately. In particular, this sec- 
tion details training techniques that allow 
ALVINN to learn in less than five minutes to 
autonomously control the Navlab test-bed 
vehicles by watching a human driver’s 
response to new situations. With these tech- 
niques, ALVINN has been trained to drive in a 
variety of circumstances, including single- 
lane paved and unpaved roads, multilane 
lined and unlined roads, and obstacle-ridden 
on- and off-road environments, at speeds as 
high as 55 miles per hour (mph). 

Network Architecture 
The basic network architecture used in the 
ALVINN system is a single hidden-layer, feed- 
forward neural network (figure 1). The input 
layer consists of a single 30 x 32 unit “retina” 
onto which a sensor image from either a 
video camera or a scanning laser range finder 
is projected. Each of the 960 input units is 
fully connected to  the hidden layer of 4 
units, which, in turn, is fully connected to 
the output layer. The 30-unit output layer is a 
linear representation of the currently appro- 
priate steering direction that can serve to 
keep the vehicle on the road or prevent it 
from colliding with nearby obstacles, depend- 
ing on the type of input sensor image and the 
driving situation it has been trained to han- 
dle. The centermost output unit represents 
the travel-straight-ahead condition, and units 
to the left and the right of center represent 
successively sharper left and right turns. The 
units on the extreme left and right of the out- 
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5 put vector represent turns with an approxi- 
mately 30-meter radius to  the left and the 
right, respectively, and the units in between 
represent turns that decrease linearly in their 
curvature down to the straight-ahead middle 
unit in the output vector. 

To drive the Navlab, an image from the 
appropriate sensor is reduced to 30 X 32 pix- 
els and projected onto the input layer. After 
propagating activation through the network, 
the output layer’s activation profile is trans- 
lated into a vehicle-steering command. The 
steering direction dictated by the network is 
taken to be the center of mass of the hill of 
activation surrounding the output unit with 
the highest activation level. Using the center 
of the activation mass, instead of the most 
active output unit, when determining the 
direction to steer permits finer steering cor- 
rections, thus improving ALVINN’S driving 
accura.q. 

Network Training 
The network is trained to produce the correct 
steering direction using the back-propagation 
learning algorithm (Rumelhart, Hinton, and 
Williams 1986). In back propagation, the net- 
work is first presented with an input, and 
activation is propagated forward through the 
network to determine the network’s response. 
The network’s response is then compared 
with the known correct response. If the net- 
work‘s actual response does not match the 
correct response, the weights between con- 
nections in the network are modified slightly 
to produce a response more closely matching 
the correct response. 

In the initial experiments, ALVINN was 
trained using artificially generated road 
images and the corresponding correct steer- 
ing directions. Although this  approach 
achieved limited success, it proved difficult 
to generate a-tificial images that realistically 
depict the variety and complexity of real- 
world road scenes. Instead, a method of 
training using real road images was required. 
Training on real images would dramatically 
reduce the human effort required to develop 
networks for new situations by eliminating 
the need for a hand-programmed training 
example generator. On-the-fly training 
should also allow the system to adapt quick- 
ly to new situations. 

In theory, it should be possible to teach a 
network to imitate a person as he/she drives 
using the current sensor image as input and 
the person’s current steering direction as the 
desired output. This idea of training on the 
fly is depicted in figure 2. 
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Figure 2. Schematic Representation of Training “on the Fly.” 
The network is shown images from the on-board sensor and trained to steer in 

the same direction as the human driver. 

Potential Problems 
There are two potential problems associated 
with training a network using live sensor 
images as a person drives. First, because the 
person steers the vehicle down the center of 
the road during training, the network will 
never be presented with situations where it 
must recover from misalignment errors. 
When driving for itself, the network can 
occasionally stray from the road center; so, it 
must be prepared to recover by steering the 
vehicle back to the middle of the road-a 
capability it  might not possess if it never 
encounters this situation during training. The 
second problem is that naively training the 
network with only the current video image 
and steering direction might cause it to over- 
learn recent input. If the person drives the 
Navlab down a stretch of straight road at the 
end of training, the network will be presented 
with a long sequence of similar images. This 
sustained lack of diversity in the training set 
will cause the network to ”forget” what it had 
learned about driving on curved roads and 
instead learn to always steer straight ahead. 
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Shifted and Rotated Images 

Figure 3. The Single Original Video Image Shifted and Rotated. 
Multiple training exemplars are thus created in which the vehicle appears to be 

at different locations relative to the road. 

Both problems associated with training on 
the fly stem from the fact that back propaga- 
tion requires training data that are represen- 
tative of the full task to be learned. The first 
approach we considered for increasing the 
training-set diversity was to have the driver 
swerve the vehicle during training. The idea 
was to teach the network how to recover 
from mistakes by showing it examples of the 
person steering the vehicle back to the road 
center. However, this approach was deemed 
impractical for two reasons: First, training 
while the driver swerves would require turn- 
ing learning off while the driver steers the 
vehicle off the road and then back on when 
hefshe swerves back to the road center. With- 
out this ability to toggle the state of learning, 
the network would incorrectly learn to imi- 
tate the person swerving off the road as well 
as back on. Although possible, turning learn- 
ing on  and off would require substantial 
manual input during the training process, 
which we wanted to avoid. The second prob- 
lem with training by swerving is that it would 
require swerving in many circumstances to 
enable the network to learn a general repre- 
sentation, which would be time consuming 
as well as dangerous when training in traffic. 

Solution-Transform the 
Sensor Image 
To achieve sufficient diversity of real sensor 
images in the training set, without the prob- 
lems associated with training by swerving, we 
developed a technique for transforming sen- 
sor images to create additional training exem- 

d plars. Instead of presenting the network with 
only the current sensor image and steering 
direction, each sensor image is shifted and 
rotated in  software to  create additional 
images in which the vehicle appears to be sit- 
uated differently relative to the environment 
(figure 3). The sensor’s position and orienta- 
tion relative to the ground plane are known, 
so precise transformations can be achieved 
using perspective geometry. 

The image transformation is performed by 
first determining the area of the ground plane 
that is visible in the original image and the 
area that should be visible in the transformed 
image. These areas form two overlapping 
trapezoids, as illustrated by the aerial view in 
figure 4. To determine the appropriate value 
for a pixel in the transformed image, the pix- 
el is projected onto the ground plane and 
then back projected into the original image. 
The value of the corresponding pixel in the 
original image is used as the value for the pix- 
el in the transformed image. One important 
thing to realize is that the pixel-to-pixel map- 
ping that implements a particular transforma- 
tion is constant. In other words, based on a 
planar world, the pixels that need to be sam- 
pled in  the  original image to achieve a 
specific shift and translation in the trans- 
formed image always remain the same. In the 
actual implementation of the image-transfor- 
mation technique, ALVINN takes advantage of 
this constant transformation by precomput- 
ing the pixels that need to be sampled to per- 
form the desired shifts and translations. As a 
result, transforming the original image to 
change the apparent position of the vehicle 
simply involves changing the pixel sampling 
pattern during the image-reduction phase of 
preprocessing. Therefore, creating a trans- 
formed low-resolution image takes no more 
time than is required to reduce the image res- 
olution to that required by the ALVINN net- 
work. Obviously, the environment is not 
always flat. However, the effects on the image 
from hills or dips in  the  road are small 
enough that the neural network can learn to 
compensate for them. 

Extrapolating Missing Pixels 
The less than complete overlap between the 
trapezoids in figure 4 illustrates the need for 
one additional step in the image-transforma- 
tion scheme. The extra step involves deter- 
mining values for pixels that have no corre- 
sponding pixel in the original image. 
Consider the transformation illustrated in 
figure 5. To make it appear that the vehicle is 
situated one meter to the right of its position 
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Figure 4 .  An Aerial View of the Vehicle at Two Different Positions, 
with the Corresponding Sensor Fields of View. 

To simulate the image transformation that would result from such a change in position and 
orientation of the vehicle, the overlap between the two field-of-view trapezoids is computed 

and utilized to direct resampling of the original image. 

I 1 I Original Image Transformed Image I 

Figure 5 .  A Schematic Example of an Original Image and a Transformed Image in Which the Vehicle 
Aovears One Meter to the Right of I t s  Initial Position. 

.1 

The black region on the right of the transformed image corresponds to an unseen area in the original image. 
These pixels must be extrapolated from the information in the original image. 

in t h e  original image requires not only shift- 
ing  pixels in  t h e  original image to the left bu t  
also filling in  t h e  unknown pixels along the 
right edge. 

The  pixels can be filled using a n  extrapola- 

t i o n  t e c h n i q u e  t h a t  relies on the fact t h a t  
interesting features (such as road edges a n d  
painted lane markers) typically run parallel t o  
the road and,  hence, parallel to t h e  vehicle's 
current  direction. Wi th  th is  assumption,  to 
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Figure 6. An Aerial View (lefr) and an Image-Based View (right) of the Two Techniques Used to Extrapolate the 
Values for Unknown Pixels. 

extrapolate a value for the unknown pixel A 
in figure 6, the appropriate ground-plane 
point to sample from the original image’s 
viewing trapezoid is not the closest point 
(point B); it is the nearest point in the origi- 
nal image’s viewing trapezoid along the line 
that runs through point A and is parallel to 
the vehicle’s original heading (point C). See 
Pomerleau (1993) for more complete details 
of this technique and the driving perfor- 
mance improvement it led to. 

Transforming the Steering Direction 
As important as the technique to transform 
the input images is the method used to deter- 
mine the correct steering direction for each of 
the transformed images. The correct steering 
direction, as dictated by the driver, for the 
original image must be altered for each of the 
transformed images to account for the altered 
vehicle placement. This is done using a sim- 
ple model called pure-pursuit steering (Wallace 
et al. 1985). In the pure-pursuit model, the 
“correct” steering direction is the one that 
will bring the vehicle to a desired location 
(usually the center of the road) a fixed dis- 
tance ahead. The idea underlying pure-pur- 
suit steering is illustrated in figure 7. With the 
vehicle at position A, driving for a predeter- 

mined distance along the person‘s current 
steering arc would bring the vehicle to a tar- 
get point T ,  which is assumed to be in the 
center of the road. 

After transforming the image with a hori- 
zontal shift s and rotation 8 to make it appear 
that the vehicle is at point B, the appropriate 
steering direction according to the pure-pur- 
suit model would also bring the vehicle to tar- 
get point T. Mathematically, the formha to 
compute the radius of the steering arc that 
will take the vehicle from point B to point Tis 

r = ( 2 ,  + d2)/2d , 
where r is the steering radius, I is the look- 
ahead distance, and d is the distance from 
point T that the vehicle would end up if driv- 
en straight ahead from point B for distance 1. 
The displacement d can be determined using 
the following formula: 

d = cos(8) [dp + s + f*tan(O)] , 

where dp is the distance from point T that the 
vehicle would end up if  it drove straight 
ahead from point A for the look-ahead dis- 
tance I ,  s is the horizontal distance from 
point A to point E,  and 8 is the vehicle rota- 
tion from point A to point E.  The quantity dp 
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Figure 7 .  Illustration of the “Pure-Pursuit” Model of Steering. 

can be calculated using the  following 
equation: 

dp = rp - s q W p 2  - 12) , 
where rp is the radius of the arc the person 
was steering along when the image was tak- 
en. The only remaining unspecified parame- 
ter in the pure-pursuit model is I, the distance 
ahead of the vehicle to select a point to steer 
toward. Empirically, we have found that over 
the speed range of 5 to 55 mph, accurate and 
stable vehicle control can be achieved using 
the following rule: Look ahead the distance 
that the vehicle will travel in 2 to 3 seconds. 

Interestingly, with this empirically deter- 
mined rule for choosing the look-ahead dis- 
tance, the pure-pursuit model of steering is a 
fairly good approximation of how people 
actually steer. Research has found that at 50 
kilometers/hour, human subjects responded 
to a 1-meter lateral vehicle displacement, 
with a steering radius ranging from 511 to 
1194 meters (Reid, Solowka, and Billing 
1981). With a look ahead equal to the dis- 
tance that the vehicle will travel in 2.3 sec- 
onds, the pure-pursuit model dictates a steer- 
ing radius of 594 meters, within the range of 
human responses. Similarly, human subjects 
reacted to a I-degree heading error relative to 
the current road direction, with a steering 
radius ranging from 719 t o  970 meters. 
Again, using the 2.3-second travel distance 
for look ahead, the pure-pursuit steering 
model’s dictated radius of 945 meters falls 
within the range of human responses. 

Like the image-transformation scheme, the 
steering-direction transformation technique 
uses a simple model to  determine how a 
change in the vehicle’s position or orienta- 
tion would affect the situation. In the image- 
transformation scheme, a planar-world hy- 
pothesis and rules of perspective projection 
are used to determine how changing the 
vehicle’s position or orientation would affect 
the sensor image of the scene ahead of the 
vehicle. In the steering-direction transforma- 
tion technique, a model of how people drive 
is used to determine how a particular vehicle 
transformation should alter the correct steer- 
ing direction. In both cases, the transforma- 
tion techniques are independent of the driv- 
ing situation. The person could be driving on 
a single-lane dirt road or a multilane high- 
way: The transformation techniques would 
be the same. 

Ar.:hropomorphically speaking, transform- 
ing the sensor image to create more training 
images is equivalent to telling the network 
that “1 don’t know what features in the image 
are important for determining the correct 
direction to steer, but whatever they are, here 
are some other positions and orientations 
you might see them in.” Similarly, the tech- 
nique for transforming the steering direction 
for each of these new training images is 
equivalent to telling the network that “what- 
ever the important features are, if you see 
them in this new position and orientation, 
here is how your response should change.” 
Because it does not rely on a strong model of 
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what important image features look like, 
instead acquiring this knowledge through 
training, the system is able to drive in a wide 
variety of circumstances, as is seen later. 

These weak models are enough to solve the 
two problems associated with training in real 
time on sensor data. Specifically, using trans- 
formed training patterns allows the network 
to learn how to recover from driving mistakes 
that it would not otherwise encounter as the 
person drives. Also, overtraining on repetitive 
images is less a problem because the trans- 
formed training exemplars maintain variety 
in the training set. 

Adding Diversity through Buffering 
As additional insurance against the effects of 
repetitive exemplars, the training-set diversity 
is further increased by maintaining a buffer 
of previously encountered training patterns. 
When new training patterns are acquired 
through digitizing and transforming the cur- 
rent sensor image, they are added to  the 
buffer, and older patterns are removed. We 
experimented with four techniques for deter- 
mining which patterns to replace. The first is 
to replace oldest patterns first. With this 
scheme, the training pattern buffer represents 
a history of the driving situations encoun- 
tered recently. However, if the driving situa- 
tion remains unchanged for a period of time, 
such as during an extended right turn, the 
buffer will lose its diversity and become filled 
with right-turn patterns. The second tech- 
nique is to randomly choose old patterns to 
be replaced by new ones. With this tech- 
nique, the laws of probability help ensure 
somewhat more diversity than the oldest pat- 
tern-replacement scheme, but the buffer will 
still become biased during monotonous 
stretches. 

The next solution we developed to encour- 
age diversity in the training set was to replace 
the patterns on which the network was mak- 
ing the lowest error, as measured by the sum- 
squared difference between the network’s 
output and the desired output. The idea was 
to eliminate from the training set the pat- 
terns the network was performing best on 
and to leave in the training set the images the 
network was still having trouble with. The 
problem with this technique is that  the  
human driver doesn’t always steer in the cor- 
rect direction. Occasionally, he or she might 
have a momentary lapse of attention and 
steer in an incorrect direction for the current 
situation. If a training exemplar was collected 
during this momentary lapse, under this 
replacement scheme, it will remain in the 

training buffer for a long time because the 
network will have trouble learning a steering 
response to  match the person’s incorrect 
steering command. In fact, with this replace- 
ment technique, the only way the pattern 
would be removed from the  training set 
would be if the network learned to duplicate 
the incorrect steering response-obviously, 
not a desired outcome. We considered replac- 
ing both the patterns with the lowest error 
and the patterns with the highest error but 
decided against it because high network error 
on a pattern might also result in novel input 
image with a correct response associated with 
it. A better method to eliminate this problem 
is to add a random replacement probability to 
all patterns in the  training buffer. This 
method ensures that ever? if the network nev- 
er learns to produce the same steering re- 
sponse as the person on an image, the image 
will eventually be eliminated from the train- 
ing set. 

Although this augmented lowest-error 
replacement technique did a reasonable job 
of maintaining diversity in the training set, 
we found a more straightforward way of 
achieving the same result. To make sure the 
buffer of training patterns does not become 
biased toward one steering direction, we 
added a constraint to ensure that the mean 
steering direction of all the patterns in the 
buffer remains as close to straight ahead as 
possible. When choosing the  pattern to  
replace, we selected the  pattern whose 
replacement will bring the average steering 
direction closest to straight. For example, if 
the training-pattern buffer had more right 
turns than left, and a left-turn image was just 
collected, one of the right-turn images in the 
buffer would be chosen for replacement to 
move the average steering direction toward 
straight ahead. If the buffer already had a 
straight-ahead average steering direction, 
then an old pattern requiring a steering direc- 
tion similar to the new one would be re- 
placed to maintain the buffer’s unbiased 
nature. By actively compensating for steering 
bias in the training buffer, the network never 
learns to consistently favor one steering 
direction over another. This active bias com- 
pensation is a way to build into the network 
a known constraint about steering: In the 
long run, right and left turns occur with 
equal frequency. 

Details 
The final details required to specify the train- 
ing on-the-fly process are the number and 
magnitude of transformations to  use for 

.. 
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training the network. The following quanti- 
ties were determined empirically to provide 
sufficient diversity to allow networks to learn 
to drive in a wide variety of situations. The 
original sensor image is shifted and rotated 
14 times using the technique described earlier 
to create 14 training exemplars. The size of 
the shift for each of the transformed exem- 
plars is chosen randomly from the range -0.6 
to +0.6 meters, and the amount of rotation is 
chosen from the range -6.0 to +6.0 degrees. 
In the image formed by the camera on the 
Navlab, which has a 42-degree horizontal 
field of view, an image with a maximum shift 
of 0.6 meters results in the road shifting 
approximately one-third the way across the 
input image at the bottom. 

Before the randomly selected shift and 
rotation are performed on the original image, 
the steering direction that would be appropri- 
ate for .the resulting transformed image is 
computed using the formulas given previous- 
ly. If the resulting steering direction is sharper 
than the sharpest turn representable by the 
network’s output (usually a turn with a 20- 
meter radius), then the transformation is dis- 
allowed, and a new shift distance and rota- 
tion magnitude are randomly chosen. By 
eliminating extreme and unlikely conditions 
from the training set, such as when the road 
is shifted far to the right and the vehicle is 
heading sharply to the left, the network is 
able to devote more of its representation 
capacity to handling plausible scenarios. 

The 14 transformed training patterns, 
along with the single pattern created by pair- 
ing the current sensor image with the current 
steering direction, are inserted into the buffer 
of 200 patterns using the replacement strate- 
gy described earlier. After this replacement 
process, one iteration of the back-propagation 
algorithm are performed on the 200 exem- 
plars to update the network’s weights, using a 
learning rate of 0.01 and a momentum of 0.8. 
The entire process is then repeated. The net- 
work requires approximately 100 iterations 
through this digitize-replace-train cycle to 
learn to drive in the domains that have been 
tested. At 2.5 seconds a cycle, training takes 
approximately 4 minutes of human driving 
over a sample stretch of road. During the 
training phase, the person drives at approxi- 
mately the speed at which the network will 
be tested, which ranges from 5 to 55 mph. 

Performance Improvement Using 
Transformations 
The performance advantage that this tech- 
nique of transforming and buffering training 

patterns offers over the more naive methods 
of training on real sensor data is illustrated 
in figure 8. This graph shows the vehicle’s 
displacement from the road center that was 
measured as three different networks drove 
at 4 mph over a 100-meter section of a sin- 
gle-lane paved bike path that  included a 
straight stretch and turns to  the left and 
right. The three networks were trained on a 
150-meter stretch of the path that was dis- 
joint from the test section and that ended in 
an extended right turn. 

The first network, labeled -trans -buff, was 
trained using just the images coming from 
the video camera. That is, during the training 
phase, an image was digitized from the cam- 
era and fed into the network. One iteration of 
back propagation was performed on the train- 
ing exemplar and then the  process was 
repeated. The second network, labeled +trans 
-buff, was trained using an image that was 
digitized from the camera and then trans- 
formed 14 times to create 15 new training 
patterns, as described earlier. One iteration of 
back propagation was performed on each of 
these 15 training patterns, and then the pro- 
cess was repeated. The third network, labeled 
+trans +buff, was trained using the same 
transformation scheme as the second net- 
work but with the addition of the image- 
buffering technique described earlier to pre- 
vent overtraining on recent images. 

Note that all three networks were presented 
with the same number of images. The trans- 
formation and buffering schemes did not 
influence the quantity of data that the net- 
works were trained on, only their distribution. 
The -trans -buff network was trained on close- 
ly spaced actual video images. The +trans - 
buff network was presented with 15 times 
fewer actual images, but its training set also 
contained 14 transformed images for every 
“real” one. The +trans +buff network collected 
even fewer live images because it performed a 
training iteration through its buffer of 200 
patterns before digitizing a new one. 

The accuracy of each of the three networks 
was determined by manually measuring the 
vehicle’s lateral displacement relative to the 
road center as each network drove. The net- 
work trained on only the current video image 
quickly drove off the right side of the road, as 
indicated by its rapidly increasing displace- 
ment from the road center. The problem was 
that the network overlearned the right turn 
at  the end of training and became biased 
toward turning right. Because of the  in- 
creased diversity provided by the image-trans- 
formation scheme, the second network per- 
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Figure 8. Vehicle Displacement from the Road Center as the Navlab Was Driven by Networks Trained 
Using Three Different Techniques. 

formed much better than the first. It was able 
to follow the entire test stretch of road. How- 
ever, it still had a tendency to steer too much 
to the right, as illustrated in figure 8 by the 
vehicle’s positive displacement over most of 
the test run. In fact, the mean position of the 
vehicle was 28.9 centimeters right of the road 
center during the test. The variability of the 
errors made by this network was also quite 
large, as illustrated by the wide range of vehi- 
cle displacement in the +trans -buff graph in 
figure 8. Quantitatively, the standard devia- 
tion of this network’s displacement was 62.7 
centimeters. 

The addition of buffering previously en- 
countered training patterns eliminated the 
right bias in  the third network and also 
greatly reduced the magnitude of the vehi- 
cle’s displacement from the road center, as 
evidenced by the  +trans +buff graph in  
figure 8. When the third network drove, the 
average position of the vehicle was 2.7 cen- 
timeters right of center, with a standard 
deviation of only 14.8 centimeters. This 
vehicle position error represents a 423-per- 
cent improvement in driving accuracy. 

A separate test was performed to compare 
the steering accuracy of the network trained 
using both transformations and buffering 

with the steering accuracy of a human driver. 
This test was performed over the same stretch 
of road as the previous test, but the road was 
less obscured by fallen leaves in this test, 
resulting in better network performance. 
Over three runs, with the network driving at 
5 mph along the 100-meter test section of 
road, the average position of the vehicle was 
1.6 centimeters right of center, with a stan- 
dard deviation of 7.2 centimeters. Under 
human control, the average position of the 
vehicle was 4.0 centimeters right of center, 
with a standard deviation of 5.47 centime- 
ters. The average distance the vehicle was 
from the road center while the person drove 
was 5.70 centimeters. It appears that the 
human driver, although more consistent than 
the network, had an inaccurate estimate of 
the vehicle’s center line; therefore, it drove 
slightly right of the road center. Studies of 
human driving performance have found simi- 
lar steady-state errors and variances in vehicle 
lateral position. Researchers have found that 
consistent displacements of as much as 7 cen- 
timeters were not uncommon when people 
drove on highways (Blaaum 1982). Also for 
highway driving, standard deviations in later- 
al error as great as 16.6 centimeters have been 
reported. 

, 
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Network Confidence 
In addition to learning to produce the cor- 
rect output steering direction, ALVINN can also 
estimate its confidence in the steering out- 
put. This ability is important because it gives 
outside, typically symbolic, knowledge 
sources insight into how the neural system is 
performing. Because the confidence value is a 
measure of ALVINN’S familiarity with the cur- 
rent road, it can be used to determine if 
proper driving performance is possible. In 
another context, this same information can 
be used as a metric to determine the exis- 
tence of roads in input images. This ability 
becomes especially important if tactical driv- 
ing maneuvers, like those described in Tacti- 
cal Driving, are to be executed. 

The confidence metric that is primarily 
used is called input reconstruction reliability 
estimation (IRRE). IRRE is a measure of the 
familiarity of the input image to the neural 
network. In IRRE, the network’s internal rep- 
resentation is used to reconstruct the input 
pattern being presented. The more closely the 
reconstructed input matches the actual input, 
the more familiar the input and, hence, the 
more reliable the network’s response. 

IRRE utilizes an additional set of output 
units to perform input reconstruction, as 
depicted in figure 1. This second set of output 
units is half the size of the input retina-15 
rows by 16 columns. The desired activation 
for each of these additional output units is 
the average of the activation on four corre- 
sponding input units. For example, IRRE unit 
(0,O) contains the average activation of input 
units (O,O), (O, l ) ,  ( l ,O),  and (1,l). In essence, 
these additional output units turn the net- 
work into an autoencoder. 

The network is trained using back propaga- 
tion to  produce both the correct steering 
response on the steering output units and 
reconstruct the input image as accurately as 
possible on the reconstruction output. Dur- 
ing testing, images are presented to the net- 
work, and activation is propagated forward 
through the network to produce a steering 
response and a reconstructed input image. 
The reliability of the steering response is esti- 
mated by computing the correlation co- 
efficient between the activation levels of 
units in  the actual input image and the  
reconstructed input image. The higher the 
correlation between the two images, the more 
reliable the network’s steering response is 
estimated to be. 

Results and Comparison 
The success of the ALVINN system is demon- 

- 

Figure 9. Video Images Taken on Three of the Road Types ALvrrih! Modules 
Have Been Trained to Handle. 

They are, from left to right, a single-lane dirt access road, a single-lane paved 
bicycle path, and a lined two-lane highway. 

strated by the range of situations in which it 
has successfully driven. The training on-the- 
fly scheme gives ALVINN a flexibility that is 
novel among autonomous navigation sys- 
tems. It has allowed us to successfully train 
individual networks to drive in a variety of 
situations, including a single-lane dirt access 
road, a single-lane paved bicycle path, a two- 
lane suburban neighborhood street, and a 
lined two-lane highway (figure 9). Using oth- 
er sensor modalities as input, including laser 
range images and laser reflectance images, 
individual ALVINN networks have been trained 
to follow roads in total darkness, avoid colli- 
sions in obstacle-rich environments, and fol- 
low alongside railroad tracks. ALVINN networks 
have driven without intervention for dis- 
tances as great as 90 miles. In addition, be- 
cause determining the steering direction from 
the input image merely involves a forward 
sweep through the network, the system is 
able to process 15 images a second, allowing 
it to drive as fast as 55 mph. 

The level of flexibility across driving situa- 
tions exhibited by ALVINN would be difficult to 
achieve without learning. It would require the 
programmer to (1) determine what features 
are important for the particular driving 
domain, (2) program detectors (using statisti- 
cal or symbolic techniques) for finding these 
important features, and (3) develop an algo- 
rithm for determining which direction to  
steer from the location of the detected fea- 
tures. As a result, although hand-programmed 
systems have been developed to drive in some 
of the individual domains that ALVINN can 
handle (Kluge 1993; Crisman 1990; Turk et al. 
1988; Dichmanns and Zapp 1987), none have 
duplicated ALVINN’S flexibility. 

ALVINN is able t o  learn, for each new 
domain, what image features are important, 
how to detect them, and how to use their 
position to steer the vehicle. Analysis of the 
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hidden unit representations developed in dif- 
ferent driving situations shows that the net- 
work forms detectors for the image features 
that correlate with the correct steering direc- 
tion. When trained on multilane roads, the 
network develops hidden-unit feature detec- 
tors for the lines painted on the road, but in 
single-lane driving situations, the detectors 
developed are sensitive to road edges and 
road-shaped regions of similar intensity in 
the image. 

This ability to use arbitrary image features 
can be problematic, for example, when ALVI“ 
was trained to drive on a poorly defined dirt 
road with a distinct ditch on its right side. 
The network had no problem learning and 
then driving autonomously in one direction, 
but when driving the other way, the network 
was erratic, swerving from one side of the 
road to the other. After analyzing the net- 
work‘s hidden representation, the reason for 
its difficulty became clear. Because of the 
poor distinction between the road and the 
nonroad, the network had developed only 
weak detectors for the road itself and instead 
relied heavily on the position of the ditch to 
determine the direction to steer. When tested 
in the opposite direction, the network was 
able to keep the vehicle on the road using its 
weak road detectors but was unstable because 
the ditch it had learned to look for on the 
right side was now on the left. Individual 
ALVINN networks have a tendency to rely on 
any image feature consistently correlated 
with the correct steering direction. Therefore, 
it is important to expose them to a wide 
enough variety of situations during training 
to minimize the effects of transient image 
features. 

Experience has shown that it is more 
efficient to train several domain-specific net- 
works for circumstances such as one-lane ver- 
sus two-lane driving than to train a single 
network for all situations. To prevent this net- 
work specificity from reducing ALW’S gener- 
ality, we have implemented connectionist 
and nonconnectionist techniques for com- 
bining networks trained for different driving 
situations. Using a simple rule-based priority 
system similar to the subsumption architec- 
ture, we combined a road-following network 
and an obstacle-avoidance network (Brooks 
1986). The road-following network used 
video camera input to follow a single-lane 
road. The obstacle-avoidance network used 
laser range-finder images as input. I t  was 
trained to swerve appropriately to prevent a 
collision when confronted with obstacles and 
to drive straight when the terrain ahead was 

free of obstructions. The arbitration rule gave 
priority to the road-following network when 
determining the steering direction, except 
when the obstacle-avoidance network out- 
puts a sharp steering command. In this case, 
the urgency of avoiding an imminent colli- 
sion takes precedence over road following, 
and the steering direction was determined by 
the obstacle-avoidance network. Together, the 
two networks and the arbitration rule made 
up a system capable of staying on the road 
and swerving to prevent collisions. 

To facilitate other rule-based arbitration 
techniques, we added a nonconnectionist 
module to ALVIN” that maintains the vehicle’s 
position on a map (Pomerleau, Gowdy, and 
Thorpe 1992). Knowing its map position 
allows ALVINN to use arbitration rules such as 
“when on a stretch of two-lane highway, rely 
primarily OR the two-lane highway network.’’ 
This symbolic mapping module also allows 
ALVINN to make high-level, goal-oriented deci- 
sions such as which way to turn at intersec- 
tions and when to stop at a predetermined 
destination. 

ALVINN Discussion 
A truly autonomous mobile vehicle must cope 
with a wide variety of driving situations and 
environmental conditions. As a result, it is 
crucial that an autonomous navigation sys- 
tem possess the ability to  adapt to novel 
domains. Supervised training of a connection- 
ist network is one means of achieving this 
adaptability. However, teaching an artificial 
neural network to drive based on a person’s 
driving behavior presents a number of chal- 
lenges. Prominent among these challenges is 
the need to maintain sufficient variety in the 
training set to ensure that the network. devel- 
ops a sufficiently general representation of the 
task. Two characteristics of real sensor data 
collected as a person drives that make train- 
ing-set variety difficult to maintain are (1) 
temporal correlations and (2) the limited 
range of situations encountered. Extended 
intervals of nearly identical sensor input can 
bias a network’s internal representation and 
reduce driving accuracy. The human trainer’s 
high degree of driving accuracy severely 
restricts the variety of situations covered by 
the raw sensor data. 

The techniques for training on the fly 
described earlier solve these difficulties. The 
key idea underlying training on the fly is that 
a model of the process generating the live 
training data can be used to augment the 
training set with additional realistic patterns. 
By modeling both the imaging process and 
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+ the steering behavior of the human driver, 
training on the fly generates patterns with 
sufficient variety to allow artificial neural 
networks to learn a robust representation of 
individual driving domains. The resulting 
networks are capable of driving accurately in 
a wide range of situations. 

Tactical Driving 
The basic ALVI" system described earlier was 
initially used as just a stand-alone lane-keep- 
ing, or lane-departure warning, system. How- 
ever, beginning in early 1994, when Jochem 
began his Ph.D. dissertation, the  system 
began to evolve into more. Jochem's goal was 
to  use a robust lane-keeping system to  
explore tactical driving. The challenge was to 
create a system that maintained the perfor- 
mance of the existing lane-keeping system 
and added the ability to execute tactical driv- 
ing tasks such as changing lanes and negoti- 
ating intersections. 

The ability to execute tactical actions was 
becoming important for several reasons: First, 
lane-keeping systems had matured to a level 
where tactical control algorithms, previously 
demonstrated only in simulation, could real- 
istically be tested on vehicles that operate in 
the real world. Second, tactical reasoning 
algorithms had improved to the point where 
operation in the real world was becoming fea- 
sible. Finally, specifications and concepts of 
new intelligent-vehicle programs in Europe, 
Asia, and the United States required the abili- 
ty to execute tactical actions. 

Although there are many ways to add tacti- 
cal functions to an autonomous navigation 
system, the most desirable solution is to  
develop. a robust, lane-keeper-independent 
control scheme that provides the functions to 
execute tactical actions. These functions can 
be provided through intelligent control of the 
visual information presented to  the lane- 
keeping system. Specifically, the techniques 
described in the following sections use the 
inherent lane-keeping ability of ALVINN to per- 
form tactical driving tasks. 

Although ALVINN has demonstrated robust 
lane-keeping performance in a wide variety of 
situations, it is generally limited to this task 
because of its lack of geometric models, 
which are typically required to execute tacti- 
cal actions. Grafting geometric reasoning 
onto a nongeometric base would be difficult 
and would dilute ALVINN'S capabilities. A 
much better approach was to leave the basic 
neural network intact, preserving its real-time 
performance and generalization capabilities, 

and apply geometric transformations to the 
input image and the output steering vector. 
These transformations form a new set of tools 
and techniques called virtual active vision. Vir- 
tual because all the techniques use artificially 
created imaging sensors that can be manipu- 
lated to suit the needs of the task and active 
because the techniques move sensors to loca- 
t ions where the  images they create will 
enhance system performance. The idea of vir- 
tual active vision-and, specifically, the virtu- 
al camera-became the basis for Jochem's dis- 
sertation (1996) and served as the tool that 
allowed ALVJ" to evolve into more than just 
a lane-keeping system. 

A virtual camera is simply an artificial 
imaging sensor that can be placed at any 
location and orientation in the world-refer- 
ence frame. It creates images using a tech- 
nique similar to the one used to create trans- 
formed images during ALVINN'S training- 
resampling the actual camera image to make 
it appear as if the camera is situated at a dif- 
ferent position or orientation. By knowing 
the location of both the actual and the virtu- 
al camera and assuming a flat-world model, 
accurate image reconstructions can be created 
from the virtual camera location. 

For a particular tactical driving task, the 
location of the virtual camera is chosen so 
that it creates images from relevant parts of 
the scene and from the same vantage as the 
images that were used to train the network. 
Because the images look familiar, the network 
will respond properly. Virtual camera views 
from many orientations have been created 
using images from several different actual 
cameras. The images produced by these views 
have proven to be accurate enough for the 
ALVINN system to navigate successfully. Figure 
10 shows some typical virtual camera views 
and the images that they create. 

Descriptions of the application of virtual 
active vision tools to two tactical driving 
tasks-(1) lane changing and (2) intersection 
navigation-are presented in the next subsec- 
tions. For both tasks, the basic ALVINN system 
is used, but by intelligently controlling its 
input and interpreting its output, enhanced 
tactical functions were possible. 

Lane Changing 
There has been a significant amount of 
research published describing how people 
change lanes as well as identifylng theoreti- 
cally optimal control strategies that could be 
used to autonomously control a vehicle in a 
lane-change maneuver (Grupen et al. 1995; 
Hatipoglu, Ozguner, and Unyelioglu 1995; 
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Nelson 1989). Unfortunately, only a few of 
these researchers had the facilities or equip- 
ment to  test their results outside the lab 
Uochem 1996; Rosenblum 1995; Behringer, 
Holt, and Dickmanns 1992). 

It is obvious to think about lane changing 
only in terms of moving a vehicle from one 
driving lane t o  another, adjacent lane. 
Although this task is the most evident, there 
are others similar in nature that require a sub- 
set of, or a minor extension to, the capabili- 
ties required for lane changing. In addition to 

presenting techniques for lane changing, this 
section introduces algorithms for exit-ramp 
detection and traversal and short-distance 
obstacle-avoidance maneuvering. 

Technically, these tasks are important 
because they represent tactical driving tasks 
that have not been studied as closely as low- 
level tasks such as lane keeping and obstacle 
detection. To be successfully accomplished, 
all the tasks require a sequence of actions to 
be taken-a plan. This type of behavior is 
difficult to coax from low-level, reactive sys- 

24 AIMAGAZINE 



Articles 

tems such as ALVINN, which are characterized 
by fast response to features in their surround- 
ings. Additionally, plans are often rigid and 
difficult to integrate into autonomous sys- 
tems that function in the real world. The 
algorithms presented in this section circum- 
vent these problems by framing the task plan 
in a way that preserves the flexibility and 
robustness of the low-level lane-keeping sys- 
tem yet exhibits enough control to permit 
successful execution. 

Lane change and related functions are 
implemented using active placement and 
control of virtual cameras, intelligent inter- 
pretation of the  lane-keeping system’s 
response to the images created from the virtu- 
al cameras, and a simple road model that 
guides virtual camera placement and vehicle 
control. The algorithms are not strictly tied to 
any specific lane-keeping system; they only 
require that the system take images as input 
and produce a point on the road to drive over 
and a measure of its internal confidence in 
this point as output. When implemented 
using ALvrrw, the techniques have been able 
to autonomously navigate one of our test-bed 
vehicles, the Navlab 5 Uochem et al. 1995), 
between lanes of a rural interstate highway, 
onto exit ramps, and around obstacles. 

As mentioned earlier, a simple road model 
is needed to guide the lane-change maneu- 
vers. The model that the techniques use is 
that the centers of adjacent lanes of the road 
have constant separation, implying that the 
lanes are parallel and have a constant width. 

The most successful method Jochem devel- 
oped to change lanes is called the dual-view 
lane-transition method (DVLT) Uochem 1996). 
In the DVLT algorithm, ALVINN is presented 
with images from two virtual cameras, one 
tracking each lane. ALVINN’S responses to the 
images from these two views are smoothly 
merged to move the vehicle from one lane to 
the next. The placement of the views is con- 
trolled by ALVINN’S response on the two virtual 
images as well as by a high-level control algo- 
rithm that biases the system to transition 
from one lane to the other. 

This technique is a bottom-up approach to 
lane changing. Although it can use input 
from high-level modules t o  initiate t h e  
maneuver, the geometry of the situation is 
what drives this method: The system locates 
the center of both lanes and then moves the 
vehicle based on these locations. 

The DVLT method requires networks that 
are trained for the driving and destination 
lanes. Initially, only one view, called the 
source-lane view (SLV), and the associated net- 

’ 
work, are used to control the vehicle in the 
driving lane. When a DVLT is initiated, the 
road model is used to laterally offset a second 
view, called the destination-lane view (DLV), so 
that it is centered over the destination lane. 
The network that was trained to drive in the 
destination lane is associated with the DLV 
(figure 11). 

After the DLV has been created, images are 
generated from both the SLV and the DLV 
and are passed to their respective networks, 
which produce an output steering displace- 
ment along with an IRRE confidence value. 
Both output displacements are converted to 
vehicle-relative points. These points, called 
lane center points (LCPs), specify where ALVINN 
believes the center of each lane is located in 
front of the vehicle. 

The LCPs are uied to calculate the modified 
look-ahead point (MLP). The MLP is the point 
that the vehicle will actually drive toward. 
The MLP is between the two LCPs, along the 
line connecting them. The distance between 
the MLP and either LCPs is related to the step 
in the DVLT process. For example, in DVLT 
experiments that used 16 iterations to transi- 
tion between lanes, the first MLP would be 
1/16 the total distance (along the line con- 
necting the LCPs) away from the driving lane 
LCP and 15/16 from the destination LCP. On 
the second step, the MLP would be 2/16 and 
14/16 away, respectively. 

Because the vehicle is instructed to steer 
toward the MLP, the virtual views become 
misaligned with their respective lanes, and 
their position must be updated. If the vehicle 
is moving to the left, both views are reposi- 
tioned to the right. This process is continued 
until the vehicle has transitioned completely 
into the destination lane (figure 12). The 
black dot in each of the diagrams in figure 12 
is the  MLP. The combination of moving 
toward an MLP that is continually closer to 
the destination lane center and updating the 
location of the virtual camera views results in 
a smooth, controlled transition. 

During the  lane transition, the  IRRE 
confidence metric and the constant lane-sep- 
aration constraint are used to determine if 
the system is confident in its current driving 
ability. For the transition to continue, the 
IRRE confidence measure for each image 
must be above a threshold value, typically 
0.40, and the distance between the LCPs is 
required to be within 40 percent of the lane- 
separation distance, specified by the lane 
model. 

Figure 13 shows two images taken at the 
beginning and the  end of a left-to-right 
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Figure 1 1 .  Initial Virtual View Placement for the Dual-View Lane-Transition Technique. 

DVLT. In the top image, the vehicle is still in 
the initial driving lane. The SLV footprint is 
the darker trapezoid immediately in front of 
the vehicle. The preprocessed image associat- 
ed with the SLV is shown in the lower left 
corner. The DLV footprint is also visible as 
the lighter trapezoid, offset to the right of the 
SLV footprint. The preprocessed image associ- 
ated with it is shown to the right of the pre- 
processed image from the SLV. Just above 
each preprocessed image is ALVINN’S driving 
response to the image. For each view, the 
driving response is almost the same, indicat- 
ing that the constant separation distance 
road model and virtual camera imaging were 
accurate. Also shown in front of the vehicle is 
a grey dot that represents the MLP. Next to 
each preprocessed image is a bar graph repre- 
sentation of the IRRE confidence value associ- 
ated with each. For both the SLV and the 
DLV, the confidence is high-above 0.70. 

The image on the bottom was taken as the 
vehicle approached the destination lane. In 

this image, the DLV footprint is almost cen- 
tered in front of the vehicle, and the original 
SLV is offset to the left. The preprocessed 
images are shown in the same location, along 
with ALVMN’S driving responses and IRRE con- 
fidence values. The responses and confidence 
values are similar to those in the top image, 
even though the vehicle is now in the desti- 
nation lane. 

All 42 DVLTs that were logged to verify this 
lane-transition method were successfully 
completed. One-half the transitions were left 
lane-to-right lane transitions; the rest were 
right to left. The results of the experiments 
are shown in figure 14. (The average distance 
for completion of a DVLT was 138 meters, 
and the average vehicle speed was about 21.9 
metershecond.) 

There are two characteristics to notice in 
figure 14. First, the lane transitions are sym-  
metric across the center line of the road as 
well as with respect to the time in the lane 
transition. Second, the DVLT method doesn’t 
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Figure 12. Movement of the Vehicle and the Views in the Dual-View Lane-Transition Method. 

relinquish control until the vehicle is at the 
proper -driving position in the destination 
lane. Also notice, however, that at the end of 
the transition, the vehicle trajectory is still 
moving somewhat outward. A small amount 
of overshoot did occur and can be attributed 
to the existing lateral movement of the vehi- 
cle coupled with the  moderately long 
response time that results from the large 
look-ahead distance required for highway 
driving. Empirically, the DVLT method yield- 
ed smooth and realistic lane changes. 

Figure 15 shows the  average IRRE 
confidence values for the right- and left-lane 
ALVI" networks during right-to-left and left- 
to-right DVLTs. The IRRE confidence values 
produced by an ALVINN network increase as 
the vehicle moves into the lane for which it 
was trained and decrease as the vehicle moves 
out of it. In both graphs, though, the IRRE 
values remain well above the low-confidence 

threshold. One cause of the increasing or 
decreasing confidence values is the extreme 
location of the SLV and the DLV. Near the 
start and the end of the transition, because 
each view remains Lentered over the proper 
lane, the actual camera viewing field might 
not overlay with the virtual camera viewing 
field. Although the missing virtual camera 
pixels are filled with the best actual camera 
pixel, the image is not quite consistent with 
what the network was trained with. 

Exit-Ramp Detection and Traversal 
A scenario that requires a vehicle-control 
scheme similar to  that of lane changing is 
exit-ramp detection and traversal. A key dif- 
ference is that the exact location of the exit 
ramp is not usually known with enough 
precision to blindly move the vehicle onto 
it; therefore, it must first be located. To 
accomplish this task using the ALVIN" sys- 
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Figure 13. Dual-View Lane-Transition Processing. 

tem, the following algorithm was developed. 
Some distance before the exit lane begins, 

ALVINN receives a signal from another knowl- 
edge source, such as a map, informing it that 
the exit is approaching. Information about 
the exit lane's location relative to the vehicle 
and the lane type is passed to ALVINN. The 
information is used to create an appropriate 

virtual camera view, the exit view, and associ- 
ate the correct network with it. In addition to 
being laterally offset from the current view 
being used to drive, the exit view is also shift- 
ed forward by 10 meters. This shift is made so 
that the exit lane can be detected before the 
vehicle is adjacent to it; this shift is impor- 
tant because in some situations, the driving- 
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Figure 16. Exit-Ramp Detection Diagram. 

lane network learns to key off features, such 
as the  shoulder-to-road boundary, that  
change significantly when the  exit lane 
appears. To maintain proper control in these 
situations it is important to detect the exit 
lane before it is imaged by the driving view. A 
diagram of the roadway near the exit and vir- 
tual camera view locations is depicted in 
figure 16. 

While the system uses the driving view to 
keep the vehicle in its lane, images are created 
from the exit view and passed to the associat- 
ed ALVINN network, which creates an output 
steering displacement and IRRE confidence 
measure. By monitoring these values, the sys- 
tem is able to determine when the exit lane 
begins. The IRRE confidence in the exit-lane 
network will become high, and its output dis- 
placement will match that of the driving 
view when the exit ramp is present. (The dis- 
placements will match because the driving 
and exit lanes are parallel, and the exit view 
is not rotated with respect to the road. 

After the exit lane has been detected, the 
driving-lane network is no longer used, and 
the vehicle is controlled using only the out- 
put of the exit-lane network. The exit view is 
incrementally shifted both laterally and lon- 
gitudinally toward its standard location in 

front of the vehicle. The lateral component of 
each shift results in an image in which it 
appears that the vehicle is offset to the left of 
its proper driving position in the exit lane. To 
recenter the vehicle, the network produces an 
output indicating that the vehicle should 
steer to the right, recentering it with respect 
to the image and moving it further into the 
exit lane. The network confidence fo! each 
new virtual view is required to be above a 
threshold for two iterations before the view is 
shifted again. This process continues until 
the exit view has reached its standard posi- 
tion, and the vehicle has completely transi- 
tioned into the exit lane. 

Typical road scenes, both before and after 
an exit lane is present, are shown in figure 
17. In each image, the driving view is out- 
lined in black, and the preprocessed image 
created from it, along with its associated out- 
put-displacement vector and bar graph repre- 
sentation of its IRRE measure, is shown in 
the lower left corner of each image. The exit 
view is outlined in white, and the items asso- 
ciated with it are to the right of those for the 
driving view. In the top image, the IRRE 
confidence value for the exit view is low, and 
the output-displacement vector does not 
match that of the driving view. However, in 
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Figure 17. Exit-Ramp Detection Images. 

the lower image where the exit lane is pre- 
sent, the IRRE response of both networks is 
high, and their output displacements are 
nearly identical. 

Of the 20 logged attempts to detect and 
traverse exit lanes on a rural interstate high- 
way, 19 were successful. The attempts were 
approximately evenly spread across three dif- 

ferent ramps. The same driving- and exit-lane 
networks were used for every attempt except 
for the single failure, where a different exit- 
lane network was used (thus causing the fail- 
ure). hit-ramp detection occurred at approxi- 
mately 55 mph, and traversal was done at 
speeds between 35 and 50 mph. 

The system was instructed to begin looking 
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Figure 18. Vehicle Movement While Avoiding an Obstacle. 

capability of a lane-keeping system. for the exit lane between 100 and 800 meters 
before it actually occurred and begin transi- 
tioning onto it as soon as it was found. Detec- 
tion was robust and consistent, occurring 
immediately after the lane appeared centered 
in the exit view. Finally, there were no false 
positives, where the  system incorrectly 
believed that the exit lane was present. 

The system performance differed the most 
in the traversal part of the task because of the 
exit-lane network and the view that was used. 
This view was positioned so that the network 
would learn the most visible feature in the 
scene-the shoulder-to-off road lane bound- 
ary. (The white lines on the concrete roadway 
were not a large enough feature, and the exit 
lane was too lightly traveled for noticeable oil 
spots to  be created.) Choosing this view 
meant that  when the  shoulder width 
changed, navigation performance would suf- 
fer. In practice, this led to consistent over- 
shoot during navigation of the particular exit, 
which had a wider shoulder than that on 
which the network trained. 

Obstacle-Avoidance Maneuvers 
Although most systems are designed to keep 
the vehicle in the center of the driving lane, 
there are times when this behavior is not 
desirable. Obstacle avoidance is one such sce- 
nario. At least three reasons, besides avoiding 
a collision, can be given why moving the 
vehicle from the center of the driving lane 
when an obstacle is detected is an important 

First, the current state of automotive obsta- 
cle-detection technology precludes the detec- 
tion of typical highway obstacles at distances 
significantly greater than the minimum stop- 
ping distance for vehicles traveling at the 
legal highway speed. If the systems do not 
detect the obstacle immediately and begin 
braking, the vehicle will not be able to avoid 
hitting the obstacle by stopping. 

Second, many obstacles will enter the driv- 
ing lane at a distance closer than the mini- 
mum stopping distance of the vehicle. In this 
case, even immediate detection will not allow 
the vehicle to avoid a collision by stopping. 
The only way to  miss the  obstacle is to  
swerve from the current driving lane. 

The final reason relates not to the capabili- 

detection system but rather to following vehi- 
cles that are not equipped with it. In these 
situations, even if the detection system finds 
an upcoming obstacle in time to slow the 
vehicle to a stop, it might not be the safest 
maneuver because following vehicles might 
not have similar stopping ability. Thus, to 
avoid being rear ended by following vehicles, 
it might be necessary to swerve from the driv- 
ing lane to avoid hitting an obstacle. 

A separate swerve system is not necessary 
to implement an obstacle-avoidance maneu- 
ver. Active control of virtual camera views, 
similar to the techniques used for lane chang- 
ing, can be used with ALVINN to accomplish 

ties of the vehicle equipped with the obstacle- ! 

I 
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this maneuver. 
To execute this maneuver, the lane-chang- 

ing control algorithm was modified into what 
is called the swerve and offset driving algorithm 
(SODA). Instead of moving the vehicle com- 
pletely into the destination lane, SODA only 
offsets the vehicle from the center of the driv- 
ing lane by a prespecified amount and then 
returns it to the normal driving position. This 
maneuver effectively allows the vehicle to 
swerve to  miss an obstacle in the driving 
lane. This maneuver is shown in figure 18. 

Key points of the SODA maneuver are as 
follows: First, IRRE confidence and road-mod- 
el constraints are not enforced so that the 
maneuver takes place as quickly as possible. 
Although there is some lag between the virtu- 
al camera view location and the expected 
vehicle location because of the decoupling 
from the lack of constraints, the vehicle exe- 
cutes a smooth, stable maneuver. Second, 
after the vehicle has reached the apex of the 
maneuver, it does not begin to return to the 
destination lane immediately but, rather, 
drives with the specified offset for a predeter- 
mined distance. This hold time allows for 
some margin of error with respect to the actu- 
a1 location of the obstacle. 

Approximately 10 left-to-right and 10 
right-to-left swerves were logged. All were 
successfully completed. The obstacle was 
detected at distances between 40 and 60 
meters by the test driver. After the test driver 
indicated an obstacle was present, the system 
moved the vehicle to an offset of 2.25 meters 
from the driving-lane position using 8 virtual 
camera views. The system held the vehicle at 
this position for 0.5 seconds and then 
returned it to its normal position in the driv- 
ing lane. 

Intersection Navigation 
Another step in the evolution of autonomous 
driving systems is the intelligent handling of 
road junctions and intersections (Muller slid 
Baten 1995; Kluge and Thorpe 1993; Pomer- 
leau 1993; Rossle, Kruger, and Gengenbach 
1993; Struck et al. 1993; Siegle et al. 1992; 
Ulmer 1992; Crisman 1990; Kushner and Puri 
1987). The techniques presented in this sec- 
tion are based on a data-driven, active philos- 
ophy of vision-based intersection detection 
and traversal Uochem 1996). This section 
describes the application of virtual active 
vision tools to this area and presents the algo- 
rithms that make autonomous detection and 
traversal of intersections possible. The capa- 
bility is based on geometrically modeling the 
world: This model is utilized to accurately 

image interesting and relevant parts of the 
intersection using virtual cameras and active 
camera control and by monitoring ALVINN’S 
response to the created images. 

ALVINN, enhanced with virtual active vision 
tools, can be used to detect and traverse road 
junctions and intersections in two different 
scenarios: In the first scenario, the system 
only has knowledge that an intersection is 
present in front of the vehicle. The system 
does not know the orientation of road 
branches that are intersecting at this road 
junction. In this scenario, the goal is to locate 
each intersection branch. 

In the second scenario, ALVINN has a priori 
knowledge about an upcoming intersection. 
The information does not specify where the 
intersection is actually located, only that it is 
approaching. With this information, appro- 
priate virtual camera views can be created, 
and correct networks can be associated with 
each. The location and orientation of each 
virtual camera, and the type of network used 
with each, is dependent on the type of road 
that is expected to be encountered. When the 
road or intersection to be detected is present, 
the virtual cameras will image it in a way that 
is meaningful to ALVINN’S neural network. By 
continually monitoring the network’s con- 
fidence for each virtual camera image, the 
system can determine when the intersection 
is present. 

Two sets of experiments were conducted to 
assess the usefulness of virtual cameras for 
autonomously detecting roads and intersec- 
tions. The goal of the first set of experiments, 
which were performed on the Navlab 2, was 
to test the basic ability of virtual cameras to 
create images that were usable by ALVI” for 
intersection branch detection. The second set 
of experiments used the Navlab 5 vehicle, 
which was equipped with a roof-mounted 
pan-tilt platform instead of a fixed camera. In 
this set of experiments, the goal was to use 
active camera control to enhance the perfor- 
mance of the detection and traversal algo- 
rithms. 

Experiment 1: Intersection 
Branch Detection 
For this experimental set, the vehicle was 
positioned approximately 35 meters off the 
road that was to be detected and aligned per- 
pendicularly to it. A virtual view rotated 90 
degrees to the right of straight ahead was cre- 
ated. This view was placed 20 meters in front 
of the vehicle (figure 19). The vehicle was 
instructed to move along its current heading 
until the system detected the road. 
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moved so that it imaged areas between the 
vehicle and the road, on  the road, and 

were taken when the vehicle was at distances 
of 25, 20, 15, and 10 meters from the center 

beyond the road. Specifically, actual images 

i’ 
Road 

I 

~ 

Actual 

B -  

Virtual Camera 
View 

- 35 meters 

20 meters 

Figure 19. Road-Detection Scenario. 

To accomplish detection, every 0.3 seconds 
as the vehicle approached the road at a speed 
of about 5 mph, a virtual image was created 
and passed to the system’s neural network. 
The network produced an output-displace- 
ment vector and an IRRE confidence value. 
To determine when the system had actually 
located the road, the IRRE metric was moni- 
tored. When this metric increased above a 
user-defined threshold value, which was typi- 
cally 0.8 out of 1.0, ALVINN reported that it 
had located the road. 

Application of IRRE to Road Detection 
Because the IRRE metric is the key to the 
intersection branch-detection process, 
emphasis was placed on evaluating the metric 
in typical branch-detection scenarios. Using 
the IRRE metric to indicate when roads are 
present in the input virtual image assumes 
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Figure 20. Input Reconstruction Reliability Estimation Response to Different Camera Images. 

of the road. Virtual camera images were aeat- 
ed at one-meter intervals on either side of the 
expected road location. For example, using 
the actual image taken 20 meters from the 
road center, virtual views were created every 
meter between the distances of 14 meters and 
29 meters. 

For each of the actual images, virtual cam- 
era images were created at the  interval 
specified earlier and shown to a network pre- 
viously trained to drive on the road. The out- 
put road location and the IRRE confidence 
metric were computed. The results of this 
experiment are shown in figure 20. This 
figure shows the IRRE response as a function 
of the virtual camera distance in front of the 
vehicle for several actual images taken at dif-  
ferent distances from the road. (Data from 
the different actual images are represented by 
different curves in the graph.) For each actual 
image, the network's IRRE response clearly 
peaks near the expected road distance. As the 

virtual view moves closer to the road, the 
IRRE response increases, peaking when the 
virtual view is directly over t he  road. 
Response quickly falls again after the view 
passes over the road. The peaks in all the 
curves have IRRE values greater than 0.80. For 
comparison, when the system is driving on a 
familiar road, the IRRE response is typically 
between 0.65 and 0.95. The peaks in each 
IRRE curve actually occur about two meters 
past the actual road center. This error results 
from three causes: (1) a violation of the flat- 
world assumption, (2) errors in camera cali- 
bration, and (3) improper initial alignment to 
the road. 

This graph shows that both assumptions 
stated previously are basically correct: The 
IRRE response is low when the network is not 
being presented road images, and the IRRE 
response is high when the network is being 
presented accurately imaged virtual views. 

The relationship between the input virtual 
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Figure 21. Input Reconstruction Reliability Estimation Values for vp ica l  Detection Images. 

image and the IRRE value associated with the 
image can be better seen in figure 21. It 
shows virtual images created at different dis- 
tances in front of the vehicle along with the 
IRRE response they solicit. In figure 21a, the 
road is barely visible in the top left corner, 
and as expected, the IRRE response is very 
low. As the virtual view is moved forward, it 
begins to image more of the road, as shown 
in figure 21b. The IRRE value increases corre- 
spondingly. The trend continues until the vir- 
tual view is centered over the road, as shown 
in figure 21d. At this location, the IRRE value 
is at its peak. 

Experiment 2: Intersection-Traversal 
Experiments on the Navlab 5 
After the intersection branches have been 
detected, traversal can begin. A robust traver- 
sal algorithm must overcome two potential 
problems: (1) a fixed-camera location and (2) 
violations of the assumptions about the 
geometry of the road branch. The fixed-cam- 

era problem, which limits the effective field of 
view of the system, was overcome by simply 
placing the camera on a pan-tilt mount locat- 
ed on the roof of the vehicle. The geometric 
constraint-violation problem, which caused 
poor traversal performance in prior experi- 
ments, was resolved by using image-derived 
information to continually update the esti- 
mate of the branch location and orientation. 
Adding these capabilities allowed the system 
to reliably detect and navigate two test inter- 
sections. The first was a Y intersection in a 
park near campus, and the other was a T junc- 
tion from a driveway onto a rural road outside 
Pittsburgh. Although not exhaustive, these 
two locations are typical of intersection 
geometries encountered in everyday driving. 

Detection with Known Geometry and 
Unknown Location 
In this experiment, the goal was to move 
along a single-lane road, search for and detect 
a branch of Y intersection, and drive onto it. 
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Figure 22. Intersection Branch Detection from a Moving Vehicle. 
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RALPH 
lthough ALVINN was very successful, it was not without 
drawbacks. The biggest was its relatively long training A time because of the quick changes in road appearance. 

A better system would be able to adapt to  different road 
appearances very quickly and do so before the vehicle actual- 
ly reached the new road type. To resolve this problem, 
Pomerleau developed RALPH (rapidly adapting lateral position 
handler) in early 1995. Like ALVINN, RALPH is a vision-based 
adaptive system that can learn the current road features. 
Instead of using a neural network to learn, it uses a weak 
model of road geometry and image reprojection to extract 
and adapt to the relevant features for driving. 

To locate the road ahead, RALPH first resamples a trapezoid- 
shaped area in the video image, much like a bird’s-eye virtual 
camera, to eliminate the effect of perspective. RALPH then uses 
a template-based matching technique to find parallel image 
features in this perspective-free image. These features can be 
as distinct as lane markings or as subtle as the diffuse oil 
spots from previous vehicles down the center of the lane. 
RALPH rapidly adapts to varying road appearance and chang- 
ing environmental conditions by altering the features it uses 
to find the road. This rapid adaptation is accomplished in 
under one second without human intervention. 

Because RALPH can exploit any visible features running par- 
allel to the lane, instead of relying exclusively on the presence 
of distinct lane markings, it can operate in a wider variety of 
situations than previous road-following systems. In one 
experiment, called No Hands across America, RALPH drove the 
Camegie Mellon University Navlab 5 test-bed vehicle 98 per- 
cent of the 2850-mile journey from Washington, D.C., to San 
Diego, California (Pomerleau and Jochem 1996). During the 
trip, RALPH drove at an average speed of 63 rnph in conditions 
including bright sunlight, dusk, rain, and nighttime. During 
one stretch in Kansas, RALPH drove continuously for 69 miles 
without the safety driver touching the steering wheel. 

The 2 percent of the trip during which manual intervention 
was required included a nighttime encounter with a 10-mile 
stretch of freshly paved highway that had not yet been paint- 
ed with lane markings. Other difficult situations included driv- 
ing directly into the setting sun and driving through cities. 

Near-term applications for the RALPH system include using 
it as a warning system to alert drowsy or inattentive drivers 
when they begin to drift off the road. Every year, this type of 
accident results in nearly 15,OOO deaths on U.S. highways. 
RALPH might also play a role in the automated highway sys- 
tem, where it could automatically steer to keep the vehicle in 
its lane. 

For more information about No Hands across America and 
RALPH, see the web page http://www.cs.cmu.edu/-pomerlea 
/nhaa.html. 
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To accomplish this set of tasks, the moveable 
camera was required. This camera could be 
positioned so that the road, as well as a sub- 
stantial portion of the anticipated road- 
branch location, could be imaged. If a fixed 
camera had been used, the number of branch 
locations and the amount of actual and virtu- 
al camera-view overlap that was possible 
would have been limited. 

Initially in this scenario, ALVINN controlled 
the vehicle in normal lane-keeping mode. See 
figure 22a. While driving, the system received 
a message that an intersection was approach- 
ing. Although the  exact location of the 
branch was not known, its orientation with 
respect to the current road segment was giv- 
en. Using this information, the system creat- 
ed the appropriate virtual camera view, called 
the detection view, which would properly 
image the branch when it appeared. For this 
experiment, the target road branch was ori- 
ented approximately 40 degrees left of 
straight ahead. In addition to being angled 40 
degrees, the detection view was typically 
located 7 meters in front of the vehicle. This 
distance was selected so that the branch 
would be detected enough in advance to per- 
form the  traversal maneuver but close 
enough so that violations in the flat-world 
assumption would not become significant. 

After creating the detection view, the sys- 
tem determined if the current pan location of 
the actual camera was sufficient to image 
both views completely. If not, which was typ- 
ically the case, the system automatically 
panned the camera so that the largest portion 
of the detection view was in the field of view 
of the actual camera while it maintained the 
entire driving view in the actual camera’s 
field of view. See figure 22b. Note that after 
the actual camera has been panned, it is no 
longer in the same orientation as when the 
ALVINN network was trained. However, because 
the virtual camera is at a fixed location with 
respect to the vehicle and is independent of 
the actual camera location, the images it cre- 
ated allowed ALW to continue driving reli- 
ably. 

New images from the detection view were 
created approximately four times a second 
and passed to ALVINN’S neural network for pro- 
cessing. The intersection branch was consid- 
ered detected when the IRRE confidence val- 
ue of the  network, in  response to  a 
detection-view image, became greater than a 
predetermined threshold value. See figure 
22c. The threshold value was typically set to 
0.75. When detection occurred, the system 
indicated this to the safety driver who 
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Figure 23. Searching for T-Intersection Branches. 
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stopped the vehicle. At this point, the system 
began to localize the intersection branch and 
navigate through the intersection. This pro- 
cess is described in detail in later sections. 

Detection with Unknown Geometry 
and Known Location 
This intersection-detection scenario is the 
opposite of the previous. In this case, the 
location of the intersection was known, but 
the geometry of the intersection was not. 
Specifically, ALVINN had knowledge about 
where the center of the intersection was 
located with respect to the vehicle but did 
not know the orientation of any of the inter- 
section’s branches. The goal was to find each 
branch and pass its location to a higher-level 
knowledge source that could request that one 
of the branches be taken or store the informa- 
tion for later use. 

The branch-detection process began with 
the vehicle located a known distance from 
the intersection center. The detection algo- 
rithm uses a radial search technique to create 
virtual camera views that image different 
hypothesis branch locations. Virtual views are 
created a fixed distance from the intersection 
center at varying orientations. For this experi- 
ment, the angular change between hypothe- 
sis views was 45 degrees, and the vehicle’s dis- 
tance from the intersection center ranged 
between 7 and 10 meters. Images taken at 
each of these hypothesis branch locations are 
shown for the T intersection in figure 23. Fig- 
ure 23f shows which hypothesis intersection 
branches the system believes are likely to be 
actual branches, as determined by the simple 
detection method described in the next para- 
graph. 

As before, the basis for signaling detection 
is a high IRRE value. If the hypothesis view 
images an actual road branch, the corre- 
sponding IRRE confidence metric will be 
high, and the orientation of the branch being 
examined can be saved for further processing. 
Figure 24 shows enlarged versions of the pre- 
processed ALVINN image from each of the first 
five images of figure 23. Along with the pre- 
processed image is the IRRE confidence value 
that ALVINN’S network produced when shown 
the image. For preprocessed images created 
from virtual cameras that did not image actu- 
al road branches, the IRRE value is very low, 
but for the images that were of actual road 
branches, the confidence value is significant- 
ly higher. From this examination, it is evident 
that by thresholding based on the IRRE value, 
hypothesis views that image actual road 
branches can be discriminated from those 

that do not. 
After the branch orientations had been 

established, the system waited for the safety 
driver (or other knowledge source) to indicate 
which branch should be taken. 

Intersection Localization and Traver- 
sal Using Active Camera Control 
Before traversal takes place, the road branch 
must be localized to a greater degree of accu- 
racy than was done for detection because of 
ALVINN’S ability to correctly respond to images 
in which the vehicle appears misaligned with 
the road. Thus, the exact location and orien- 
tation of the road branch with respect to the 
vehicle is not precisely known. Because later- 
al translation and orientation errors in virtu- 
al-view alignment to  the road cannot be 
determined from a single road image and its 
associated output, the following two-step 
branch-localization process must take place. 

The first step in localizing the branch fur- 
ther is to use the output displacement of the 
network to update the position of the virtual 
camera imaging the road branch. Localization 
is done by moving the view laterally, perpen- 
dicular to the hypothesis branch direction, 
for a distance equal to the output displace- 
ment of the network. After the view has been 
moved, an image is created from this new 
location and passed through ALVINN’S net- 
work, producing another output displace- 
ment that is again used to adjust the view. 
This process is continued until the output 
displacement of the network changes sign, 
meaning that the current and last view have 
“bracketed” the view location that will pro- 
duce zero output displacement. In this last 
step, the final displacement from straight 
ahead is very small. 

Figure 2Sa to 25d shows the progression of 
view locations during this portion of the 
localization algorithm. The input image and 
associated output are shown in the lower left 
portion of the image. Note how the output 
displacement from straight ahead, shown 
above the preprocessed image, decreases as 
the virtual view becomes better aligned with 
the road branch. 

Although the first phase of road-branch 
localization causes the output displacement 
of the network to become nearly zero, the ori- 
entation of the view with respect to the road 
branch cannot be assumed correct. Figure 26 
illustrates this concept. In this figure, the pre- 
processed image, along with ALVINN’S output 
displacement created using each image (when 
the vehicle is in both the left and the right 
configurations with respect to the road), is 
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E 

Figure 24. Images and Input Reconstruction Reliability Estimation Values for the T Intersection. 
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Figure 25. Lateral and Angular Branch Localization. 
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Figure 26. Possible Alignments with Zero Output Displacement. 

shown. Note that in each case, the displace- 
ment is near zero although the vehicle is only 
properly aligned with the road in the right 
example. This discrepancy occurs because 
ALVI" is trained to produce the displacement 
required to return the vehicle to the center of 
the road the look-ahead distance in front of 
the vehicle. In both cases, the requisite dis- 
placement is near zero. 

To accurately determine the intersection 
branch orientation, a second view is required. 
This view, called the projection dew, is typical- 
ly created between three and five meters in 
the direction of the current estimated road- 
branch orientation. Figure 27 shows the actu- 
al road scene (figure 25e) along with a dia- 
gram of the original and projection-view 
arrangement. 

If the original view is properly aligned with 
the  intersection branch and accurately 
reflects the branch's location and orientation, 
creating an image using the projection view 
and passing it  through ALVINN'S network 
should yield an output displacement close to 
zero. This is because the previous alignment 
step reduced the lateral offset of the original 

view to near zero, in effect centering the orig- 
inal view over the longitudinal axis of the 
road branch. If the original view is at the cor- 
rect orientation, projecting 5 meters along 
the branch orientation should also create a 
view that is centered over the longitudinal 
axis of the intersection branch. As shown in 
figure 27, the projection view is not centered. 
Although the original view has zero dis- 
placement, indicated by the centered Gaus- 
sian h u x p  of activation over the prepro- 
cessed image, it was not aligned correctly 
with the intersection branch. Because the 
original view was misaligned, the projection 
view is also misaligned, resulting in a nonze- 
ro output displacement. In figure 27, the 
Gaussian hump indicating the network out- 
put displacement created from the projec- 
tion-view image is shifted right to reflect this 
misalignment. 

The output-displacement difference from 
zero that the projection-view image produces 
is a measure of the misalignment in orienta- 
tion between the original view and the inter- 
section branch. By using the output displace- 
ment from the  projection view, the  

Articles 
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Original View 

Figure 27. Orientation Localization. 

projection distance, and the location of the 
original and projection views, the amount of 
this angular misalignment can be computed 
(figure 28). After rotating the original view to 

its correct orientation, its lateral position 
must also be corrected; the rotation correc- 
tion was made about the original view’s loca- 
tion, not about a point on the longitudinal 
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Given 
D1 = Displacement of Projection View image 

L = Lookahead Distance 

Y = Y offset of Original View 

P = Original View Location 

ComDute 
0 = Orientation Error 

D3 = Lateral Error 

L1 = L - Y  

D1 /5 .0=D2/L l  

02 =L1 * (D1 / 5.0) 

03 = D2 * COS(@) 

@ = atan(D1 / 5.0) 

Figure 28. Orientation and Lateral Offset Error Correction. 
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axis of the intersection branch. From the 
same information used to compute the orien- 
tation error, the lateral offset error, which is a 
result of the orientation error correction, can 
also be computed (figure 28). After both error 
values have been computed, they can be used 
to update the original view location and ori- 
entation so that it more closely matches the 
intersection branch geometry. Figure 25f 
shows the original and projection views after 
the entire localization procedure has been 
completed. The original view and the projec- 
tion view are both producing output displace- 
ments near zero, indicating that they are 
aligned with the longitudinal axis of the 
intersection branch. Once this localization 
step is finished, traversal of the intersection 
can begin. 

Traversal 
Two issues must be considered and resolved 
for intersection traversal to be successful: (1) 
tracking the branch as the vehicle moves 
through the intersection and (2) computing 
the correct steering arc to execute. 

The branch-tracking problem was solved 
by adapting the branch-localization algo- 
rithm presented in the previous section. Dur- 
ing traversal, the system continually updated 
the location and orientation of the original 
virtual camera view by repeating the align- 
ment procedure presented in the previous 
section. In addition, when the original view 
was about to move out of the field of view of 
the actual camera, the system automatically 
panned the actual camera appropriately. The 
ability of the system to correctly orient and 
localize the intersection branch during traver- 
sal is shown for the T intersection in figure 
29. Note that a camera pan occurs before 
figure 29b, 29c, 29e, and 29f. 

Creating an acceptable vehicle-control 
algorithm for navigating intersections was 
one of the most difficult tasks in this work. 
The majority of the methods tried caused the 
vehicle to either severely cut corners, over- 
shoot, or generally become misaligned with 
the road. A contributing factor to these prob- 
lems was the lack of accurate geometric infor- 
mation about the intersection branch as the 
vehicle turned. 

As shown in the traversal figures, this prob- 
lem was alleviated by tracking the intersec- 
tion branch using a combination of tradition- 
al and virtual active vision techniques. 
However, many of the vehicle-control algo- 
rithms still had difficulty matching the vehi- 
cle heading to the road Orientation. Based on 
this observation, the vehicle-control algo- 

9 

rithm shown in figure 30 was developed. This 
algorithm takes into account the branch ori- 
entation as determined by the localization 
algorithm. 

The vehicle control algorithm finds tan- 
gent points on two lines representing the 
vehicle’s current heading and the intersection 
branch orientation. The first tangent point, 
P1, is defined to be the current vehicle posi- 
tion, and the second point, P2, is on the 
intersection-branch axis. The distance along 
the branch that P2 is located, measured from 
the intersection center point, C, is defined to 
be equal to the distance from P1 to C. After 
being computed, this distance is held fixed 
throughout the intersection traversal. C is 
computed before traversal begins by finding 
the intersection point of the branch axis and 
the line representing the vehicle heading. As 
mentioned earlier, the orientation of the 
branch axis is not fixed at the hypothesis 
view orientation but, rather, is the refined 
branch orientation derived during the branch 
localization phase. 

This construction ensures that a circle can 
be found that will intersect P1 and P2 tangen- 
tially. The radius of the circle that intersects 
these tangent points is the arc that the vehi- 
cle uses to drive through the intersection. For 
each new image, the tangent point, P2, and 
the arc to drive are recalculated based on the 
new location of the intersection branch so 
that any errors in vehicle control, position- 
ing, pan angle, or nonlinear branch geome- 
tries are considered. 

Intersection Navigation Results and 
Discussion 
Using simple thresholding as the discriminat- 
ing technique, the system was able to success- 
fully detect each intersection branch in 33 of 
the 35 cases on the Y and T intersections. 
These trials were distributed about evenly 
over the moving vehicle Y and the stationary 
Y and T detection scenarios. In no cases did 
the system detect a branch that was not pre- 
sent. 

Both failure cases were in the T scenario. In 
one case, the system successfully detected one 
of the two branches. The other branch’s 
confidence value fell just below the threshold 
but was still much higher than any of the 
other three hypothesis locations. In the other 
failure case, neither branch was detected. For 
this case, of the two real branches that should 
have been detected, one did have a notice- 
ably higher IRRE value, but it was still below 
the detection threshold. The other branch’s 
IRRE value was not significantly different 
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Figure 29. T-Intersection Traversal Images. 
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Current Branch Current Vehicle 
Orientation Estimate Orientation 

The X intercept of L1 is the 
correct turn radius to steer. 

L1 

/ Turn Radiu 

section Center 

hicle Point P1 

Figure 30. Traversal-Turn Radius Determination. 

than any of the other branches. In this case, 
the problem can be attributed to a change in 
the ambient lighting, from overcast skies to 
sunshine, to which the camera was not able 
to  properly adjust. In any case, although 
detection is robust, it is not foolproof, and 
redundant branch-verification procedures are 
necessary. 

In all 34 scenarios in which the system 
detected at least 1 branch, it was able to prop- 
erly move the vehicle onto the branch and 
continue driving. The system was able to 
drive the vehicle onto the left and right 
branches of the T intersection as well as navi- 
gate onto the 45-degree branch of the Y inter- 
section. Although the control algorithm dur- 
ing traversal is simple, having a moving 
camera and tracking the  road branch 
throughout the maneuver allowed it to work 
reliably over the experimental domain. 

It is reasonable to assume that the detec- 
tion method will work for any road branch 
type that ALW can learn to drive on. If this 
assumption is true, this system will have an 

advantage over other road- and intersection- 
detection systems that require the researcher 
to program in new detection methods when 
new road types are encountered. 

Conclusions 
The ALVINN system has changed dramatically 
over the past nine years. From its beginning 
as a fragile system tied to the resources of a 
supercomputer, it has evolved into a reliable 
system capable of driving vehicles at highway 
speeds for long distances using modest com- 
puting resources. Enhancements to ALVINN 
have produced advances in the areas of neu- 
ral network training, autonomous on-road 
navigation, and computer vision. With the 
recent addition of a simple model of lane 
geometry, ALVINN now forms the core of a tac- 
tical driving system capable of changing lanes 
and navigating through intersections. 

ALVINN’S success can be attributed to a sin- 
gle design principle-build in the well-under- 
stood aspects of the autonomous navigation 

t 
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and ]earn the  remainder. O u r  a priori 
wldge of the geometry involved in driv- 

vlp 
the Core of ALVNN’S built-in func- 

Lpns, freeing the neural network to learn the 
more difficult aspects of image  processing. 

continue t o  search for new methods of  
,ncorporating geometr ic  i n f o r m a t i o n  into 
nttOnOmOuS driving systems while maintain- 
mg the abiljt!. to adapt t o  the changing situa- 
t,ons encountered i n  the real  wor ld .  One 
wrh method, which we  believe might  have 
mymi advantages over the ALM” neural net- 
work approach, is described i n  the sidebar on 
Lm (pomerleau and Jochem 1996). 
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