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Computer Vision as a
Physical Science

Takeo Kanade

14.1 Introduction

Vision is one of the most important perceptual capabilities that any autonomous
intelligent system, either natural or artificial, can possess in order to operate
in the real world. Computer vision encompasses the development of both the
computational theories and the technological means to realize artificial vision
systems with performance equal to or greater then that of humans.

The goal of computer vision turns out to be extremely difficult. Some of
the difficulties are technological, such as the requirements for huge amounts
of processing power, memory, and communication bandwidth. Other difficulties
are more fundamental. A large number of factors, such as object shape, illu-
mination, surface properties, sensor characteristics, and more, all contribute to
determining the color and intensity of image pixels; the effects of any single
factor are confounded by the effects of other factors. Consequently, many early
vision problems of recovering scene properties (such as shape) from images are
underconstrained. or ill posed, meaning that the images alone do not contain
enough information to uniquely solve them. Therefore correctly interpreting im-
ages and constructing descriptions from them requires additional constraints and
knowledge.

Yet, we humans seem to do very well at interpreting images. Given a two-
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346 Chapter 14. Computer Vision as a Physical Science

dimensional (Z2D)image we easily determine the correct interpretation of the
three-dimensional (3D) relationships among objects in the scene. We identify
objects consistently over a wide range of viewpoints and lighting conditions. e
determine surface properties such as roughness and reflectance from images. We
effectively utilize vision to map the world around us, enabling us to move with-
out collisions or to grasp objects accurately. Human vision is an existence proof
of a most powerful vision machine, which can deal very robustly with many dif-
ficult vision problems, such as distortions by projection, motion, stereo, texture,
shading, and color. In doing so, humans do not seem to use much knowledge
about the physical processes underlying those problems. In fact, most people
know very little about optics, geometry, and physics. Moreover, when given
images from exotic sensors, such as synthetic aperture radars (SAR). scanning
electron microscopes (SEM), and forward-looking infrared (FLIR)sensors, hu-
mans can often interpret them correctly without asking much about how the
images were created.

Historically, the fact that human vision provides a most compelling refer-
ence model and yet does not seem to rely on the knowledge of physical aspects
of vision led many vision researchers to rush out and attempt to invent vision
“algorithms” or build vision “systems” without first determining the information
that images actually contain. Attention naturally focused on phenomenological
performance, since it appeared that the underlying physical phenomena were
too complicated to model, that images were too noisy for reliable algorithmic
feature extraction, and that humans seemed to resolve such difficulties by us-
ing empirical domain-specific knowledge. Consequently, this approach was in-
evitably heuristic, since the major source of ideas wes introspection or analogy
from mechanisms that natural systems might use. The results from this approach
were hard to characterize and to generalize. Basic vision problems were neither
identified nor addressed.

However, attention has recently turned to putting the geometrical, physi-
cal, and optical processes underlying vision into a quantitative, computational
framework. Now the emphasis is on developing physical models for computer
vision. Such modeling reveals the structure of visual information: the exact in-
formation that is contained in an image, the limits of processing algorithms,
and the heuristic knowledge required to resolve any remaining ambiguity. Thus
algorithms derived from physical modeling are far more powerful and quantita-
tive, and their performance far more predictable and generalizable then previous
ad hoc methods based solely on heuristics. In fact. one of the most exciting dis-
coveries in recent computer vision research is that natural generic constraints
are often sufficientto solve many fundamental vision problems, some of which
had been thought impossible to solve without applying heuristics.

In the last 10years, the vision group of Carnegie Mellon University (CM
has been spearheading the development of a systematic theory for vision *
on physical knowledge. This theory. which | refer to as physically based .
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A “Box”line drawing

EXHIBIT 14.1
A “box’ line drawing.

emphasizes the use of knowledge about geometry, physics, optics, and statistics
to model and solve basic vision problems. It is appropriate on the occasion of
the CMU Computer Science 25th Anniversary to highlight our contributions to
this new approach to vision. This chapter will illustrate physically based vision
by using examples that my colleaguesand I have developed here at CMU, These
examples are drawn from three aess in computer vision: the determination of
3D shape from images; the analysis of object color and surface reflectiin, and
uncertainty in visual measurements. In each areg, | will use a (seemingly) simple
problem as the background, then present our solution, and then give a broader
perspective in that area

14.2 Geometry and Shape Constraints

14.2.1 A Problem: Interpreting Line Drawings

As the first example, consider the simple line drawing shown in Exhibit 14.1.
What shape does this represent? Most people would be quick to say that this
is a line drawing of a box with no lid. When asked about the reason for that
interpretation, they would say, “I learned it over the years,” or ‘That shape is
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the most familiar to me.” Though not incorrect, these answers simply duck the
guestions about computational aspects of vision.

The line drawing is 2D, and the interpretationof it is a 3D shape. In general,
many different shapes can give ris to the same line drawing. Therefore the
process of interpretation must resolve ambiguity. To reach a single interpretation,
some constraints about possible interpretations must have been used. Moreover,
these constraints must be very strong: not only do people tend to agree on a single
interpretation, but some people find the possibility of multiple interpretations
difficult to accept. The line drawing does not have any shading or color, so the
constraints must be geometrical in nature. The natural question to ask is, “How
far does geometry constrain the interpretation of tre line drawing?”

14.29 The Origami World

The study of computer interpretation of line drawings as three-dimensional
scenes has captured interest in computer vision from the beginning. Guzman
[1] wrote a program to segment line drawings into objects based on a collec-
tion of heuristic rules on the “strengths” of links between regions. Huffman
[3]discovered a mathematical way to capture the geometrical constraints of a
solid “rihedral™ world by using labels trat represent physical meanings of lines.
Waltz [32] extended the idea to include shadows as well as devising an efficient
procedure for labeling. However, the problem of multiplicity of interpretations
was not addressed. Moreover, the Huffman-Waltz labeling could not handle the
simple line drawing of Exhibit 14.1: it is classified as “impossible.” | developed
a theory of the Origami World [4] to begin to answer these questions.

Imagine a world that consists entirely of planar surfaces, which may be
folded, cut, or glued together only along straight lines. This world is named
the “Origami World.” In the Origami World. we can develop a mathematical
algorithm, which, given a line drawing like Exhibit 14.1, specifies all the shapes
that can generate the given picture.

In the Origami World, Exhibit 4.1 could be any one of eight different
shapes. Two of them are shown in Exhibit 4.2 by using special symbols to
represent shapes. The interpretation on the left represents a “normal” box like
the one we tend to consider. The interpretation on the right, however, represents
another shape, which does not look like & “normal” box, but can actually generate
the same picture. Moreover, the labelings shown in Exhibit 14.2actually specify
only the qualitative nature of the shape. For example, in the “normal® box
interpretation, humans think of only a rectangular box where the front walls
of the box meet & a right angle. However, any angle between 0° and 90° is
in fact possible and the resultant shape projects onto the same line drawing,
if other parts of the shape vary accordingly. Likewise, each interpretation in
Exhibit 14.2 actually represents a continuous family of possible 3D shapes that
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EXHIBIT 14.2

"Box" interpretations. Two are shown here by assigning Huffman's labels: +,
—, and 1 to each line. The labels signify the physical meaning of the lines.
The labels + and — stand for a convex edge, that is, the two surfaces meet
there and form convexity or concavity. respectively, when seen from the
current viewing direction. The label t stands for an occluding edge. That
means that the region to its right, when standing in the direction of the arrow,
occludes the region to its left. The interpretationon the left correspondsto a
"normal” box, where surfaces 1 and 2 form convexity and occlude surfaces 3
and 4 which form concavity. The interpretationon the right, however,
represents a "squashed" shape, since surfaces 1 and 2 also form a concavity.

can generate the same line drawing. Metaphorically speaking, there are 8 x oo
interpretations of Exhibit 14.1 in the Origami World. It should be remembered
that the real world is larger than the Origami World, and thus there are even
more possibilities since the real world is not limited to planes and straight edges.

14.2.3 Principle of Nonaccidental Regularities

Why, then, do we tend to consider only a single interpretation. a so-called rect-
angular box shape? To say "'the shape is more familiar'* does not really answer
the question, since most of us, in fact, carnot think of multiple interpretations.
We do not select a particular interpretation after we think of all the possibilities.
Rather we think of only the rectangular shape. Thus geometrically speaking,
additional shape constraints must be used in a relatively early stage in order
lo reach the particular interpretation. One interesting class of constraints can be
obtained from the principle of nonaccidental regularities (5], which states, "'Reg-
ularities observable in the picture are not from accidental alignments, but are
projections of real regularities.” Examples of the principle include the following.
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EXHIBIT 14.3
Skew symmetry.

O Parallelism: parallel lines in an image ae to be interpreted as parallel lines
in 3D.

O Texture gradiens: a gradient in the spacing of textured elements is inter-
preted as regularly spaced elements in the 3D world with a surface slant
relative to the viewer.

O Skew symmetry: skew symmetry in an image is interpreted as real symmetry
viewed from some unknown view direction.

Skew symmetry was a new concept that | introduced (5). As illustrated in Ex-
hibit 14.3, skew symmetry is an image feature in which a reflective property
is observed with respect 1 skewed axes, rather then perpendicular axes. Relat-
ing a skew symmetry in an image © a real symmetry in space creates strong

constraints on surface orientations. S N
An important point about nonaccidental regularities is that 3D regularities

in the scene always result in corresponding 2D regularities in the image, but the
inverse is not always true. For example, parallel lines in 2D could be the result of
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a particular alignment of nonparallel 3D lines. The probability of such an align-
ment is vanishingly small, however. The principle of nonaccidental regularities
formalizes the fact that the preferred interpretation of 2D regularities is in terms
of 3D regularities. Once we assert the principle of nonaccidental regularities,
We can use a mathematical technique, such as the gradient space representation
(6], to map the image properties into the constraints tret the interpreted shape
must satisfy. Those constraints can be used © narrow and screen the possible
interpretations while creating partial interpretations. Coming back to the box
example, we G actually prove tret the so-called rectangular natural box is the
only interpretation that can satisfy the nonaccidental regularities principle.

14.2.4 Perspective: Geometric Constraints

One of the contributions of the Origami World is that it demonstrated a simple
fact in vision: there are a multiplicity of possible image interpretations. and if we
want to reach a unigue interpretation, we must use constraintsor heuristics. Since
humans usually think of only a single interpretation, many vision researchers
accepted, probably too hastily, the requirement that a computer vision program
must also generate only a single interpretation. Early researchers attempted to
meet this requirement by incorporating heuristics, often implicitly, without un-
derstanding their effects, limitations, a- implications. In contrast, in the Origami
World, interpretation was constrained by the principle of nonaccidental regular-
ities, which enumerated a collection of rules relating image and world features,
and permitted an exact specification of the set of possible interpretations.

The individual rules of nonaccidental regularities may have been conceived
from observations of human perception, and they are heuristic in the sense that
they do not always hold. However, the principle of nonaccidental regularities
was applied in ways that are purely geometrical and rigorous. The implications
were clearly defined and therefore it was possible to predict the consequences
when rules did not apply. In this sense they are not ad hoc. This is in direct
contrast to the heuristic methods, ranging from Guzman'’s line-drawing inter-
pretation method [1] of the early 1970s D the use of global minimization of a
certain energy-related t&xm to resolve ambiguities in matching, smoothing, or
interpreting patterns. In these cases, the implications are neither clearly defined
nor predictable in terms of physical reality.

A series of works appeared in the last decade which formalized many of
the computational constraints which relate properties in the image domain © 3D
shape constraints. The contributions of our CMU vision group include a theory
for affine-transformable patterns by Kanade and Kender [6], Kender’s theory
of shape from texture (8], Shafer’s theory for recovering shape from occluding
contours of generalized cylinders [27], and, more recently. Krumm and Shafer’s
analysis of image spectrograms [12].
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14.3 Color and Reflectance

14.3.1 A Problem: Highlights in Color Photographs

Examine the color image of Color Plate 1. In addition to cylindrical and toroidal
shapes of objects, we can readily recognize tret the object surfaces are plastic
and glossy in appearance. Also, we can conclude that the bright white regions
are due to highlights. Interestingly, we do not interpret them as white paint on
the surfaces.

Shape, surface glossiness, and specularity are scene properties that we seem
to be able to deduce from the color image, although there is no apparent direct
one-to-one mapping between observable features in the image and those scene
properties. From introspection we may develop a heuristic rule for the task of
extracting highlights from the image, such as

If intensity > 100, then highlight.

This rule may work most of the time. It is clear, however, that this rule does
not capture the essence of highlights. Thus it will fail, but we don’t know
when ar exactly why. Highlights in a color photograph must be a result of
some physical process that involves shape, surface properties, and illumination.
Isn’t there a more systematic way, based on physical knowledge rather than
phenomenological descriptions, to detect highlights, and even to recover some
of the properties of the object and the illumination from the image?

14.3.2 Dichromatic Reflection Moddl

Shafer, Klinker, and myself have worked on this color understanding problem
since 1984. Our approach was to call upon a physical model of color reflection.
The model we used is called the dichromatic reflection model [28] for opaque
dielectric materials, such as plastics. Exhibit 14.4 sketches the primary reflection
processes. When light from the illumination source hits the surface, it smkes
the interface with the transparent medium. Some of the light is reflected imme-
diately according © Fresnel’s laws. This light, which we call surface reflection,
has a color that is typically about the same as the illuminant. Surface reflection
accounts for the glossiness. Surface reflection is highly directional—if the sur-
face is smooth, the surface reflection will be very specular, creating highlights;
if the surface is rough. it will be somewhat diffused.

The light that is not reflected at the interface penetrates into the bulk of
the material, and there it begins to scatter off the pigment or other colorant
particles in the material. Eventually, some portion of it is reflected back across
the interface into the air; we call this body reflection. Light from body reflection
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S Surface Reflection
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EXHIBIT 14.4
Dichromatic model of color reflection.

has a color that is determined by the object colorant as well as the illuminant. A
typical and appropriate model for the strength of body reflection is the Lamber-
tian model, which states that the amount of reflection is uniform in direction and
is determined by the product of the reflectivity of the material and the cosine
of the incident angle. Thus, surfaces facing more toward the light source show
brighter color, while those facing more away from it show darker color. Body
reflection is responsible for “object color,” which is the characteristic color of a
specific object, and its shading provides an important clue to the perception of
the object shape.

In summary, the dichromatic reflection model states that the observed color
at each point in the image consists of two colors, the surface reflection color
and the body reflection color. Hence, the name “dichromatic reflection model.”
Under the same illumination, the two component colors themselves do not vary
across surfaces with the same color, but the magnitudes (relative intensities) of
these color components vary from point to point due to variation in the geometric
relationships between the surface and the light source. Thus if we represent a
color by the 3D color vector C = (R, G,B), the color at (ty) in an image is

given by

C(Ia y) = m,(l:, y)Cs + mb(.‘lf, y)Cb

where:
C, = (R,,G,, B,): color of surface reflection
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iG

EXHIBIT 14.5
Color distribution is constrained on a dichromatic plane.

Cy = (Ry, Gy, Byp): color of body reflection
m,(z,y) and mp(z, y): scalar magnitudes of surface and body reflections, respectively.

An interesting interpretation of this model arises if we examine the his-
togram of image colors from the points belonging to a single surface. According
to the model, the observed color vector C(1 y) at a pixel is a linear combination
of two vectors C, and C,. This means that even though the red plastic doughnut
in Color Plate 1 includes various colors in it-bright red, dark red, and even
white—they cannot be distributed arbitrarily in the color space. They must be
on the plane, called the dichromatic plane, spanned by the two vectors as shown
in Exhibit 14.5. Moreover, for most points. there is very little surface reflection;
thus m,(z,y) is nearly zero and the color simply lies somewhere along the
vector C,. We call this a matte line. All the points with significant amounts of
highlight come from a small area on the object surface and thus have nearly the
same amount of body reflection m,(z,y). Thus they form a sort of spike, called
a highlight line, in the color space whose direction is parallel to the illuminant
color C,.

This observation has been verified experimentally, both by ourselves [10]
and other researchers (13,31]. In fact, Tominaga {31} has found that the model
holds for a wide range of material surfaces. In the upper left image of Color Plate
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Body Reflection Image

EXHIBIT 14.6
Body reflection image.

2, a plastic orange cup is illuminated by a white light. The upper right image
of the plate shows the histogram of the color image. As expected, we see an
L-shaped distribution in a color space. We observe a matte line in the direction
of the body reflection, C,, and a highlight line in the direction of the surface
reflection, C,. The bend at the end of the highlight line is due to saturation of the
camera. The highlight is so intense that certain color components (in this case
the red value) have reached their maximum value, and can no longer change,
thus resulting in a bend, which we call the saturation line. By examining the
dismbution on the dichromatic plane, we can identify the matte line, the highlight
line, and the saturation line.

14.3.3 Separation of Highlights and Image Segmentation

We can now write a program (10] that analyzes the color distribution of a
given picture and identifies the matte and highlight lines. thereby calculating
the vectors C, and C,. Then, refemng to Exhibit 14.6, imagine that we project
all the colors in the dichromatic plane onto the matte line in the direction of the
surface reflection, i.e., along the vector C,. In other words, we force the value
of m, to be zero and calculate the color consisting of only the body reflection.
If we generate a picture from this projected distribution, we should see a picture
of the scene with no surface reflection. Since the surface reflation accounts for
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glossiness and highlight, the resulting picture should lose all the glossiness and
highlights and includes only shaded matte color. The lower right image in Color
Plate 2 is such a result for the upper left image. It should be noticed that not
only have we removed the highlight, but we have recovered the color behind it.
This is the picture we would see if the object was not made of plastic, but of a
material with a matte surface.

Similarly, if we project all of the colors on the dichromatic plane, along
C,, onto the vector C,, then we force m; to be zero. This means that we have
colors with only surface reflection and no body reflection. If we generate a
picture from this distribution, it will show only highlights; this is shown in the
lower left image in Color Plate 2. It should also be noted that highlights are not
binary phenomena; they have gray scale.

The algorithm just presented cannot be applied directly to our original
problem (see Color Plate 1), since the image includes multiple objects. The
color histogram of the whole image is shown in Color Plate 3 and clearly shows
that it consists of many L-shaped histograms, each of which must be treated
individually. If we know that a particular region of the image comes from
an object of a single color, the distribution of the color within that particular
region will follow our constraints. However, since the image includes multiple
colors, we have to find out which region corresponds to each color. In order to
distinguish each region, we have to know its true color, since the apparent color
in the image can vary significantly, even for the same object This is exactly the
same circular problem that computer vision researchers previously encountered
in segmenting color images into objects, and without a systematic model they
had to rely on the assumption of uniform color (24].

What we need to break the cycle is a way to group image points that
accounts for the color variation accountable by the physical model. In fact, all
we really need is a way to examine a small neighborhood of the image and
make a good guess about the reflection color vectors. Once we make such a
hypothesis about the model for each neighborhood, we can measure the extent
of the neighborhoods whose color distribution can be explained by the model
vectors, and then group together those neighborhoods. e have developed a
method for color image segmentation by devising techniques for creating and
testing such local hypotheses (9,11]. Color Plate 4 shows the result of segmenting
Color Plate 1. Notice that the segmentation is not affected by highlights or
shadings which have often fooled traditional image segmentation algorithms
based on apparent colors.

Once we have segmentation, we can apply the previous analysis to each
region and separate the body and surface reflections. In fact, since our segmen-
tation method hypothesizes reflection color vectors, the projection into reflection
components is a simple by-product of segmenting the image. Color Plate 5(a)
shows the body reflectionimage of the whole scene, and conversely, Color Plate
5(b) shows the surface reflection image.
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14.3.4 Perspective: Optical Constraints

Given the original input image, we have succeeded in automatically segmenting
highlights and in calculating the apparent, shaded color of the object. e did
not rely on any traditional heuristics based on clustering techniques or a phe-
nomenological theory of color perception. The physical reflection model of color
provided constraints that we exploited for analysis. In the pest, color segmen-
tation and edge detection almost always been based on grouping of points with
uniform or nearly uniform color [24]; but these techniques utterly fail when pre-
sented with an image of an object that has a bright highlight of a color different
from the object color.

It should be noted that we did not assume any prior knowledge about the
real colors and shapes of objects nor the real color and direction of the light
source in separating body and surface reflections. Actually, once we have the
separation, there is a possibility for recovery of these four unknowns from the
given image. First, since the body reflection image admits a Lambertian model,
we can apply the shape-from-shading method for shape recovery. Second, once
the shape (and thus surface orientations) is known, the locations of the peaks of
surface reflection provide constraints on the direction of illumination due to the
mirror-like reflection geometry. Third, the color of surface reflection roughly
corresponds 1 that of the illumination. Finally, combining the knowledge of
illumination color and the body reflection image will enable us to recover the
real object color.

In the early 1970s, Hom of Massachusetts Institute of Technology pioneered
the use of a reflection model in computer vision in his work on image intensity
understanding [2]. Various methods, notably shape from shading and photometric
stereo. were developed thereafter. They have suffered, however, from the use
of models of reflection that were too idealized (such as a pure Lambertian
model) and the lack of appropriate models to account for interreflections, It has
been recognized that formulation of more sophisticated and realistic models of
reflection to deal with a broader class of surfaces and to cope with interreflection
is necessary to make the approach more realistic and powerful.

Nayar, Lkeuchi, and Kanade proposed a unified reflectance model com-
posed of the diffuse lobe, the specular lobe, and the specular spike {21]. It
is capable of describing the reflection from surfaces that may vary from very
smooth to very rough. Another significant advancement deals with interreflec-
tion due to concave surfaces or concavities formed by multiple objects in the
scene. The interreflection causes almost all of the existing shape-from meth-
ods based on image intensity to produce erroneous results. Interreflection is a
very difficult problem for which very little research has been done [14]. Na-
yar, lkeuchi, and Kanade developed a theory of shape from interreflections and
demonstrated recovery of the shape of an object even under interreflection with
unknown surface reflectances (20]. Also, Novak and Shafer have been develop-
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ing a model for color interreflectionas an extension of the dichromatic reflection
model [26].

Appropriate physical modeling can result in practical, useful devices with
robust capabilities. Based on the unified reflectance model, we have built a new
device, called a photometric sampler, for surface inspection [19]. It uses extended
light sources and can extract reliably both shape and reflectance properties of
hybrid surfaces. Also, Nayar and Nakagawa developed a practical inspection
device for such surfaces as a tungsten paste filling in a via-hole on a ceramic
substrate thet has a size of about 100 microns and includes specular reflection
and 3D texture [22). Based on an appropriate model of reflection of rough
surfaces and focusing, the device can measure the shape with an accuracy of
several microns.

Also, in developing physically based vision. we came to realize the need for
a controlled environment where we can take images with accurate knowledge
of ground truth and where we can control lighting and camera parameters. Such
an environment is critical in order to accurately test and evaluate vision theories
and methods. Traditionally, in the computer vision community, the test images
were taken without much control, and therefore it wes often unclear whether a
theory being tested was incorrect ar the data were inappropriate for testing the
theory. We have built a unique facility called the Calibrated Imaging Laboratory
(CIL) {25]). The CIL consists of many television cameras including a very high
precision camera, controllable lighting, a high-precision 6-degrees-of-freedom
computer-controllablejig to mount and move cameras, filters, test objects, and
associated electronics. The CIL has made a significant impact on turning com-
puter vision into a quantitative scientific discipline, and hes introduced a new
area of research in how 1 obtain high-quality images for computer vision by
active control of the camera and lens (23].

14.4 Shape, Motion, and Uncertainty

1441 A Problem: Baseline and Uncertainty in Stereo

Stereopsis is one of the fundamental ways to measure depth. Exhibit 14.7(a)
illustrates the geometry for a binocular stereo system with the left camera L
and the right camera R separated by a baseline B. If an image feature point,
such as an edge, located at z, in the left image and an image point at zg in
the right image are projections of the same physical point P in space, then by
triangulation, we can measure the distance to P. This is the principle of depth
measurement by stereo vision.

In practice. the points zz and =z of features in the images can be located
only within a certain accuracy. This is due to both image noise and limited sensor
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(a) (b) (c)

EXHIBIT 14.7
Stereo geometry.

resolution. Uncertainty in the image-position measurements leads to uncertainty
in the final calculation of the scene point, as indicated by the diamond-shaped
region in the Exhibit 14.7(b). The uncertainty in depth can be reduced by in-
creasing the baseline (i.e., by spreading the cameras farther apart). since then
the triangle becomes shallower, making the position of the vertex less sensitive
to the orientation of the sides. TS is exactly the constraint that civil engineers
apply in surveying.

Finding pairs of corresponding points, z; and z z, that come from the same
physical point, usually called the correspondence problem, is actually the hard-
est part of the stereo problem. Making the baseline longer unfortunately makes
the correspondence problem more difficult. The longer the baseline is, the more
different the right and left images are from each other. The same point in space
may appear differently due 0 a different viewpoint and foreshortening. or may
even appear in only one image due to occlusion. Here we have a fundamental
dilemma in stereo vision: as we make the baseline longer, the depth measure-
ment becomes more accurate, but at the same time the matching becomes more
difficult. and vice versa. How can we solve this dilemma?

14.4.2 Managing Uncertainty for Incremental Stereo

Matthies, Szeliski. and Kanade have analyzed the structure of uncertainty in
stereo measurements [17). Imagine that we place one more camera M in the



360 Chapter 14. Computer Vision as a Physical Science

middle of the baseline as shown in Exhibit 14.7 (c). This creates two more stereo
problems: one between cameras L and M and the other between cameras A7 and
R. With shorter baselines, the correspondence problems for the two intermediate
stereos are less severe than the original stereo between L and R, even though
the depth measurements by them would not be as good. By solving the two new
matching problems successfully, we have solved the original matching problem,
because the middle point corresponds to both the left and right points. This idea
is called trinocular stem, and has been studied by several researchers to exploit
tre additional constraints that the middle camera provides.

However, an interesting question that had not been asked before concerns
the uncertainty of measurements. Do the two new measurements due to the
middle camera M help reduce the uncertainty in the depth measurement of
P? Matthies and Shafer (18] gave a way to relate the uncertainty of image
measurements with the uncertainty of depth measurement and model it by a
covariance. By using that formulation and the theory of optimal estimation, it
was shown that the answer to the question is “yes” despite the fact that the two
additional measurements are expected to be more uncertain than the original
one. Though straightforward, this conclusion is very significant.since bringing
in the third camera helps not only to simplify the matching problem but also
reduce the uncertainty. W\e can add more camera positions between L, A/, and
R for further improvement.and so on.

An analysis proves that if N cameras are placed between L and R, then
the uncertainty of the depth measurement decreases at the rate of N cubed. That
is

2 1 2

o (N) ~ Fac
where ¢?( N) is the uncertainty of the final depth measurement with N cameras,
and &2 is the uncertainty of the image-position measurement. Experiments using
real images demonstrated that the uncertainty decreases as expected, as shown
in Exhibit 14.8 which plots a(N) versus the number of cameras.

The above derivation may have given the impression that the solution re-
quires processing of all N images at the same time. Rather. the solution can be
implemented sequentially by using pairs of images from neighboring cameras
at a time. Thus we can devise an incremental stereo system that produces and
refines a depth map as a single camera is moved sideways. For this purpose we
reformulated the system equations in terms of the current frame by using the
feature position z; in the i-th image and the inverse of the depth 2 to be the
state variables of a dynamic system. This reformulation allowed us to view the
incremental stereo as an instance of dynamic system estimation and to apply the
Kalman-filtering technique.

The diagram of Exhibit 14.9 explains the method. A camera is moved from
left to right by a small amount at each step. The sequence of images is processed
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EXHIBIT 14.8
Uncertainty versus number of images.

by the method shown in the diagram. The first pair of neighboring images are
processed as a stereo pair. The resulting inverse-depth map, though very noisy,
is stored. The next pair of images are then processed similarly to produce the
second depth measurement. In the meantime, the stored depth map is transformed
into the depth map in the coordinate system of the next camera position. The
two depth maps are integrated by using the Kalman filtering technique, and
stored. The process repeats until the camera reaches the end.

An actual experiment was done using a scale model of a city in the CIL. Ten
images were taken in which consecutive images were taken only 0.05 in. (1.27
mm) apart. Thus the total baseline was only 0.5 in. (1.27 cm). while the distance
to the scene was 20 to 40 in. (50 to 100 cm). Exhibit 14.10 shows the first image
of the sequence. The final result was a depth map of the scene. Exhibit 14.11
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EXHIBIT 14.9
Depth map recovery by a Kalman filter method.

shows the depth map presented as a grey-level image, In which closer points
are encoded brighter. A perspective view of the reconstructed scene, made by
"'painting"* the original intensity image on the depth map is presented in Exhibit
14.12. We can see that the structure of the scene, including buildings, streets,
cars, trees, and a distant bridge, is well recovered.
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EXHIBIT 14.10
The first image of the sequence of ten images of a scale model of a city.

14.4.3 Perspective: Statistical Constraints

It should be noted that the above results were obtained for a stereo with an
extremely narrow baseline: 127 mm for the neighboring pair and 1.27 cm for
the farthest pair, and the triangle with a 1:100 ratio of baseline to scene depth.
As a result, each pair of stereo images are so close that the matching or corre-
spondence problem has become almost trivial. Therefore although many images
must be processed, the total computation has not increased by much. In fact,
there is a chance that it is reduced because the computation is now very local
and uniform. This was made possible because we analyzed and modeled the
structure of uncertainty in stereo, and developed the algorithm based on that
model.

In the past, literature on stereo exclusively dealt with correspondence prob-
lems. Qur work on incremental stem has shown that another important prob-
lem in stereo is management of measurement uncertainty. Uncertainty becomes
particularly important when the stem is used with a mobile robot for both re-
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EXHIBIT 14.11
The computed depth map.

covering the depth map and locating itself in the environment; in this case, the
uncertainty of depth measurements and the uncertainty of robot motion interact
and create a cycle of uncertainty [16). Mauhies and Shafer demonstrated that
appropriate modeling of depth uncertainty can greatly improve the accuracy in
recovering the robot motion [18]. Mauhies [15] developed dynamic stereo vi-
sion for using stereo Vvision bhoth to estimate the 3D structure of the scene. and
to estimate the motion of the rdoot as it travels through an unknown environ-
ment. The key idea is to monitor the uncertainty of the depth map and 0 use
appropriate stereo systems, either narrow baseline or wide baseline, depending
on the situation. Szeliski [29] developed a framework for Bayesian modeling of
uncertainty in low-level vision. His framework allows us to define and compute
a prior model of the scene, a sensor model and a posterior model.

A new stereo algorithm with an adaptive window developed by Kanade
and Okutomi [7] relates the disparity uncertainty with the matching uncertainty.
They showed that by modeling the disparity (inverse depth) variation within a
matching window, the uncertainty of matching can be evaluated. Therefore it
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Perspective views df the recovered depth map.

allows selection of the window size that results in the disparity estimation with
the least uncertainty.

Tomasi and Kanade [30] showed that, in the problem of recovering motion
and structure from a sequence of images taken from a long distance, it is far
more advantageous to recover the relative shape of an object directly, rather than
going through absolute depth. Their theory of shape-from-motionwithout depth
captures the effect of noise as constraints on the approximate rank of a matrix.
Based on the theory, they have demonstrated very accurate recovery of motion
(less than 0.02% error) and shape (less than 0.5% error) from a sequence of
images taken of an object of size 4 am from a distance of approximately 35
meters.
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145 Conclusion

The physically based theory of vision presented here has focused on determining
the information that is contained in images and developing tte constraints that
are applicable to extract the information. We have emphasized the difference
between heuristics that seem to work some of the time and constraints that are
correct for a well-defined range of situations. These constraints can be derived
from models of the geometry, physics, optics, and statistics of vision. Vision
based on physical models results in the formulation of problems in such a way
that extensions and modificationscan be clearly stated and researched. Moreover,
the limitations of such models can be deduced.

It may have been naticed that the presentation above included little or no
discussion about “algorithms” that perform the task of extracting information
or on “systems” or “computational mechanisms” that implement the algorithms.
In physically based vision, the emphasis is on the formulation of the physical
models and derivation of constraints; algorithms and implementations can be
developed based on the models. This approach is almost parallel to Marr’s three
levels in understanding vision {14}: computational theory; representation an’
algorithms; and implementation. Qur physically based theory is most ak:s &
Marr’s level of computational theory. in which the performance of the de -
is characterized as a mapping from one kind of information to another, tn.
abstract properties of this mapping are defined precisely, and its appropriateness
and adequacy for the task at hand are demonstrated. Qur theory certainly deals
with these issues rather than how to implement the theory efficiently on specific
hardware.

A subtle, yet important, difference between our work and that of the Marr
school is that our theory focuses on formulating the structure in which the
physical processes involved in creating or acquiring images encode information,
and in extracting the constraints that can be exploited in decoding images based
on the physical models. Marr was largely motivated by human visual perception,
0 the “what,” “why,” and “how” of computer vision were often justified relative
to human perception. e do not need to limit computer vision tasks to those for
which human visual perception systems have counterparts, Currently, humans
outperform machines by far in most tasks. Thus computer vision can learn much
from human visual systems. However, this should not mean that copying or
mimicking a human, in either defining goals (phenomenological performance),
devising solutions (introspections),or implementing algorithms (neurons), is the
best way to lead to the ultimate computer vision systems. In fact, machines may
well exceed humans in the future (and in some cases do so already).

In the past, a vision problem was often stated as, “Given an image, devise
an interpretation algorithm for ....” Vision researchers then rushed out to write
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a program for dealing with the given image. However, according to Marr {14],
vision is the process of discovering from images (data) what is present in the
(physical) world and where it is. If so, as with any physical science, a clear
technical understanding of the physical nature of the data (i.e., images) is rc-
quired for formulating a solution. The physical processes underlying vision takc
place before the interpretation of images starts. Hence, computer vision must be
a physical science. At least half of it.
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