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The acceleration set theory developed in the companion rcpon is applied to two imponant 
problems which arise in the design of manipulator systems for performance: manipulator type 
selection and actuator size determination. A systematic procedure is given for the comparison of 
the performance. based on acceleration. of a set of alternative manipulator types. This procedure is 
then used to compare the performance of three well-known manipulator designs which have been 
proposed for high performance. Simple algorithms, based on the acceleration set theoly, are given 
for the determination of the minimum actuator sizes to obtain a specified isotropic acceleration. 
The ease of implementation of these algorithms is demonstrated by actual examples. The 
experimental determination of acceleration sets is also addressed and simple experimental results 
are presented and compared with those predicted by the theory. 





. *  1 Introduebon 

In this paper. we apply the rocelUarinn sa theory dnrdopd m (Desa and Kim. 1989) 10 the following 

two important problwns which Uisc in the design of manipulator ryncms: 

1. ‘Ibe scledon of manipulator typc fm a given set of feasible dtemruivcs 

2. Tbe determination of the actuator sizes for a given manipdam type. 

One approach to solving the above two problems is to define suilablc pcrfonnanee measures. These 

performance measures could then be used as a basis for comparing dffercnt manipulator types in order 

to select tbe “bcn” one. Funhermore, if the performance meQSUm could be explicitly related to tbc input 

design variables of Ihc problem. for example actuator size, then we could use b e s t  rneasurcs 10 obtain 

values (‘‘sizes*’) of lhe design variables to m c u  a desired level of peifomancc. 

In this paper, we show bow acceleration p ropc rh  of the ~ ~ d ~ m t i ~  SCU. when interpreted a 
performance measures can bc used to provide solutions to the msnipulator typc selection” problem and 

the ‘‘ actuator sizing” pmbtem state above. 

Several performance measures for manipulaton have been proposed in uulier studies (Asada. 1983; 

Yoshikawa. 1985; Khatib and Burdick. 1987; Graettinger and Kmgk 1988) and it is usehl to briefly 

discuss these pcrfomance measures within lhe present context. (Asada, 1983) has defined a General lnenia 

Ellipsoid (GE) to characterize manipulator dynamics: h i s  measure d m  not have a clear physical meaning 

and is mostly useful in those cases where the nonlinearitics in &e joint velocities uc m. (Yoshikawa. 

1985) defines a dynamic manipulability index which is esstntially based on the linear mapping between the 

actuator forques and end-eiTcctor acceleration and therefore docs not take into account lhc nonlinearities in 

joint velocities. (Khatib and Burdick. 1987) define a performance measure whose physical meaning is not 

clear and which, in addition. 4ccounts for the nonliearities in a somewhat ad-hoc fashion by evaluating 

the measure at one “hjgh” and one “low” joint velocity vector. These drawbacks have bcen pointed out in 

(Graettinger and Kmgh. 1988) who propose an acceleration radius. which in the terminology of (Khatib 
and Burdick, 1987) or (Desa and Kim. 1989) is the isotropic acceleration over an operating region and can 

k lhought of as a “global isompic acceleration”. Since the isompic acceleration does not atways cxia 

and is zero at a singular point, global isaropic acceleration (acceleration radius) will in general be zcm 

*Eguation(l~l)re~~~u,eguation(I.x)inPanI(i.e. (DesaandKim, 1989)). Everyquationinihecurrentpaper 
(i.e. PanII) starts with “2.“. for exampk (2.46). 
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unless the operating region is mall enough, in which case it approaches the local isotropic acceleration, 

one of the measures proposed in the Current paper. Funhermore, designing for global isotmpic acceleration 

(acceleration radius) when possible will result in actuators which are grossly oversized. 

In section 3, we propose a group of performance m e a s w  of increasing complexity, based on the 

theory developed in the companion paper, (Desa and Kim, 1989), which are attractive for the following 

reasons: 

1. They have simple physical meanings. 

2. They can Ix directly related to the manipulator parameters and input variable rates (actuator torques, 

joint variables) and therefore can be used for design and redesign. 

3. The most I‘  complex” performance measure, the local isotropic acceleration takes nonlinearities into 

account in an “exact” manner. 

A direct consequence of (2) and (3) is that a typical design problem l i e  the determioation of actuator 

sizes to guarantee a specified isotropic acceleration can be solved in a relatively straightforward manner 

and without reson to complex nonlinear optimization as in (Graetlinger and h g h ,  1988). 

The paper is organized as follows: In section 2, we present a heuristic justification for using accelera- 

tion (and acceleration propetties) as a measure of dynamic performance for manipulators. Several useful 

acceleration-based performance measures are then defined in section 3. These performance measures are 

then used to solve the “manipulator type selection” problem in section 4 and to solve the “actuator sizing” 

problem in section 5. 

The experimental determination of acceleration sets is described in section 6. The simple experimental 

results presented in this section setve to validate the theory presented in the companion paper. 

2 Dynamic performance 

Dynamic systems ax designed to perform a variety of tasks. Each task generally has an inherent mesure 

of its performance which we will refer to as the task performance measure. For example, if the dynamic 

system is a manipulator and the task is for a reference point P to move from one point to another, then 
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Manipulator tasks 
point-to-point motion 
obstacle avoidance, etc. 

Performance Maximum 
measures acceleration 

,le\, Isompic. 0 

Figure 1: Performance measures for manipulators 

the time f required to perform this task is a measure of how well the manipulator performs the task and is 

therefore an appropriate task pe~ormance measure. (We would. of course, like to minimize the time r.) 
The performance measures used to characterize a dynamic system, on the other hand, are. quantities 

which one can readily extraa from the dynamical equations describing the behavior of the system; we will 

refer to these performance measures as the dynamic-system performance measures. In general, explicit 

functional relations do not exist between the task performance measures and dynamic system performance 

measures. 

In the above example of the manipulator as a dynamic system with the task being to move the 

reference point P from one point in the workspace to another, the time t required to perform this task 

(task performance measure) cannot be readily extracted from the dynamical equations. However, as we 

have shown, the acceleration capability of the manipulator (as defined in section 3 of @sa and Kim, 
1989)) can be extracted from the dynamical equations (as shown in sections 4 and 5 of (Desa and Kim, 

1989)). For a dynamic system performance measure to be useful. it should be related at least implicitly 

to the task performance measure. It is well known, from computer generated numerical solutions of the 

problem (Bobrow, Dubowsky and Gibson, 1983, that Ihe time required to move a reference point P of 

the manipulator from one point in the workspace to another depends on the “acceleration capability” of 
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tbe manipulator: if one “improves” tbc acceleration capability of a manipulator, then tbc time required to 

paform the m k  is d u d .  Therefore. the “acceleration capability” of a manipulator is a useful dynamic 

system performance measurc. 

Specifically. wc use two propenies of the accclcration scts (or acceleration capability) as dynamic 

system performance mcasuns: thc maximum acceleration and the isotropic -1eration. Funhermore, 

we arc generally interested in thcse performance measures under hrcc operating conditions, stm-up, in- 

motion, aud local. which arc defined below. figure 1 depicts Ihc view of tasks and performance measures 

for manipulators presented in this chapter. 

Comments: 

1. The -on for defining three types of opcraiing conditions is &at the m - u p  condition is euicr to 

design for than Ibc in-motion condition which in turn is easier to design for than the local opera~g  

condition. Therefore. the start-up condition can be used 10 obtain very quick approximate results 

which can then be refined for other operating oonditions (see section 6). 

2. The isotropic acceleration is a measure of the ability of the manipulator to accelerate in all directions 

and can be thought of as a measure of the manuverability of the manipulator (Graettinger and Krogh, 
1988) or its ability to avoid obstacles. 

3 Performance measures 

3.1 Slart-up acceleration capability 

Definilion: The stan-up acceleration capability of a manipulator, corresponding to a given configuration 

q in the workspace. is h e  set of all available acceleration veciors of a reference point P when the 

manipulator is at rcst and input torques r1 and 72 are applied at the (driven) joints. 

From the above definition, iris clear ha t  h e  sun-up acceleralion capability as defined above is simply 

the acceleration set S,, which is given by equations (1.34). 
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32  In-motion acceleration capability 

Definition 1: The in-motion acceleration capability of amanipulator is the set of all available acceleration 

vectors of a reference point P when the point P is moving with a velocity xp at a given position xp 

in the workspace. 

When the point P is at a position xp with a velocity xp, 

1. the corresponding configuration q of the manipulator can be. obtained from 9 by solving the inverse 

kinematic problem (Desa and Roth, 1985). and 

2. the corresponding joint variable rate vector 4 can (except for a certain finite number of singular 

positions) be. obtained from equation (122) as 

4 = J-%". (2.1) 

We can therefore restate Definition 1 in the following equivalent form: 

Definition 2: The in-motion acceleration capability of a manipulator is the set of all available acceleration 

vectors of a reference p i n t  P when the manipulator is in the dynamic state u = (9, il) and the 

actuator torques TI and ~2 are applied at the driven joints. 

From the above definition, it is clear that the in-motion acceleration capability of the manipulator as 

defmed above is simply the state acceleration set S., which is given by equations (1.39). 

3.3 Definition of performance measures 

In order to be able to design a manipulator to have desirable acceleration capability. we need to be 

able to extract suitable performance measures. Six such measures are defined below: the first two 

characterize the acceleration capability at start-up. the next two characterize the acceleration capability 

when the manipulator is in motion, and the last two characterize the (local) acceleration capability at any 

configuration in the workspace. It should come as no surprise that the performance me- as defined 
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below arc the properties of Ihc acaleration sets determined in Senion 5 of h e  companion paper (Desa 

M d  k, 1989). 

1. Maximum start-up acceleration, a-,m 

Definition: The maximum stm-up acceleration ~lm,,,~ is the maximum available acccleratim of a nf- 

ercnm point P when b e  manipulator is at lest and (input) iorques 51 aud ~2 are applied at the 

joints. 

From the above definition, it B clear that the maximum starI-up acceIeration is given by 

= &dSr)  = maxIu(S,)I, (2.2) 

where &dS, ) is given by equation (1.69). 

2. Isolropic sfart-up acceleration, uimsw 

Definition: The isotropic smn-up acceleration e,, is the maximum available acceleration in all dircc- 

tions of a referencc point P when the manipulator is at rest in a configuration q and (input) torques 

rl and q are applied at the joints. 

From the above definition. it is clear that the isotropic stan-up acceleration is given by 

&o.w = 4rO(S,), (2.3) 

where u,&~) is given by quation (1.70). 

3. Maximum “in-molion” acceleration, h.,h 

Definition 1: The maximum “in-motion” acceleration of a manipulator is the maximum available a d -  

eration when the reference point P moves with a velocity 9 at a position xp in the workspace. 

An equivalent definition for u,.~,~ is the following: 

Definition 2: The maximum “in-motion” acceleration of a manipulator is the maximum available acccl- 

eration of a reference point P when the manipulator is in a dynamic state u and actuator torques q 

and 12 arc applied at Ihe joints. 
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From the above definition. it is clear that the maximum “in-motion” acceleration is given by 

~ m . ~ . i m  = a,&d = m=[a(S~)l, (2.4) 

where &(S,) is given by equation (1.130). 

4. Isotropic “in-motion”acceleration, ujBo.h 

Definition 1: The isotropic “in-motion” acceleration of a manipulator is the maximum available accel- 

at a position # and eration in all directions when the reference point P moves with a velocity 

torques are applied at the driven joints. 

An Equivalent definition for uis0;i is the following: 

Definition 2: The isotropic “in-motion’’ acceleration of a manipulator is the maximum available accel- 

eration of a reference point P in all directions when the manipulator is in a dynamic state u and 

toques TI and rz are applied at the driven joints. 

From the definition above, it is clear that the isotropic in-motion acceleration is given by 

~liro.im = aid&), (2.5) 

where uiso(Su) is given by equation (1.133). 

5. Maximum local acceleration, U , , , ~ J ~  

Definition: The maximum local acceleration &, loul of a manipulator is the maximum available accel- 

eration of the reference point P at a configuration q of the manipulator. 

The maximum local acceleration q - , ~  is bounded by the upper bound (&u,locrl)ub given by (1.151) 

and h e  lower b u n d  ((lmu,lOcJ)& given by (1.130) with the vector k evaluated at the joint variable vector 

4 which maximizes Z(41, &) in equation (1.89). 

6. Isotropic local acceleration, U ~ J &  
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Definition: The isotrupic local acceleration &- of a manipulator is the maximum available acceler- 

ation of the reference point P in all dkctions when the manipulator is at the (local) configuration 

q in the workspace. 

The isotropic local acceleration is given by equation (1.152), 

3.4 Uses of the acceleration measures 

The six acceleration measures can be used for the following purposes: 

1. To compare different manipulator types in order to select a manipulator type with the “best” accel- 

eration capabilities. 

2. To design a manipulator to yield certain specified acceleration properties. 

3. To redesign a given manipulator in order to impmve its acceleration properties. 

4. To yield estimates of the inertia forces which can then be used to size the links in very “high- 

performance’’ applications. 

In the next two sections, we demonstrate the first two uses of the acceleration measures. In section 

4. we also address simple redesign, Le., performance improvement by changing actuator size. 

Comment: 

Since the isotropic acceleration is a measure which, by definition, is “direction-invariant”, it is a more 

useful measure for the solution of problems 1 and 2. 



4 Selection of manipulator type 

After defining the manipulator tYpe selection problem, we present a procedure for its solution (section 4.2). 

This procedure is applied in section 4.3 to three popular manipulator types which have been proposed for 

“high performance”. 

4.1 Definition of the problem 

General problem statement 

Given a set of alternate manipulator types, select the manipulator type which yields the best perfor- 

mance. 

In section 5.1 and 5.2, we established the use of acceleration and acceleration properties as measures 

of performance. We can therefore restate the above general problem statement in a more precise manner 

for OUT purposes as follows: 

Specific problem statement 

Given a set of alternative manipulator types, select the manipulator type which yields the largest 

isotropic acceleration under various operating conditions (start-up, in-motion and local). 

4.2 Procedure for type selection 

1. Determine the geometric and inertia parameters for each manipulator type. 

2. Determine the ranges for the inputs, q and T ,  of each manipulator type. 

3. Determine the acceleration sets S,, S4 and Su for each manipulator type. (We did this in section 4 

of Palt I (Desa and Kim, 1989) for the planar two degree-of-freedom manipulator of Figure 4.) 

4. Extract the isotropic acceleration for the sets S,, Sq and S, (using the theory developed in section 

5 in Pan I (Desa and Kim, 1989)). 
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Figure2 Manipulatortype 2 (from Asada and Youcef-Toumi, 1985) 

5. Obtain the isotropic acceleration for each manipulator ~ y p e  under various operating conditions 

(start-up, in-motion and local) using (1.70). (1.133) and (1.152). 

6. The “‘best” manipulator type is the one which has the largest isovopic acceleration under the various 

operating conditions for the configuration (q) of intenst. 

7. Critically examine the possibility of redesigning each manipulator type and then repat steps 1 

through 6 for the redesigned manipulator. 

8. Perfom steps1 through 7 for various configurations (q) of interest. 

4.3 Example 

As an illustration of the above proadure. we compare the performaow of the h e  manipulator types 

shown in Figure 8 (Asada and Kanade. 1983). Figure 2 (Asada and Youcef-Toumi. 1985) and Figure 3 

(Newman. 1988). which wil l  be referred to, resjectively. as manipulator type 1. manipulator t p  2 and 

manipulator type 3. Manipulator type 1 was the original direct drive manipulator. Manipulator type 2 

in which both actuators are mounted at the base was proposed in order to improve the performance of 
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Figure 3: Manipulator type 3 (from Newman. 1987) 

manipulator type 1; note that this manipulator typc bas a "closcd kinematic chain". Latermanipulator type 

3 was proposed in order to improve the performance of manipulator type 2. l%e parameters and variables 

for manipulator typw 1. 2 and 3 are given, rcspeCtivcly. in Figun 4, Figure 5 and Figurc 6. (Note that 

the joint vmiable 42 for manipulator type 1 is different from the joint variable q2 for manipulator type 2). 

The dynamic equations for cach manipdator type are given in Appendix A and wen used to determine 

and extract the properties of the scccleration sets S,. S4 and SU using the theory developed in (Desa and 

Kim, 1969). Ihe maximum and isotropic sccelcration under the thnz operating anditions arc then 

determined. 

The numerical values of the link parameters for each manipl&r type are given in Table 1. W o  

identical actuators, with maximum torques TI. and 720 of 30 Nm werc used. TEe input torque set is given 

by 

T =  (71 I rj 15 30.0 Nm, i =  1,2) (2.6) 

and the set of joint variable rates given by 

F =  (41 1 @j 15 5.0 nd/s, i =  1,2). (2.7) 
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Figure 4: parameters and variables of manipulator type. 1 
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Figure 5: Parameters and variables for manipulator rype 2 

Figure 6: Parameters and variables for manipulator type 3 
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Manipulator 1: 

link 1: 

link 2 

Manipulator 2: 

link 1: 

lid 2: 

link 3: 

lid 4: 

Manipulator 3: 

link 1: 

l i i  2: 

Table 1: Initial dmign parameters of manipulator types 1.2 and 3 

11 = 0.303 UI = 0.196 ml = 2.259 11 = 0.129 

12 = 0.303 g = 0.088 mz = 1.126 12 = 0.103 

I 1  = 0.303 0.088 ml = 1.126 11 = 0.103 

12 = 0.303 = 0.088 t ? ~  = 1.126 I2 = 0.103 

/3 = 0.303 a3 = 0.088 m3 = 1.126 13 = 0.103 

4 = 0.303 a = 0.088 = 1.126 14 = 0.103 

1s = 0.303 

11 = 0.303 a1 = 0.088 ml = 1.126 11 = 0.103 

12 = 0.303 a = 0.088 r t ~  = 1.126 12 = 0.103 
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Operating Configuration 

condition q = (ill,&) 

Isotropic accehation. 6 d2= 
manipulator type 1 manipulator type 2 manipulator type 3 I 

Stan-up 

In-motion 

(q, = 5 r/s. q2 = -5 rls) 

I Local I (O", 45") I 5.74 5.14 8.83 1 

(00, 45") 24.4 21.5 21.1 

(P. 90") 26.9 27.8 28.5 

( O O ,  45O) 20.8 5.14 8.83 

Table 2: Isotropic acceleration of h e  initial design of Uuee manipulator types 

Each l i i  of all the t h m  manipulator types was chosen to bc the same. The weight of the second actuator 

1?. (mounted on the second link) causes the values of 01 and ml for link 1 of manipulator type 1 to be 

different from the corresponding values of link 1 for the other manipulator types. 

The results obtained for isotropic acceleration for the initial design are given, respectively, in Table 

2. (Note that the start-up accelerations were computed for two different configurations). 

Let us now examine the possibility of performance improvement by increasing the actuator size of the 

two actuators. Increasing the size. of actuator 2 (72) for manipulator type 1 will have an adverse effect on 

its performance because the additional weight of the second actuator will be an additional inertial "load" 

on the first actuator. So, it is not advisable to increase the size of the second actuator. Furthermore; in 

the present example it is the size of actuator 1 which determines the isotropic acceleration and increasing 

the size of the first actuator alone will not change the isotropic acceleration (see section 5.5). Therefore, 

manipulator type 1 is not a good candidate for redesign. The actuator sizes of both actuators can k 

readily increased for manipulator types 2 and 3 since both actuators (for each of these types) are mounted 

at the base. We will theEfoxe consider the effects of doubling the size of both actuators of manipulator 

types 2 and 3. The results obtained for the isotropic acceleration for k redesigned manipulator types 2 

and 3 are given in Table 3. 

From the results of Table 2 and Table 3. we can draw the following condition. 

15 



operating I configuration I Isotropic acceleration, airo m/sz 

condition 

Start-up 

q = ($1. in) manipulator type 2 manipulator type 3 

(W, 4 5 O )  43.0 42.2 

In-motion 

(41 = 5 rls, irz = -5 r/s) 

Local I (W, 4 5 O )  I 10.2 17.6 1 

(0”, 90”) 55.6 57.0 

(0”. 4 5 O )  10.2 17.6 

Table 3: Isompic acoeleralion of the redesigned manipulator types 2 and 3 

I. Based on the local isotropic accelerdon (which takes the nonlinearities into account) of the initial 

design @able 2). the manipulator type 3 is “bettef than the manipulator type 1 which slightly better 

than manipulator type 2. 

2. When we take advantage of the fact that manipulator types 2 and 3 can be redesigned. we see that 

&sed on local isotropic acceleration in Table 3) manipulator type 3 is better than manipultor type 

2 which is better than (the initial) manipulator type 1. 

These conclusions are borne out in practice: it is well-know that manipulator type 3 is “faster” than 

manipulator type 2 which in turn is much “faster” than manipulator type 1. (The reason manipulator 

types 2 and 3 are kuer than manipulator type 1 is because they both have all their actuaton mounted 

at the base. The reason manipulator type 3 is better than manipulator type 2 is because the “steel-belt” 
used in manipulator type 3 to transmit the torque from the base actuator to the second link has negligible 

inertia compared to the linkages used in manipulator type 2 to transmit the torque from the base actuator 

to the second link.) 
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5 Determination of the actuator size for isotropic acceleration 

In this section, we demonstrate bow the theory developed in @esa and Kim, 1989) can be used to solve 

the “actuator size determination” problem in a relatively straightfonvard fashion. 

5.1 Introduction 

Given a manipulator at a configuration q in the workspace with specified geometric (i.e., link lengths. 

etc.) and inertia parameters (k, masses, moment of inertias, etc.), and specified workspace and joint 

variable rate constraints, determine the actuator torques required to yield a specified (desired) acceleration 

property (for example, a specified local isotropic acceleration). 

5.2 Definition of the problem 

Definitions 

d q = input parameter (or variable); the. input parameters are the geometric and the inertia parameters. 

q = 121, 12, a ] ,  e, ml,  mz, TI, 1217 input parameter vector w i t h p  component q. 4 

W : workspace of the manipulator. 

F : joint rate variable set. 

T : torque set. 

a : some specified acceleration prupeny under a given opemion condition (start-up, in-motion, local), 

for example, aiso,m. 

Problem statement 

Given the input vator q of link parameters and the constraint sets 

17 
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and 

F =  (41 I iri IS irio, i =  1721, 

determine the torque set 

T= { r  I I ri 15 rb,i = 1,2) 

to yield the specified acceleration a. The q u i r e d  actuator sizes are of course r10 and +20. 

5.3 Solution procedure 

We distinguish two cases, the first where the manipulator parameter vector I) is independent of the weight 

of the actuaiors and therefore of q0 and m, and the second where 11 depends on the actuator weights and 

therefore on r,, and %. 

In each case we will obtain the actuator Sizes to yield a desired isotropic acceleration under the three 

operating conditions. 

Case 1: Manipulator parameter vector q is independent of the actuator sizes rlo and % 

1 (a) Determination of actuator sizes for specified start-up isotropic acceleration 

Given a specified manipulator parameter vector q, determine actuator sizes no and q~, to yield a spec- 

at a given configuration q in the wotkspace of the manipulator, ified stan-up isotropic acceleration 

i.e., determine rlo and such that 

The minimum actuator sizes ~ 1 ~ , ~ b  and a- required to satisfy the requirements (2.8) m given by 

(2.9) 

(2.10) 

18 



Proof: Equation (1.70) expresses the isotmpic start-up acceleration in terms of the actuator torques 7ll0 

and u. Equation (1.70) is equivalent to the following two conditions 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

For a given matrix A (Le., forgiven aij and det(A). the actuator size qS will be a minimum when equation 

(2.13) is an equality. Denoting by qOmb the value of qO when (213) is an equality and solving (2.13) 

for ~ l ~ ~ ~ i , , ,  we obtain the result (2.9). Starling with (2.14) and reasoning in a similar fashion. we obtain 
. 

the result (2.10) for +2c.min. 

1 (b) Determination of actuator s k  for specified in-motion isotropic acceleration 

Given a specified manipulator parameter vector q. determine actuator sizes no and to yield a 

specified in-motion isotropic acceleration &,h for a given manipulator state u = (q, 4). i.e.. determine 

qo and 720 such that 

aim,ii  2 (2.15) 

at u = (q, Q). 

The minimum actuator sizes rlO* and required to satisfy the requirement (2.15) are given by 

I W.4) 1 (2.16) 

(2.17) 

(Comment: ki and kz are the components of the vector k which is defined in section 4 of Part I (Desa 

and Kim, 1989).) 

aiso, .14-+ I avkl - alzkz 1 

airo, h d n +  Ia21k1 - a d z  1 
I d e W  I 

+ l O J n i n  = 

%Jnm = 

19 



Prool: Equation (1.133) expresses the isotropic in-motion acceleration in terms of the actuator torques 

q0 and %. Quation (1.133) is equivalent to thc following two conditions 

(2.18) 

(2.19) 

(2.21) 

For a given matrix A (Le., for given aij and det(A) and coefficients kl and k2. the actuator size 7 1 ~  will 

be a minimum when equation (2.20) is an equality. Denoting by q.,* the value of qo when (2.20) is 

an equality and solving (2.20) for qo*, we obtain the result (2.16). Starting with (2.21) and reasoning 

in a similar fashion, we obtain the result (2.17) for me. 
1 (c) Determination of actuator size for specified local isotropic acceleration 

Given a specified manipulator parameter vector 7, determine actuator sizes q0 and 720 to yield a 

specified local isotropic aceeleration &+,, for a given configuration q. Le.. determine no and slo such 

that 

ail0,lOul I u:lo,d. (2.22) 

The minimum actuator sizes rl+,,,mb and required to satisfy the requirement (2.22) are. given by 

. .  
(2.23) 

(2.24) 

where pmax(x(Sq), fi), (i = 1, 2) an: given by equation (1.92) in subsection 5.2 of Part I @esa and Kim, 

1989). 
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Proof: Equation (1.152) expresses the local isotropic acceleration in terms of the actuator torques 71. and 

m. Equation (1.152) is equivalent to the following two conditions 

Combining (2.25) (2.26) and (2.221, we obtain 

(2.25) 

(2.26) 

(2.27) 

I det(A)’rz, - prn,x(%(sq), 22) 2 &,,sou1. (2.28) 

For a given matrix A (is.. for given aij and &t(A) and p-(X(S&li) (given by equation (1.92) in 

section 3 of Part I (Desa and Kim. 1989). the actuator size s10 will be a minimum when equation (2.27) is 

an equality. Denoting by rjO* the value of no when (2.27) is an quality and solving (2.27) for  TI.^, 

we obtain the result (2.23). Starting with (2.28) and reasoning in a similar fashion. we-obtain the result 

(2.24) for %,-. 

Jrn 

Case 2: Manipulator parameter vector q is dependent on the actuator sizes q0 and 7 - b  

The algorithm for computing the actuator sizes is shown in figure 7. Essentially, we should embed 

“Case 1” in a closed-loop which compensates for the fact that q does depend on Tilo and a. 

The algorithm (Figure 7) consists of the following steps: 

1. Initialization. The initial parameter vector q is computed based on the actuam weights beiig set 

to zero. The values of the actuator sizes, denoted by Tlo(old) and %(old), are set to zero. 

2. Compute actuator sizes q.(new) and %(new) based on a given parameter vector 7) as in Case 1 

(Use Case l(a) for start-up, Case 1@) for in-motion and Case I(c) for local). 

3. Check whether no and Q, converge using the following convergence criteria 

21 

(2.29) 



~ 

Initialization 

I 

Figure 7: Algorithm for computation of  actuator s k e s  to yield desired acceleration 

requirements for the case where the manipulator parameter vector q depends on the 

actuator sizes rlo and & 
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(2.30) 

where 61 and f2 M defmtd by UIC USW. If (2.29) and (2.30) arc satisfied, 

%ai. = -(new) and Ihc design is complete. 
= qo(new) and 

4. If (2.29) and (2.30) M not satisfied, @ate tbe parameter vcuor r] based on new actuator sizes 

rl.(new) and %(new). and go IO step 2. 

The dosed loop shown in Rgun 7 essmtially performs iterations of step 2, 3, and 4 till IIX convergence 

criteria arc satisfied. 

Comment: 

The “stan-up” case can be used IO gn a quick design which can be successively refined by doing Ihe 

“in-motion w e ”  and ”local case”. This is dunonstrated in the example M o w .  

5d Example: 

manipulator. 

Deiermination of actuator sizes for acczleration propcnies for a two degree-of-fdom serial planar 

U‘c illustrate how we determine the minimum actuator sizes of a planar two degrce-of-fmdom ma- 

nipulator built in our laboratory for the following lhrce cases 

caw I: (Start-up) aiso,m = 3 d s 2  ~ 1 ( 4 1 =  OD, 42 = 90“) 

Case 2: (In-motion) (liro,im = 3 m/s2 ai (q l=  00, 42 = 909 QI = Irad/s2, QZ = had/& 

Case 3:  oca^) uiro.ld = 3 m/s2 at (41 = 00, 42 = 90’) 

Inifialization 

Initial link parameters for links 1 and 2 arc BS follows: 

link 1: I I  = 0.303 m, 01 = 0.088 rn, rnl = 1.126 Kg, 11 = 0.103 Kg m2, 
link2: 1 ~ = 0 . 2 5 4 m , q = 0 . 0 9 4 m . m ~ ~ l . 1 2 0 K g . 1 2 = 0 . 0 0 3 K g m Z .  
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Since our manipulator belongs to manipulator type 1 in section 4, we use the loopalgorithm in Case 2. 

Case 1: Design for start-up acceleration 

To give the reader a feel for how to size actuators using the algorithm, we include the results of the 

three iterations which were needed to obtain the actuator sizes. 

Iteration 1. 

Using equations (2.9) and (2.10) with the initial link parameters, we come up with the following 

actuator sizes, 

 TI^^,,,^ = 2.13Nm, 

%,Inin = 0.15Nm. (2.31) 

Iteration 2 

Since we can vary the actuator torques between 0 2  - 5 Nm using the gear reduction, the weight of 

brushless motor is assumed to be around 1.1 Kg. Our manipulator is manipulator type 1 and we include 

the actual weight of actuator 2 to obtain a new set of parameters. 

link 1 : 11 = 0.303, U i  = 0.196, mi = 2.259,Ii = 0.129, 

l ink2:12=0 .254 ,4=0 .094 ,~=1 .129 , I~=0 .003 .  (2.32) 

If we use equations (2.9) and (2.10) with the new set of link parameters in (2.32). then we come up with 

the following actuator sizes, 

(2.33) 

Iteration 3. 

Since the weight of actuators is assumed to be mund 1.1 Kg, we have the manipulator parameter set 

in (2.32). If we use equations (2.9) and (2.10) with the set of link parameters in (2.32), then we come up 

with the same actuator sizes as in calculation 2 as follows, 

TI,,, = 3.17Nm, 

'20- = 0.15Nm. (2.34) 
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The required actuator sizes, themfore, are the values in (2.33). 

Case 2: Design for in-motion acceleration 

Similarly, using (2.16) and (2.17) and employing the algorithm (Figure. 7). we obtain the following 

minimum aauator sizes to satisfy the in-motion isotropic acceleration 

rll0,min = 3.42Nm, 

%,mi3 = 0.17Nm. (2.35) 

As expected, because. of the non-linear effects when the manipulator is "in-motion", results (2.35) show 

that we should use bigger actuators in order to achieve the same level of acceleration properties as in 

manipulator start-up. 

Case 3: Design for local acceleration 

Using (2.23) and (2.24) and employing the algorithm, in Figure 7, we obtain the minimum actuator 

sizes to satisfy the local isotropic acceleration 

rlS,- = 4.12Nm, 

= 0.11Nm. (2.36) 

As expected, we come up with the bigger actuator sizes in (2.36) than those of the "in-motion" results in 

(2.35). 

25 



Figure 8: Mechanical components of a two de@-freedom manipulator 

6 Experimental verification 

In this section, we describe simple experiments which are used 10 determine the acceleration set ST 

(Start-up acceleration capability) and then compare the experimental results with those obtained using the 

analytical results of Part I. 

6.1 Description of the two degree-of-freedom manipulator experimental set-up 

The mechanical structure of the two dcgne-of-freedom manipulator is shown schematically in Figure 8. 

The design is modular so that the links can be easily changed, Lhus allowing one to study the effect of 

changing the link parameters. Each link is driven by a motor as shown in the Figure. A schematic of the 

control hardware which is used to drive each motor, and thereby control the torque applied to each link, 

is shown in Figure 9; the main points to note in the control hardware are the following: 

1. A specified input torque commanded from a terminal @y the user) is transmitted to the pulse-width- 

modulation (PWM) generator by the MC68K microprocessor board. 
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Host micro-vax 

Main MC6XK board 

Interface board 

Figure 9: Control implementation of a two degree-of-freedom manipulator 
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2. The PWM generator converts the toque command into a pulse width modulated voltage signal to 

the motor resulting in the application of the torque to the li. 

3. The motor position is measured by optical encoders and transmitted to the MC68K microprocessor 

board where it is stored until needed by the host computer (for various purposes). 

6.2 Experimental procedure 

We describe the procedure for experimentally determining S,. Because S, is a parallelogram in the x - 
plane (see Figure 5). it is suflicient to obtain the four vertices A', B'. 6 ,  and D' of S, which correspond, 

respectively. to the vertices A, 8, C, and D of the toque set T shown in Figure 3. Furthermore, because the 

origin of the acceleration plane is the wtroid of the parallelogram A'B'C'D', it is sufficient to determine 

the vertices A' and B' which correspond, respectively, to the venices A and B of the torque set T. 
If rlo and Q denote, respectively, the magnitude of the maximum actuator toques at joints 1 and 2, 

then 

1. in order to generate point A' of S,, we should apply actuator torques rl0 and m, respectively. at 

joints 1 and 2, and 

2. in order to generate point B' of S,. we should apply actuator torques no and -%. respectively. at 

joints 1 and 2. 

The procedure to obtain the image point in S, (for example, A') corresponding to a point (rl,q)-in 

T (for example, A) is as follows: 

I .  Apply the actuator torques rj and 72 at, respectively, joints 1 and 2. 

2. Measure the joint variables qI(f) and @(t) at regular sampling instants. (The panicular sampliig 

rime chosen was 0.01 second.) 

3. Obtain the second rates-of-chmge of the joint variables qifk), i=1,2, at the 2'' sampling instant from 

the following finite-difference equations, 

(2.37) 4,(k)= qi(k+2)+qL@-2qi(k+ 1) 
A$ 
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X(A')- = (-4.08, 6.02) 

X(B'), = (2.96, 6.31) 

I X(A')- 1 = 7.27 

I x(B')- I = 6.97 

X(A')d = (-3.91, 6.65) 

X(B')d = (3.91, 6.98) 

I X(A')& I = 7.71 

I X(E')d I = 8.00 
6 % 

13 % 

Table 4: Comparison of experimental and calculated accelerations for two data points 

where k, k+l and k+2 denote, respectively. the P. (k+ l)* and (k+ 2)* sampling instants, and At 

is the sampling time. 

4. Determine the required acceleration of E', Xp from 

(2.38) 

Since 

q 0, 

X p  S? Jq. (2.39) 

The coordinates 31 and XZ obtained from the equation (2.38) above is the required image point in S,. 
The following details apply to the particular experiments which we performed: 

1. The experiments were performed for the mafiguration q1 = 0" and QZ = 90"; 

2. The parameters for the two links are given in section 5. 

3. The maximum actuator torques applied were q0 J 8.12 Nm and % = 0.17 Nm, which were in the 

set of amator constraints determined in the previous section. 

6.3 Experimental results 
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Figure 10: Comparison of experimental (dotted parallelogram) and calculated (solid 

parallelogram) start-up acceleration capbility of the manipulator 

The experimental results for the determination of the points A' and 8' are given in Table 4 and 

graphically described in Figures 10. Also included are h e  theoretical mults. From Table 4, we see that 

the experimental and theoretical results agtee within experimental error (<  15 76 ) and are certainly good 

enough for our purposes. 

In Table 5.  we compare Ihe values of the start-up acceleration propenies a,-,m and e,,, obtained 

from experiment and theory; the theoretical and experimental results agree to within 10 5%. The results 

of the experiment demonstrate the feasibility of using our theory to determine acceleration capabilities. 
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Acceleration propenies Acceleration propenies 

(experiment) 

I a,-.m = 7.27 I h.m = 8.0 I 9 96 I 

Table 5: Comparison of wrperimental and calculated acceleration prnpertia (ds’), @rmr 

= I Gxp -ad I /a 
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7 Summary and condusions 

Using the theory of acceleration scts, (Desa and Kim, 1989). we have defined Cm e o n  3) six 
performance measures which can bc usd as a basis for designing manipulators for pedormmct. We then 
illusvatEd thc uscfdness of these pcrfomian~ measures by applying them to tbc s01ution of the following 

two manipulator design problems. 

1. Selection of the "best" manipuhtor type from a sa of atttmative manipulator types 

2. Determination of minimum actwor sites to achieve &sited isompic rcccleratim. 

An explicit pmedure was given in section 4 to solve the first problem, viz. "type selection". Algorithms 
for UIC determination of actuator sizes m given in section 5. 

Finally in section 6, we addressed IIIC elrperimemal determination of the maximum and isotrop4c man-up 
acceleration and presented experimental Rsulu which verified the Wry for start-up acceleration sets and 
start-up acceleration properties. 
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Appendix. Equations of motion for planar manipulators 

1. Jacobian matrix 

The joint VClOCity is related to the velocity in Cartesian space by the Jawbian matrix, 

X=Jtj .  

The Jacobian matrix J for the thne types of manipulators an as foUOwS: 

Manipulator type 1: 

I -11 Sin 41 - 11 Shk'l + 42) 

11 COS 41 + 12 mS(41 + 41) 

-12 h(4l  + d 
11 d q l  + 42) 

J =  [ 
Manipulator type 2: 

Manipulator type 3: 

IimS91 i2mSQ2 

When this relationship is differtntiated with respect lo the time, we obtain the following quation, 

(2.40) X = ~ q + j t j  = ~ q -  ~ { q )  2 

when E is the manix which has the following elcmmr~: 

Manipulator I: 

1 11 COS 41 + 12 u)S(QI + 42) 
11 S h  41 + h Sk(41 + 42) 

IZms(q1 +a) 
12Sin(4l + 42) 

E= [ 
Manipulator 2: 

Manipulator 3: 
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2. Dynamic equatkm 

The dynamics of a twm4cgrcc-of-frccdom planar manipulalor is described by the following quation: 

DQ+V{Q)'=r. c.41) 

The wmpacnts of matrices D and V an BE follows: 

Manipularor 1: 

Manipulator 2: 

0 

0 

T h e  nonlinear vector {q}2 is as follows: 

Manipulator I: 
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Manipulator 2: 

Manipulator 3: 

3. Acceleration equation 
The expressionof the acceleiation of the endeffenor is as foUow: 

P = AT + B{4}* 

where 

A=JD-'  

B = -AV - E 

where J. D, V and E are given above for each manipulator typc. 

I 

12.42) 
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