An Application of Lie Groups in Distributed
Control Networks

George A. Kantor ! P.S. Krishnaprasad "

aThe Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
b Institute for Systems Research, University of Maryland, College Park, MD 20742

Abstract

Here we introduce a class of linear operators called recursive orthogonal transforms
(ROTs) that allow a natural implementation on a distributed control network. We
derive conditions under which ROTs can be used to represent SO(n) for n > 4.
We propose a paradigm for distributed feedback control based on plant matrix
diagonalization. To find an ROT suitable for this task, we derive a gradient flow on
the appropriate underlying Lie group. A numerical example is presented.
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decomposition

1 Introduction

Distributed control networks are rapidly emerging as a viable and important
alternative to centralized control. In a typical distributed control network, a
number of spatially distributed nodes composed of “smart” sensors and actua-
tors are used to take measurements and apply control inputs to some physical
plant. The nodes have embedded processors and the ability to communicate
with the other nodes via a network. The challenge is to compute and imple-
ment a feedback law for the resulting MIMO system in a distributed manner
while respecting the bandwidth limitations of the network.
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There is a growing body of work regarding control networks. Many authors
have investigated the problem of implementing a centralized controller where
the communication link between the sensors, actuators, and controller is a
single shared channel. Brockett has investigated the stabilization of a net-
work of intelligent motors [2]. Wong and Brockett have studied the problems
of state estimation and feedback control for control networks with limited
communication bandwidth [23,24]. Hristu [11] has addressed the problem of
finding stabilizing feedback laws for linear systems with limited communica-
tion. Wang and Mau [21] and Ooi, Verbout, Ludwig, and Wornell [17] present
results regarding systems with feedback that is subject to a communication
delay. Walsh, Beldiman, and Bushnell [19,18] and Walsh, Ye, and Bushnell [20]
analyzed and provided control algorithms for single channel networks where
some of the control is distributed among the network nodes.

The research on shared single channel control networks is important because
it is applicable to existing control network architectures such as CAN. How-
ever, we feel that more flexible communication architectures are necessary to
take full advantage of the capabilities of distributed control networks. Guen-
ther, Hogg, and Huberman [6,4,5] applied learning algorithms to develop con-
trollers for distributed networks employing nearest neighbor, hierarchy, multi-
hierarchy, and global communication schemes. Chou, Guthart, and Flamm [3]
implemented the discrete wavelet transform on a multi-hierarchy as part of a
distributed controller for a class of flexible mechanical systems.

Our approach to this problem is to employ distributed signal processing in
an effort to simplify the control problem. Plant matrix diagonalization is one
example of this approach. To do this, we search for basis transformations
for the vector of outputs coming from the sensors and the vector of inputs
applied to the actuators so that, in the new bases, the MIMO system becomes
a collection of decoupled SISO systems. This formulation provides a number
of advantages for the synthesis and implementation of a feedback control law,
particularly for systems where the number of inputs and outputs is large. Of
course, in order for this idea to be feasible, the required basis transformations
must have properties which allow them to be implemented on a distributed
control network. Namely, they must be computed in a distributed manner
which respects the spatial distribution of the data (to reduce communication
overhead) and takes advantage of the parallel processing capability of the
network (to reduce computation time).

In [13] we introduced the idea of plant matrix diagonalization for distributed
control networks using Haar—Walsh wavelet packets. This work relied on the
work of Wickerhauser, who developed wavelet—based algorithms for approxi-
mate principal component analysis [22]. To implement the resulting transforms
in a distributed setting, we exploited the fact that a wavelet packet transform
is implemented as an alternating series of orthogonal FIR filtering operations



and communication steps. Each communication step rearranges the data vec-
tor and can be written as a permutation of the identity matrix. In the case
of Haar-Walsh packets, each filtering step can be written as a block diagonal
matrix where the diagonal blocks are constant 2 x 2 orthogonal matrices, each
of which can be either the identity matrix or a planar rotation of /4.

In this paper, we generalize this notion to allow each filtering step to be a
block diagonal matrix with general orthogonal matrices along the diagonal.
We define a class of transforms called recursive orthogonal transforms (ROTs).
Simply stated, any transform that can be written as a product of alternat-
ing piecewise rotations and permutation matrices is an ROT. We show by
example how the structure of an ROT can be chosen to allow a naturally
distributed implementation on a control network. We then derive a gradient
flow which can be integrated to find piecewise rotations so that the ROT most
nearly diagonalizes a constant, real-valued, symmetric plant matrix. Finally,
we demonstrate this idea with a numerical example.

2 Distributed Signal Processing

The main objective of this paper is to develop distributed signal processing
techniques to aid the design and implementation of feedback controllers for
plants with distributed control networks. The set of orthogonal transforms con-
tains a large collection of important signal processing tools such as wavelets
and principal component analysis. Additionally, the norm preserving prop-
erty of orthogonal transforms makes them nice candidates for general data
transformations. For these reasons, a distributed implementation of general
orthogonal transforms would be useful for signal processing on a distributed
control network. In this section, we demonstrate that the ROT provides just
such an implementation.

Definition 1 A recursive orthogonal transform (ROT) is a linear op-
erator of the form

é :Pl@lpg@g"'PL@L, (1)

for some L, where for eachi=1,2,...,L,



(1) The matriz ©; is of the form

_93 o ... 0_
06 ---0
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where 0;- € SO(nyj), Yty ng = n, and the Os represent appropriately
dimensioned blocks of zeros.
(2) Each P; is a permutation of the n X n identity matriz, [~ det(P;) = 1.

The integer L is called the depth of the ROT. The structure of the ROT is de-
fined by the parameters L, P;, m;, and n;; fori=1,2,...,L, j=1,2,...,m;.
These quantities are collectively called the ROT configuration. The ©;, i =
1,2,...,L, are called the ROT variables. The set of all possible ROTs of a
given configuration, {© | 9;'- € SO(nij),i = 1,2,...,L,j = 1,2,...,m;}, is
called an ROT family.

Because of its block diagonal structure, each ©; can be implemented as m;
parallel operations on separate processors. The permutation matrices represent
a reordering of the data and can be implemented as communication between
the nodes. Hence, an ROT has a natural implementation as a sequence of
alternating decentralized computation and communication steps. This notion
will be made more concrete in the following sections.

In the definition, we have instituted the constraint that []; det(FP;) = 1. This
is to ensure that the ROT is a member of the special orthogonal group. In
practice, this constraint is of little consequence. If we have a collection of
permutation matrices { Py, P, ..., Py} that are compatible with the commu-
nication architecture of the network but do not satisfy the constraint, we can
simply add another permutation P, to the end of the product on the RHS
of Equation 1 to ensure that the ROT has positive determinant.

2.1 ROTs for Linear Arrays

Here we present an ROT that is configured to be implemented on a linear
array of smart sensor/actuator pairs using only nearest neighbor communi-
cation. This specific example is intended to demonstrate the naturally dis-
tributed implementation admitted by an ROT. Configuration parameters can
be also chosen to address a more general set of network connections and com-
munication patterns. The results in this paper apply to general ROTs as well
as the specific subclass presented in this section.



Consider a transform © of the form given by Equation 1 where L is a fixed
odd integer, n is even, n;; = 2 for each i =1,2,...,L, j =1,2,...,n/2, and
the permutation matrices are given as
Tyupif i = 1,
P; =1 P, ifiis even,

P, ifiisodd, i # 1.

where
(010 ---0] (000 ---1]
00 1 -0 100 ---0
Po=|:: - and P,=|010 ---0
00--- 01
_10---00_ _00--- 10_

This configuration can be used to transform the output vector of a distributed
control network composed of a linear array of smart sensors. The sensors, or
nodes, are indexed from left to right. The value of the ith sensor (i.e. the
ith element of the output vector) is known only to the ith node. Each node
has a communication link to its left and right neighbors. The nth node is the
left neighbor of the first node. We compute the transformation § = 6Ty in a

sequence of levels. For convenience, we define ® £ T and note that & can
be written as ® = &P, - - - D3 P, &y P, &, where &, = 07 i =1,2,... L.

In the first level, the intermediate vector a = ®,y is computed. To accom-
plish this, each odd node sends the value to the even node on its right. Since
the matrix ®; is block diagonal with 2 x 2 blocks, a can be computed in a
decentralized way on the processors on the even nodes.

In the second level, the intermediate vector ¢ = ®5 P,a is computed. This level
is composed of two steps: communication and piecewise rotation. After the first
level is completed, the ¢th node, even i, contains the quantities a; 1 and a;. To
start the second level, each even node ¢ sends the value a; | to the node on its
left and it sends a; to the node on its right. This communication step creates
the intermediate vector b, which is just a right circular shift of the vector a.
Hence, the communication step implements the permutation operation b =
P,a. Now each ith node, 7 odd, contains the quantities b; and b;,;. Since
®, is block diagonal, the vector ¢ = ®3b = &3P, Py can be computed in a
decentralized way on the odd nodes. At the end of the second level, each ith
node, ¢ odd, contains the values ¢; and ¢; 1.



ogogmoﬁﬂm

.-o 3
‘..o
" oaa

mogomﬁo o

NI
Aﬂmo
() () ) () eee () ()

Fig. 1. Graphical description of the implementation of an ROT on a linear array of
smart sensors. The raw data vector y = [y1,¥2,...,yn|” starts at the bottom of the
diagram and is processed in levels moving upwards.

The third level also begins with a communication step. Each ¢th node, ¢ odd,
passes the values ¢; and ¢;;; to the nodes on its left and right, respectively.
This is equivalent to a left circular shift of the vector ¢, which results in the
vector d = P,c. The elements of d are distributed among the even nodes of the
array, where the intermediate vector e = ®3d = &3P, P, P, Py is computed in
a decentralized way. This process of permutations and piecewise rotations is
repeated for L levels. The transformed vector ¢ is the output of the Lth level.
This process is depicted in Figure 1.

2.2 Plant Diagonalization for Control

Plant diagonalization represents one way in which distributed signal processing
with ROTSs can be used to simplify the problem of designing and implementing
feedback controllers for large distributed control networks. Consider a system
given by the input—output description y = Hyu, where y € R” is the output
vector, u € R™ is the input vector, and Hy = Hl € R™" is the plant matrix.
Assume for now that an ROT © exactly diagonalizes Hy, i.e. H = OTHy0 is
a diagonal matrix. Define the transformed input and output vectors, y = 0Ty
and @ = ©Tu, respectively. Viewing the system in these new coordinates,
we have § = Hu. Since H is diagonal, the problem of synthesizing a MIMO
controller is greatly simplified in the new coordinates. Since the coordinate
transforms are ROTSs, the resulting controller is easily implemented on a dis-
tributed control network: an ROT transforms the data vector into the new
coordinates in a distributed manner; the control 4; is chosen for each element
y; of the transformed output vector; and another ROT transforms 4 into the



actual control vector u in a distributed manner such that each element of u
resides on the node containing the actuator to which it is to be applied.

The concept of the distributed feedback control that results from the use of
ROTs for plant diagonalization is appealing, but we do not aim to overempha-
size the importance of this idea in the context of this paper. Clearly, systems
that can be modeled as symmetric, real-valued plant matrices are of limited
interest. Still, the results generated here are important as a “first step” that
can be extended to plant diagonalization for more general systems. In fact, we
have developed an extension that can be used to approximately diagonalize
a complex—valued, non—symmetric matrix and demonstrated how it can be
used to control the resonances of flexible mechanical systems [12]. In the same
work, we also developed an ROT capable of approximate diagonalization of
dynamic plants that possess a spatial invariance property.

2.8 Theoretical Intuition

For a fixed configuration, the ROT family gives a set of candidate representa-
tions of the members of SO(n). Obviously, if the number of degrees of freedom
in the underlying variable space is less than the dimension of SO(n), the family
cannot represent all of SO(n). In these cases, a member of SO(n) is approx-
imated by the “nearest” member of SO(n) which can be exactly represented
by a member of the family.

It is not obvious that an ROT configuration family that has a variable space
with dimension greater than or equal to that of SO(n) can be used to represent
all of SO(n). Our intuition is that it can be done for a wisely chosen set of
permutation matrices. Here we back up this intuition with some theoretical
results that can be used to choose ROT configurations capable of representing

all of SO(n).

Theorem 2 Let © = ©,P,0,P305 be a (n+m) x (n+m) depth-3 ROT, where

0: 0,xm
@z' - ' X ) (3)
Omxn 05

where 6; € SO(n) and 65 € SO(m), for i € {1,2,3}, where both m and n are
greater than or equal to 2. Define ¢ C so(n+m) as

Ql 0n><m
t= Q € s0(n), Qs € 50(M) ¢ . (4)
0m><n Q2



Let p be the complement of ¢ in so(n+m) and let a be a maximal Abelian
subalgebra of p. Let permutation matrices Py = Py be such that

a C PtPL. (5)

Then given any g € SO(n+m), there exist ©1,0,, and O3 of the form given
by Equation 3 such that © = g.

To prove this theorem, we use the theory of symmetric subalgebras. We sum-
marize the result we need and state it as a theorem without proof. A complete
discussion can be found in Hermann [9)].

Theorem 3 Let G be a connected, semisimple Lie group with finite center and
Lie algebra g. Let € be a symmetric subalgebra and let p be the complement
of € in g, i.e. 6,8 C € [&,p] Cp, and [p,p] C €. Let a be a mazimal Abelian
subalgebra of p. Then any g € G can be written

g = exp (Xg1) exp (X,) exp (Xp2) , (6)

where X1, Xpo € € and X, € a.

PROOF OF THEOREM 2. We first note that SO(p), p = n + m, is
a semisimple Lie group with finite center. It is tedious but not difficult to
check the bracket conditions listed in Theorem 3 to see that €, as defined in
Equation 4, is a symmetric subalgebra of so(p). The ©; reside in the compact
Lie subgroup of SO(p) whose Lie algebra is €. The dimension of ¢ is equal to
the dimension of so(n)@so(m), which is d, = (n(n—1)+m(m—1))/2. Hence,
we can write

dy,
O, = exp (Z oz;Aj) ,
j=1

where {A; |i={1,2,...,d;}} forms an orthogonal basis of £ Substituting
into the original expression for © we have

k dg, dg,

d
O =exp (Z ajl-Aj) Pyexp (Z a?Aj) Plexp (Z a?Aj)
=1

Jj= j

Jj=1 Jj=1

dy, dy. dg,
=exp (Z ajl-Aj) exp (Z a§P2AjP2T) exp (Z a;’Aj) : (7)
j=1 j=1 j=1

We know that span {PQA]-P2T l7e{L,2,... ,dk}} contains a maximal Abelian



subalgebra a C p. So for any X, € a, we can choose {a]z |7 €{1,2,.. .,dk}}
so that

d
Y aiPAP = X,.

=1

Hence, Equation 7 is equivalent to Equation 6 and Theorem 3 can be invoked
to finish the proof. O

In order to apply Theorem 2, it is necessary to find permutation matrices such
that Equation 5 is satisfied. Sufficient conditions for the existence of such a P
are given by the following Lemma, which is stated here without proof:

Lemma 4 Let ¢ C so(n+m) be

Ql 0n><m
t= € s0(n), Qs € s0(Mm) ¢, (8)
0m><n Q2

where m and n are both greater than or equal to 2 and min(m,n) is even. Let p
be the complement of € in so(n+m) and let a be a mazimal Abelian subalgebra
of p. Then there exists a permutation matriz P such that a C PePT.

Theorem 2 can be applied to show that a 4 x4 depth-3 ROT with 2-dimensional
piecewise rotations and 4 x 4 permutation matrices P, = P, and P; = P, = PCT
as defined in Section 2.1 can be used to represent any element of SO(4). The
basis vectors of ¢ are defined as

[0-100] (000 0 |
1000 000 0
Al é and AQ é (9)
0000 000 —1
0000 001 0 |

Further define A3 and A4 to be

0 001]

0000
A; & PAPT = (10)
0000

~1000




and

000 0

00-10
A, & P.APT = . (11)
010 0

1000 0]

It is easy to verify that a = span{As, A4} is a maximal Abelian subalgebra
of p, so Theorem 2 can be applied.

Theorem 2 can be applied in a recursive manner to obtain results for ROTs
with more than 3 levels. For example, we can use Theorem 2 once to get full
representation of SO(8) with an 8 x 8 depth-3 ROT 0= ®, P, ®, Pl ®3 where
each ®; is of the form

i 0
&, — ¢ P (12)
04><4 Q%

with ¢5 € SO(4). Then Theorem 2 can be invoked again to allow 4 x4 depth-3
ROTs to represent each of the ¢§s. The result in this example is that an 8 X 8
depth-9 ROT with 2-dimensional piecewise rotations can be used to represent

all of SO(8).

3 A Flow for Distributed Diagonalization

In the previous section we introduced and defined the ROT, showed that
a transform in the form of an ROT has a natural implementation on a dis-
tributed control network, and provided some theoretical intuition arguing that
ROTSs can be used to represent or approximate general orthogonal transforms.
In this section we show how to find an ROT to accomplish the task of ap-
proximate plant matrix diagonalization. Given a fixed ROT configuration, we
show how to find the ROT variables that most nearly diagonalize a given
real-valued, symmetric plant matrix.

The objective of this section is stated as follows: Given a symmetric n X n ma-
trix Hy and configuration parameters for the ROT © = PO, P,0,--- POy,
find ©1,0,,...,0 such that the matrix

H=0"H,6 (13)

10



is, in some sense, most nearly diagonalized. Our first step toward solving
this problem is to find a “diagonalness” functional ¢(H). Then we search for
the (01, 0,,...,0.) which minimize ¢ by flowing along the gradient vector
field V¢ on the configuration space of the ©;’s. This idea is motivated by
Brockett [1], who showed that the matrix diagonalization problem can be
solved by integrating an ODE which evolves on the orthogonal group.

Let O, k = 1,2,..., L, be as described in Equation 2. Each O is a block
diagonal matrix where the blocks on the diagonal are orthogonal matrices.

Let M, 2 SO(ng1) X SO(ng2) X - -+ X SO(Ngm, ). Then Oy, belongs to the Lie
subgroup M;, C SO(n).

The Lie algebra of SO(¢) is so(¢) = {Q € R*|QT = —Q}. The Lie algebra of
M;, is the tangent space at the identity e € M,

T. My, = s0(ng1) @ s0(nge) @ - - D 50(Nkm, ), (14)

and a vector in T, M, can then be written

w’f 0 .--- 0
0 wh... 0
k
1 0 - 0wy, |
where w;? € so(ny;) for j =1,2,...,my. Hence the tangent space to M}, at the

point Oy is TGkMk = {@ka |Qk € TeMk}.
Define ¥ € M = My x My x --- x My, to be the ordered L—tuple of Oys,

q]:(@lae%"'a@l;)' (16)

Using this notation, the matrix H = ©THy0 is a function of ¥ and will be
written in sequel as H (V). Let X denote a vector in Ty M,

X = (0,91,050,...,0.05). (17)

We also define two sequences of recursive orthogonal transforms:

k n
@k é HP@@@ and ék é H Pg@g, (18)
(=1

(=k+1

11



k=1,2,..., L. Here the product symbol [[ denotes multiplication with indices
ascending from left to right. Also, [T%_,(-) = L,x, for b < a.

Let N be a fixed diagonal n x n matrix with distinct values along the diagonal.
We can now define a cost function using the distance between H(¥) and N

given by the Frobenius norm, ||A|* = tr <ATA). Simple matrix manipulation
reveals

IN = H@)|* = [N|* + [ H()||* - 2tr (NH(P)). (19)

~ ~ 112
The norms || N||* and || H(®)||* = H@THOGH are both constant. The Frobenius
distance between H and N is minimized when

$(¥) = tr (NH(¥)) (20)

is maximized. The function ¢ : M — R can be thought of as a measure of the
“diagonalness” of H(W).

A Riemannian metric for 7'M can be inherited from the space of n x n real
matrices. For each ¥ € M we define (-,)y : Ty M x Ty M — R to be

(X1, Xa)y = {((©:101,...,0.0}), (0:9%,...,0.,93))

—- Y (0l}). (21)
k=1

Definition 5 [Projection Operators| For each k = 1,2,..., L, the opera-
tor Iy, : T.O(n) — T.(My) is defined to project from the set of skew—symmetric
matrices to the set of block diagonal skew-symmetric matrices by setting all
off—-diagonal blocks to zero.

Theorem 6 The ascent direction gradient flow of the diagonalness function
¢ defined in Equation 20 using the Riemannian metric defined in Fquation 21
18

@k = —0.1II, [C:)kNég, éZHOC:)k] ) @k(o) = Oo, (22)

fork=1,2,... L, where [-,:] denotes the matriz Lie bracket, [A, B = AB —
BA.

The proof of this theorem consists of the straightforward but tedious verifica-
tion that Vo(¥) = —(01,0,,...,0,) has the following properties:

(1) Vo(O) e TyM VU € M.

12



14

05
16

0

(b)

Fig. 2. (a) 16 x 16 plant matrix, Hy, corresponds to a linear array of sen-
sor/actuator pairs with one-over-distance coupling. (b) Approximately diagonalized
matrix H = ©7 Hy©, where O is an ROT with depth 11.

(2) Dou(X) = (Vo(¥), X) VX € Ty M.

For a given metric, the V¢(¥) that satisfies these properties is the unique
gradient vector field. The complete proof can be found in [12].

From the properties of gradient flows on compact manifolds we know that the
solution to Equation 22 exists for all time and converges to the set of equilibria
for the flow. One can say more, noting that the function defining the gradient
flow is analytic. In this case a result of Lojasiewicz [14] can be used to prove
that the gradient flow converges to a specific equilibrium and not just the set.
While this may be known to some as a type of “folk theorem” [10], there does
not seem to have been a proof written down along these lines until the work of
Mahony [15,16]. The question of which equilibrium point the flow converges to
remains open. The numerical results we have obtained are promising, however,
as is demonstrated by the following example.

4 Numerical Example

Here we show the results of applying this technique to approximately diago-
nalize a 16 x 16 symmetric matrix. This can be thought of as the plant matrix
of a linear array composed of 16 sensor/actuator pairs where the coupling be-
tween any two pairs is equal to the inverse of the distance between them. We
use the ROT configuration presented in Section 2.1. The original plant matrix
is shown in Figure 2(a), where the intensity of the (i, j)th pixel corresponds to
the value of the (i, 7)th element of Hy. The approximately diagonalized plant
matrix for an ROT with depth 11 is shown in Figure 2(b).

Figure 3 plots approximation error as a function of ROT depth. Here, the

13
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approximation error (E)

depth (L)

Fig. 3. Plot of approximation error versus ROT depth.
approximation error is defined to be
_ @5 - 675

O = -

where () is a matrix whose columns are the unit eigenvectors of Hj.

The dimension of SO(n) is n(n — 1)/2. The number of degrees of freedom in
the ROTs being considered is Ln/2, where L is the depth of the transform.
Intuitively, when L = n—1 the ROT “should” have enough degrees of freedom
to represent any © in SO(n). These results seem to support this notion since
the approximation error gets very close to zero for L = 15.

We have conducted similar numerical studies for a variety of other symmet-
ric matrices. Specific examples included plant matrices derived from flexible
cantilever beams and thin flexible membranes, as well as symmetric matri-
ces with random entries. In every case, the ROT variables that resulted from
integrating the gradient flow seemed to produce good answers. And as the
number of degrees of freedom in the ROT approached the dimension of the
corresponding orthogonal group, the approximation error approached zero.

5 Conclusions

We have introduced the ROT, demonstrated that it admits a natural im-
plementation on a distributed control network, and derived a gradient flow

14



to accomplish approximate diagonalization of a real symmetric matrix. We
conclude the paper by discussing interesting possibilities for future research.

One problem which has already been addressed is approximate singular value
decomposition using ROTs [12]. This extension to the work in Section 3 is
motivated by the work of Helmke and Moore [7,8], who extended Brockett’s
work on symmetric matrix diagonalization to address SVD.

Important questions remain regarding the selection of the parameters of the
ROT and the flow. The results in this Section 2.3 provide a means of con-
figuring ROTs that are guaranteed to provide representations of the special
orthogonal group. In our experience these results are more conservative than
necessary. For example, the ROT configuration developed for linear arrays in
Section 2.1 does not satisfy the conditions of Theorem 2. However, our numer-
ical studies seem to show that this ROT configuration can represent SO(n)
when the underlying variable space is high enough. A better understanding of
this relationship is required so that the permutation matrices can be chosen
intelligently. Intuitively, as the dimension of the variable space is increased by
increasing the ROT depth and the size of the diagonal blocks, approximation
error for a general member of SO(n) should get smaller. The development
of error bounds as a function of depth and block size would be a useful tool
for the design of ROTs. The role of the diagonal matrix N used in the cost
function is another important aspect of this work that is currently not well
understood.

Techniques that improve the convergence properties of the gradient flow need
to be developed. Clever numerical integration schemes and iterative methods
may be able to improve the rate of convergence. And the adaptation of opti-
mization techniques such as simulated annealing may help the gradient flow
converge to better local maxima.

In the currently envisioned application of ROTSs, the variables are found off-
line and resulting ROT is implemented in a manner similar to the example in
Section 2.1. An algorithm for the integration of the ODEs given in Equation 22
on a distributed control network would enable on—line computation of the ROT
variables. This would allow the network to continuously adapt to a changing
environment.
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