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Abstract

We are developing a system capable of observing a human
performing a task and understanding the task well enough to
replicate it. This approach is called Assembly Plan from
Observation [6]. In order to replicate the observed task, we
have to analyze the entire sequence. This can be done by first
segmenting the task sequence into its constituent pre-grasp,
grasp, and manipulation phases [8]. This paper describes
the different analyses that can be done subsequent to the
temporal segmentation. These include human grasp recogni-
tion, extraction of object motion, and the spatiofrequency
(spectrogram) analysis of the manipulation phase.

1 Introduction

Current conventional methods to robot programming include
teach-by-guiding (e.g., [2]) and textual programming (e.g.,
[51), which have their deficiencies of inapplicability in haz-
ardous environments and requirement of skills, respectively.
Automatic programming methods (e.g., [13]) seek to reduce
the task programming burden, but face the problem of com-
binatorial complexities in path planning and grasp synthesis.
We are currently developing a system which has the capabil-
ity of observing a human performance of a task, understand-
ing it, and subsequently performing that task. This approach,
called Assembly Plan from Observation [8], relegates most
of programming effort to merely demonstrating the task.
(This approach is similar to Kuniyoshi et al.’s [11]; their sys-
tem emulates pick-and-place operations from visual observa-
tion.) In order to replicate the task, however, the system has
to be able to understand the actions performed in the task.
We are interested in analyzing tasks which involve grasping,
termed grasping tasks.

This paper describes our work on analyzing a grasping task
sequence, which is done after temporally segmenting it. The
temporal task segmentation is important as it serves as a pre-
processing step to identify the frames associated with the
phases. This information would then be used to focus on the
relevant frames in order to characterize the phases in the
task. For example, when the grasp phase has been temporally
located, the grasp can then be identified using the location of
the object and the hand configuration data [7]. In addition, by
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analyzing the motion of the object within the manipulation
phase, the type of motion can be extracted and determined.

2 Temporal segmentation of task sequences

The first step in analyzing a given task sequence is to break it
up into meaningful segments. A grasping task comprises
three identifiable phases: pre-grasp, grasp, and manipulation
phases. It has been demonstrated [8] that by using the fol-
lowing features, the task sequence can be broken into its
constituent phases:

1. Fingertip polygon area
The fingertip polygon is defined as the polygon formed
with the fingertips as its vertices.

2. Speed of the hand

3. Volume sweep rate
This is defined to be the product of the first two measures,
and has been found to be more effective in localizing the
breakpoints of the task sequence.

3 Task analysis

Subsequent to the localization of the task breakpoints (which
are transitions from one phase to another), we can perform
certain useful analyses on the individual phases. They
include human grasp identification, object motion extraction,
and repetitive motion analysis.

3.1 Task analysis system
Our system comprises the following hardware and software:

m CyberGlove [4] and Polhemus [1] devices. The Cyber-
Glove measures 18 joint angles while the Polhemus
3Space Isotrak sensing device provides the position and
orientation of the hand relative to the Isotrak source.

m  Ogis light-stripe rangefinder to provide range images

m CCD camera to provide intensity images to aid object
localization, and for visualization.

m Vantage geometric modeler [3]

m Knowledge Craft [9]. The grasp hierarchy is represented
by frames created using Knowledge Craft, which is a
frame-based toolkit with procedural attachment and
inheritance.
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m  Graphics and interface software. This software is written
mostly in C. A significant portion of it is adapted from
the VirtualHand v1.0 software supplied by Virtual Tech-
nologies).

3.2 Methodology

A grasping task comprises pre-grasp, grasp, and manipula-
tion phases. A task has at least one of these phases (a collec-
tion of which is term a subtask). We define a sequence of
tasks which has N subtasks as an N-task.

Analyzing subtasks is equivalent to analyzing separate 1-
tasks, since each 1-task contains a subtask; there is no loss in
generality in illustrating the analysis using 1-tasks. Each
subtask can be characterized in terms of the grasp used and
object motion during the manipulation phase.

A series of experiments featuring 1-tasks were conducted as
follows:

1.
2.

Take the range image of the scene before the subtask.
Perform the I-task (which comprises only a set of pre-
grasp, grasp, and manipulation phases) while its inten-
sity image sequence and the CyberGlove and Polhemus
readings are being recorded.

Take the range image of the scene after the 1-task has
been performed.

The general approach in analyzing the task is dictated by the
imperfect data. The most significant problem faced is the
inaccuracies in the Polhemus device due to nearby ferromag-
netic material. In addition, the exact moment of grasping
cannot be pinpointed due to the discrete sampling of the
hand location and configuration. As a result, extra prepro-
cessing is required, specifically adjusting the orientation of
the hand at the grasp frame.

The processes of segmenting the task and determining the
grasp and manipulative (i.e., object) motions are done using
a three-pass approach. The first pass establishes the motion
breakpoints while the second pass involves adjusting the
pose of the hand and subsequently determining the grasp
employed in the 1-task. Finally, the effect of the reorienta-
tion of the hand is propagated throughout the 1-task
sequence and the object motion is then extracted using the
approach delineated in the following subsection. The details
of the three-pass approach are as follow:

Pass 1:

1. Estimate pose of object from the before-task range image.
The initial gross position (but not the orientation) of the
object of interest is determined by subtracting the 3D ele-
vation map of the scene after the task from that before the
task. The 3DTM! program [14] is then used to localize
the object. Two refinements were made: (a) use three
orthogonal initial poses and pick the final estimated pose
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with the least RMS fit error; and (b) use coarse-to-fine
stepsizes.

2. Calculate the motion profiles (speed, fingertip polygon
area, and volume sweep rate).

3. Determine the motion breakpoints from the motion pro-
files as described earlier.

Pass 2:

1. From known motion breakpoints (determined in Pass 1),
calculate the object motion associated with the manipula-
tion phase (which is bordered by the grasp and ungrasp
transitions).

. At the grasp frame, determine the grasp employed.

Due to the errors in the Polhemus and CyberGlove read-
ings, the oriented hand may intersect the object. The hand
is reoriented (subject to the fixed position of the Polhe-
mus sensor) until: no interpenetration between the hand
and object occurs; and the weighted sum of distances
between the hand contact points and the object is mini-
mized.

The determination of the “optimal” hand pose is done
with direct search with rotational increments of 1.15° and
limited to a maximum of 60° rotation about discretely
sampled axes (80 directions sampled on a once-tesselated
icosahedron).

The object is stored as a collection of oriented surface
points (position and normal information) whose spacing
is typically between 4.0-7.5 mm. This spacing of the
object depends on the object size - it is increased for a
larger object size. The nearest distance of each hand con-
tact point to the object is then estimated using this ori-
ented point representation.

Once the “optimal” pose of the hand and the object-con-
tact information is found, the grasp is then recognized
using the classification scheme described in [7].

Pass 3:

1. Propagate adjustment in both distal and proximal
motions throughout the task due to hand reorientation in

Pass 2.

. The gross after-the-task pose of the object is determined
by successively applying the distal transformations in the
frames composing the manipulation phase to the original
object position (i.e., prior to the task). This after-the-task
pose is refined using the 3DTM program.

3.3 Grasp Recognition

The grasp is represented by the contact web [7]. It is a 3D
spatial representation of effective contact points between the

1. Short for 3D template matching. It is a least-squares distance
error minimization technique using a Lorentzian error distribution.



segments of the hand and the grasped object. Each effective
contact point, when in contact with the object, has positional
and orientation information. A taxonomy based on this con-
tact web has also been proposed. This taxonomy, in conjunc-
tion with a mapping which groups fingers into functionally
equivalent ones, enables a given grasp to be identified at the
grasp frame [7].

3.4 Determining object motion during the
manipulation phase

A T;m)umal

Pose at (k+1)

ATE = AT 7‘;

total distal

Pose at k

roximal

Fig. 1 Total and proximal motions from frame k to k+1
during the manipulation phase

It may be useful to determine the proximal motion (which
corresponds to the motion of the arm and wrist) and distal
motion (which corresponds to motions of the fingers, other-
wise referred to as “precision handling” [12]). The total
motion, which is the overall effect of both the proximal and
distal motions, directly yields the object motion. Meanwhile,
the proximal and distal motions yield information on which
component of the hand/arm motion is contributing to the
object motion.

We can determine the object motion transformations (i.e., the
total motion) in the manipulation phase once we have identi-
fied the task motion breakpoints. Suppose the kth frame has
been identified as the grasp frame and the (k+j)th frame the
ungrasp frame in the task sequence of N frames. The object
changes in pose at frames between k and (k+j) (i.e., during
the manipulation phase) can be be determined (Fig. 2) from

(1):
AT = sz:l{d ( TJlfmnd) M
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where wand is the total transform associated with the

motion of both the fingers and hand at the kth frame.

Based on (1), we can then calculate the object pose transfor-
mations at each frame within the manipulation phase as
shown in Fig. 3. The pose of the object at the end of the
manipulation phase is most likely not very accurate, due to
measurement inaccuracies. This pose is refined using the
3DTM program [14]. Note that directly using 3DTM on the
final pose is not generally feasible, since object localization

is a local process, and the object may exhibit geometric sym-
metry.

A Tk,k+j

Fig. 2 Determining the differential motion between two
frames in the manipulation phase
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Fig. 3 Determining the pose of the object throughout the
task sequence of N frames

Fig. 4 Initial pose of the cylinder (1-task #1)

3.5 Results of applying the 3-pass algorithm

We have applied the 3-pass algorithm on two real 1-tasks to
determine the motion breakpoints, identify the grasp
employed, and recover the object motion. The first 1-task
involves picking up a cylinder from one location and placing
it on a different location. The results of the first pass are
shown in Fig. 4 and Fig. 5. The pose of the object prior to the
performance of the 1-task has been estimated from the range
image. As shown in Fig. 5, the motion breakpoints (grasp
and ungrasp points) as well as the pregrasp, manipulation,
and depart phases are all located. (The duration of each
frame is about 0.5 sec; the fingertip polygon area is in cm?
while the speed is in cm/frame.)

1761



100.0 T T
S “Fingertip polygon area
@---aSpeed
2 Volume sweep rate/10.0
80.0 1

i

60.0
400}

20.0

Frame
30

L | I J
pre-grasp manipulation  depart
phase phase

Fig. 5 Motion profiles and the identified motion
breakpoints (1-task #1)

(b)

Fig. 6 Reorienting the grasp in Pass 2: (a) initial pose of
the hand relative to the object; (b) final pose of
hand relative to cylinder

Once the hand was reoriented (Fig. 6), the grasp was then
correctly identified as a type 2 ‘coal-hammer’ cylindrical

grasp2 using the grasp classification scheme described in [7].
By propagating the extracted object motion during the
manipulation phase, the object pose was then estimated (Fig.
7(a)). The pose is subsequently refined (Fig. 7(b)).

The second 1-task considered is picking up a stick and
inserting it through a hole in a castle-shaped object. The two
objects involved in this 1-task and the superimposed model
of the stick are shown in Fig. 8. Fig. 9 depicts the extracted
motion breakpoints and phases of this task.

(a) (b)

Fig. 7 Pose of the cylinder after the task subsequent to
Pass 3: (a) pose obtained by successively applying
total motion transformations in the manipulation
phase; (b) refined pose using the 3DTM program
[14].

Fig. 8 Initial pose of the stick (1-task #2)

Fig. 10 shows the pose of the hand relative to the stick at the
grasp frame before and after reorientation. The grasp was
identified as a precision grasp. However, because the middle
segments of the four fingers are within the tolerance range of
the object (which is set at 1.0 cm), the grasp is classified as a
composite nonvolar grasp {7], specifically a prismatic pinch
grasp. The grasp that was actually employed in the task is a
five-fingered prismatic precision grasp; it can be seen from
this result that the while the general grasp classification is
correct, the specific category is sensitive to orientation and
position errors.

Fig. 11(a) shows the estimated object pose at the end of the
task from extracted total motion. Fig. 11(b) shows the
refined final object pose.

2. A ‘coal-hammer’ cylindrical grasp is one in which the thumb is
highly abducted (i.e., significantly deviated from the plane of the
palm). This ‘coal-hammer’ cylindrical grasp is of type 2 because
the thumb touches the object. See [7] for more details.
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Fig. 9 Motion profiles and the identified task breakpoints
(1-task #2)

(b)

Fig. 10 Reorienting the grasp in Pass 2: (a) initial pose of
the hand relative to the object; (b) final pose of
hand relative to stick

3.6 Detection and localization of repetitive motion
using the spectrogram

Many industrial tasks involve turning screws; it would be
useful if the system is able to detect such a repetitive action.
The spectrogram is a useful tool for this purpose.

The spectrogram of a signal is a space/frequency representa-
tion which comprises a series of small-support, Fourier
transforms of the signal, each centered around a different
point of the signal [10]. For a 1D signal, this space/frequency
representation is 2D. It reveals the frequency content of the
signal within the vicinity of each different point. By deter-
mining the frequency content locally at each point, we can
localize the signal having a particular maximum instanta-
neous frequency.

(@) (b)

Fig. 11 Pose of the stick after the task subsequent to Pass
3: (a) pose obtained by successively applying total
motion transformations in the manipulation
phase; (b\) refined pose using the 3DTM program
[14].

It is obvious from the nature of the spectrogram of its utility
in detecting and localizing repetitive motion within the
manipulation phase. The motion that is most frequently asso-
ciated with repetitive motion is the screwing motion. We
detect the repetitive motion by analyzing the spectrogram of
the fingertip polygon area profile throughout the task, with
the following conditions:

1. Ignore low frequencies.
The dc component as well as the first non-zero frequency
component are ignored.

2. Consider only parts of the spectrogram that are associ-
ated with manipulation phases.

3. Find the highest frequency peak at each point within a
manipulation phase.
This peak has to be higher than a calculated minimum
magnitude determined to the average magnitude of the
entire spectrum at that point. In addition, this peak has to
be associated with a frequency higher than a determined
minimum frequency. This minimum frequency is calcu-
lated based on the assumption that there has to be at least
three spatial peaks within the manipulation phase for the
establishment of a repetitive action.
If the duration of the manipulation phase (within which
the point lies) in the task is M frames, then the minimum
frequency is

F ) - Pmm
min M

where P,,;, is the minimum number of peaks within a
manipulation phase (3 in our case).
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(a) magn

Fig. 12 Spectrogram of a 1-task mvolvmg screwing
actions: (a) top view (b) oblique view. The marks
on the spectrogram indicate significant frequency
peaks

(a) Magn

Fig. 13 Spectrogram of a 4-task mvolvmg a
mampulatlon phase with screwing actions: (a) top
view (b) oblique view. The marks on the
spectrogram indicate significant frequency peaks

Fig. 12 and Fig. 13 show the spectrogram of two different
tasks which involve screw-turning actions. The width of the
spectrogram window is 19 frames; the duration of each
frame is about 0.5 sec. and the maximum frequency detected
in the spectrogram is about 1 Hz. As can be seen, the
detected peaks cluttered along a line do indicate the exist-
ence of such repetitive movements. In spectrograms of other
tasks which do not involve repetitive actions, no prominent
peaks were detected, as to be expected.

4 Summary

We have described several of the possible analyses on the
task sequence subsequent to the identification of the task
breakpoints. The analyses include human grasp recognition

and extraction of object motion. The spectrogram is seen to
be an effective tool in checking the existence of repetitive
motion within the manipulation phase.
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