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Abstract

In this report the approach developed by the authors, for systematically studying the
acceleration capabilities and acceleration properties of the end-effector of a planar 2 degree-of-
freedom manipulator, is extended to the general spatial manipulator with three degrees-of-freedom.
A central feature of this report is the determination of the properties of the quadratic mapping
between the “joint-velocity” space and the acceleration space of P which then makes it possible to
obtain analytical solutions for most acceleration properties of interest. We show that a fundamental
way of studying these quadratic mappings is in terms of the mapping of (input) line congruences
into (output) line congruences.






1 Introduction

In this paper, we apply the approach developed in (Desa and Kim, 1989-1} to the problem of determining
the acceleration capability and acceleration properties of (a reference point on) the end-effector of a spatial
three degree-of-freedom manipulator.

An informal statement of the problem is as follows:

Consider the genera! three degree-of-freedom revolute-joint manipulater shown schematically in Figure
1. We are interested in studying the acceleration of a reference point P on link 3. (P is typically a point
on the joint axis of the end-effecior; the acceleration of P is therefore ofien referred to as the end-
effector acceleration). The usefulness of studying the acceleration of the end-effector has been discussed
in (Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988; Desa and Kim, 1989-2;
Kim, 1989).

As shown, for example, in (Desa and Kim, 1989-1),the acceleration capability of the point P under
various conditions is best described by certain acceleration sets. Two properties which are used, in general,
to characterize these sets are the maximum possible magnitude of the acceleration of P and the maximum
magnitude of the acceleration of 7 which is available in all directions. The former property is simply
called the maximum acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick,
1987).

Acceleration properties of the end-effector have also been studied by (Yoshikawa, 1985; Khatib and
Burdick, 1987; Graettinger and Krogh, 1988). The approach of each of these researchers has been
discussed and compared with our approach in the paper (Desa and Kim, 1989-1) and we will not repeat
that discussion here. We will however repeat the fundamental hypothesis underlying our approach which
is as follows. By decomposing the functional relationships between the inputs (actuator torques and
joint variable rates) and the output (acceleration of P) into two fundamental mappings, a linear mapping
between actvator torque space and the acceleration space of point P and a quadratic (nonlinear) mapping
between the “joint velocity” space and the acceleration space of P, and by deriving the properties of these
two mappings, it is possible to determine the properties of all acceleration sets which are the images of
the appropriate input sets under the two fundamental mappings.

The contributions of this paper are as follows:



1. The central contribution of this paper is the determination of the properties of the quadratic mapping
between the joint velocity space and the acceleration space of P which then makes it possible 1o
obtain analytical solutions for the isotropic acceleration. We show that a fundamental way of
developing the propertics of the quadratic mappings of interest is in terms of the mapping of (input)

line congruences into (output) line congruences.

2. Closed-form analytic expressions are obtzined relating important acceleration properties of manip-
ulators to all the manipulator parameters and input variables (torques, joint variable rates or “joint
velocities™) of interest. (The only exception is the maximum local acceleration which is specified
in terms of tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration have been determined.
(Earlier studies seem to implicitly assume that isotropic acceleration always exists.) These conditions

are stated explicitly in terms of manipulator parameters and input variables.

4. Analytical expressions are derived for determining the maximum and isotropic acceleration of the
end-effector at any (“local”) configuration of the manipulator.

We will demonstrate the application of the theory to a particular three degree-of-freedom spatial
manipulator. The application of acceleration theory to problems in manipulator design has been dealt
with in (Desa and Kim, 1989-2). The next section, which describes our approach, also provides the dual
function of being a “road-map” of the paper.



2 Description of the approach

The approach for studying the acceleration of (a reference point 7 on) the end-effector, given in (Desa

and Kim, 1989} is as follows:

10.

Define the input variables and output variables of interest (subsection 3.1). The output of interest

is the acceleration of the reference point P.
Define the input sets of interest (subsection 3.1).

Define the input-output functional relations. These are obtained from the dynamical and kinematical

equations of the manipulator {subsection 3.2).

. Define fundamental mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

. Define the image sets of the input sets under the mappings obtained in step 4 {subsection 3.4).

These image sets are the acceleration sets of interest.

. Define general properties which can be used to characterize (“measure™) acceleration sets (subsection

3.5).
Determine the propenties of the mappings defined in step 4 (section 4).

Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in

step 7 (section 4).

. Determine the specific properties of the acceleration sets determined in step 8 using the “measures”

or general properties defined in step 6 (section 5).

Determine the jocal acceleration properties for any configuration q of the manipulator using the

properties of the acceleration sets obtained in step 9 (section 6).



joint 1
Figure 1: Schematic diagram of a general three degree-of-freedom manipulator
3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider the general spatial three degree-of-freedom manipulator with three revolute joints shown schemat-
ically in Figure 1. In this subsection, we define the link parameters, the input variables, the input sets,
the output variables and the output scts for this general spatial manipulator. The manipulator is assumed
1o be rigid with negligible joint friction,

The manipulator will be described by a set of geometric and inertia parameters, which will depend
on the manipulator type. The geometric and inertia parameters for the spatial three degree-of-freedom
manipulator of Figure 1 are also shown in Figure 9 are enumerated in the Appendix.

Nexi, we define the input variables, the input constraints and the cormresponding input sets of the
three degree-of-freedom spatial manipulator. Let gy, g2, and g5 denote the generalized coordinates of the



manipulator (see Figure 9), 41, g2 and g3 being the joint variables, respectively, at joints 1, 2, 3. Define
4
gl 0 )

to be the vector of joint variables; the corresponding vector space of all q is called the jeint space. If
e <q: < qw, i=1,2,3 (2)
represents the constraint on joint variable i, the workspace W of a manipulator is defined as
W= {qlqe < ¢ < qw, §=1,2,3}. ' (3)

Yet ¢i, @2, and @3 denote the joint variable rates. Define
A,
Q= o (%)

to be the vector of the joint variable rates. If

| 4 )€ oy §=1,2,3 (5)
denotes the constraints on the joint variable rates, then we can define

F={4] 14 |< 0, i=1,2,3} (&)

to be the set of all the possible joint variable rate vectors, represented by regular parallelopiped J3 Ky Ly M Ja KoL oMy
in Figure 2. (We will refer to this parallelopiped as the parallelopiped F for short.)
Let 71, 72, and 73 denote the actuator torques, respectively, at joints 1, 2, and 3, and

2l n )

denotes the vector of actuator tonque vectors. Let

[ 7 {< oy £=1,2,3 (8)
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Figure 2: Set of the joint variable rates of a three degree-of-freedom manipulator
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Figure 3: Set of the actuator torques of a three degree-of-freedom manipulator

denote the constraints on the actuator torques at joints 1, 2, and 3. Define
T={r]|7n!< 10, i=1,2,3} @)

as the set of the allowable actuator torques, represented by regular parallelopiped ABCDEFGH in Figure
3. (We will refer to this parallelopiped as the parallelopiped T for short.)

The vectors q, q and 7 will be referred to as the input variables (more precisely the input variable
vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator.

Let (x1, x2, X3) denote the coordinates, in a reference frame fixed to the base, of a reference point P
on link 3 {see Figure 1) and define

X3

%2 | x (10)

X3

as the vector of task coordinates; the corresponding vector space of all %7 is called the task space.



The velocity %7 and the acceleration ¥ of the point P of the manipulator are, respectively, given by
i |
W= i (11)

and

# = (12)

The acceleration of P, %7, is the output variable of interest in the present work. The corresponding vector

space A of all possible &7 is called the acceleration space, expressed by

A={i|xeR). : (13)

3.2 Functional relations between the inputs §, r and the acceleration £°

The next step is 10 obtain the functional relations between the acceleration %7 and the inputs § and 7
for a given configuration q. In this subsection, we show how the nccessary functional relations can be
obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relationship.

The dynamic behavior of the most general three degree-of-freedom rigid spatial manipulator (Figure
1) can be written in the following symbolic form (Craig, 1985):

D+ V{q, Q+p=r, (14)

where D is the so-called mass matrix of the manipulator, ¥(g, ¢) is the vector consisting of ail terms
which are non-linear in the products of the joint variable rates §;, (i = 1, 2, 3), and p is a vector of all
terms due to gravity.
We next express non-linear terms ¥(q, @) as products of a matrix and a vector. To understand how
this is done, we first write V{q, q) in its most general expanded form,
RUGE + 2128 + U3 + 2w + 2w ds + wiadadn
V= | ungt+unds + unipz + 2vninds + 2wainds + wadsgq | - (15)

U1t + U2l + uadd + 2wstine + 2wnipds + walsd



Defining the two matrix operators,
1 W2 H13
U=1| w1 wup uz
H3] W32 W33
and
Wil W12 W3
W= wy wn wa
w3 W2 Wy

and two vector operators

&
@ = | &},
A
and
2414
47 =| 24 |»
a4y

we can decompose the non-linear term V(q, §) as follows:

e Wz W3

Vig, @

Uzy U3z U3
= U< gq>?+Wg1

21 Nz U23

@
@
2

Wil Wiz W3 2inégg
+ 1 w2 w2 wn 2283
w31 Wiz W33 2pn

(16)

Qa7

(18)

(19)

(20)

21

Substituting equation (21) into (14), we can express the dynamic equation of a general spatial manipulator

by

D+ U< q> +WgiP+p=r.

22)

This is the most general expression of descﬁbing the dynamics of a three degrec-of-freedom spatial

manipulator in the joint space. The matrix D is the mass matrix of the manipulator and the vector p

denotes the gravitational terms which influence the dynamic behavior.

9



The relationship between the velocity, X,, of point P, and the joint variable rate vector q is well known

{Desa and Roth, 1985):
i =]Jq 23

where J is a (3 X 3) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix

is given in the Appendix.

To obtain the expression for the acceleration ¥” of the point P, we differentiate equation (23),
® =Ji+Jq. (24)
The second term in eguation (24), J. can be written in the form (see the Appendix)
Ji=-F < q>%-GIg> (25)

Substituting equations (25) into (24), we obtain

#=J4-F < q>* ~Glq (26)

Defining the quantities,
A = JD°}, X))
= —AU-F, (28)
N = —AW-G, (29)
(30)

and

s = —Ap, (31)

we can easily show that the acceleration ¥° of point P, obtained by combining equation {22) with equations

{26) through (31), is given by
W = AT +B < ¢ >2 +N[ql* +s (32)

where A,B,N,s are configuration dependent and have the components ajj, by, 5, 5. (i, j = 1, 2, 3).

10



Equation (32) expresses the required (Input-Output) functional relation between the input variables,
dq and 7, and the acceleration ¥° of the point P (the output variable) at a given configuration q. It is
important 10 note that the definition of the matrix “cperators” U, W, F and G and the vectors < > and

[4]? enables us to write the dynamic equations in the compact form (32) which is critical in the sequel.

33 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration

%7 of the point P (the output variable).
It is convenient to regard the functional relation (32) as a mapping between the input variables 4 and

r and the output variable ¥ for a given configuration q of the manjpulator. Furthermore, defining

-

o1

(). =Ar (33)

1]

%

and

1]

A oq [ =B <4 >2 +NIg)% +5, (34)

C!}q g

equation {32) can be writien as
7 = 8+ 5. (35

It is convenient to think of the vector ¥ as the contribution of the torques to the acceleration of
the raference point P, and the vector xfl as the contribution of the joint variable rates and gravity to
the acceleration of P. Equation (35) expresses the fact that the sum of these two vectors gives us the
acceleration of P for a three degree-of-freedom manipulator.

Eguation (33) can be viewed as a linear, configuration-dependent, mapping between the torque vector
7 and its contribution %2 to the acceleration of P. Similarly, equation (34) can be viewed as a quadratic,
configuration-dependent, mapping between the joint velocity vector q and its contribution x‘fI to the

acceleration of P for a given configuration q. These are the two mappings of interest in this section.

1



3.4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input seis
under the mappings (33) and (34) at a given configuration q of the manipulator. There are three image
sets of interest.

34.1 Image set 5, of the actuator torque set 7 under the linear mapping

For a given set T of the actuator torques r described by equation (9) and represented graphically by a
regular parallelopiped in the T - space (see Figure 3}, we define the image set S, of T under the lincar
mapping {33) as

S.={Z|¥ =Ar,r €T} a6)

(Note that S, lies in the acceleration space A.)

3.4.2 Image set Sq of the joint variable rate set F under the quadratic mapping '

For a given set F of the joint variable rates § described by equation (6) and represented graphically by a
regular parallelopiped (see Figure 2), we define the image set Sy of F under the quadratic mapping as

Sq = {335 =B < ¢ >* +NIqP +s,4 € F}. (37
(Note that Sq lies in the acceleration space A.) From equation (34) and the above definition (37), we sce
that the image set Sy represents the set of all possible accelerations (the acceleration capability of the
manipulator) when the actyators are tumed off (v = 0) in any configuration q.

3.43 State acceleration set

When a manipulator is in motion, the dynamic state of a manipulator can be specified by the joint variables,
(g1. g2). and joint variable rates (41, ¢2). The state vector 2 which characterizes the dynamic state of the

manipulator is defined as follows:

u= . (38

12



For a specified dynamic state of a three degree-of-freedom manipulator, The second term of the
acceleration ¥ in equation (32) is a constant vector, which we denote by k(u) and define as follows:

( k1

kw) = | k

| k2

[ b +biadh + buadh + 2 o + 2nadnds + 203y + 51

= | byif +bud + bl + 2nninds + 2nnipds + 2nn@nn + 82

L b + buadg + budd + 2oz + 22803 + 2n33dndy + 53

B < q >% +N[q]* +s. (39)

Equation (32) can then be written as follows:
¥=A7+k (40)

For a given dynamic state u of the manipulator, we define the state acceleration set Sy-as the image set

of T under the lincar mapping (40):
Su={¥|%" = Ar+k,7 € T}. 41

Su is therefore the set of all possible accelerations ai any given dynamic state a of the manipulator. Since
the dynamic state u of the manipulator essentially specifies the velocity %” of the point P in tl 1} in any
configuration, we can also interpret the state acceleration set Sy (the set of available accelerations) as the
acceleration capability of the manipulator when the manipulator is moving with the velocity X7 in a given

configuration (.

3.5 Properties of the acceleration sets

The definitions of the acceleration sets in the previous subsection will be used in section 5 1o determine
them. Once these sets have been determined, one would like to characterize them.

Consider an acceleration set § in the acceleration space ¥, and two spheres Cy and Cp: €y is the
smallest sphere centered at the origin which completely encloses the acceleration set and C; is the largest

sphere centered at the origin which lies inside the acceleration set. The radius r; of the sphere C) is the

13



maximum available acceleration in §. The radius »; of sphere 2 represents the largest (magnitude of)
acceleration available in all directions.

We therefore define the following twop properties of S:
e the maximum acceleration of S: gnu(S) = 11,

s the isotropic acceleration of S: giss(S) = ra.

Comments:

The isotropic and maximum acceleration are particularly attractive for characterizing set S, in contrast
1o the average acceleration, since they can be readily extracted from the dynamic equations in “closed-
form™ (or by appropriate bounds). The average acceleration, if required, can be numerically determined

from the description of the acceleration sets given in the next section.

14
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Figure 4: Image set S, of a three degree-of-freedom manipulator
4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S, Sq and Sy are presented, respectively, in
section 4.1, 4.2 and 4.3. The determination of S, and the state acceleration set Sy follows directly from
well-known properties of linear mappings while the determination of the set §4 requires the derivation of
the properties of quadratic mappings which are new The approach for determining the set Sy under the

quadratic mapping is more fundamental than that given in (Desa and Kim, 1983).

4.1 Determination of the image set S

The set S, is the image set of the actuator torque set 7 under the linear mapping (33). We determine the
image set S, of the linear mapping of a three degree-of-freedom manipulator in the X - space. Additionally,

we identify the boundaries of set S,, which are planes in the ¥ - space.

15



Result 1: The image set S, of the actuator torque set T under the linear mapping (34) is (the interior and
boundary of) the parallelopiped A'B'C'D'E'F'G’'H’ in the %-space whose vertices 4, B, ..., H are

as Tollows:
A1 (Bume +apTy, + AT, anne + 73 + 08T, GNTIe +ERTL + B3T) (42)
3 {11710 — Q12725 + G130, G Tio — AT + G130, G3T1o — G220 ¥ 333TS0) {43)
¢ (—QuTe ~ QpTye + 33T, —0nTie ~ 0Ty + 88T, ~@31 Tl ~ dR2T20 + 453T%) (44)
D i (cauTie+GnT+ 0T, —GuTi. +@nTe + 5T, —a0T + %7, + A7) (45)
E (11 Te + Q12720 — G13T3e, B Tis T8R0T — G287, ANTIe +d0TW — ENTI) {(46)
F (@718 — G122 — G137, @21 T1s — 2T — AT, BITo — FR T — 33 730) 1))
G (=01 Tie — G122 — G13T30 —RITIe — ARTI — BBT, —@NTIe — ENT — EXITIa) {48)
H {=011T1a + G212 ~ B13Th, —GNTLs + 30T — @NTH, —ENTe + ERTI — GNTI) {4%)

where gy, (i,j = 1, 2, 3), are the clements of the matrix A. The centroid of the parallelopiped
A'B' .. H is the origin of the ¥-plane (see Figure 4),

Result 2: The (planar) sides of the parallelopiped §, are given by the following equations:

F_r_f 7

ABFE : (znasn— enan)® — (apdn — anan) + (Guan — aianliy = n.det(A) (50)
D'CGH : (anan — anan)t — (auan — anan)h +(anan — aanlty = —n,det(A) {51)
ADHE : —(anan—anan)t +(anas — anau)t — (anan — auents = 7, de(A) (52)
BC'GF 1 (anan — anank — (anan ~ anan) + (@182 — anan s = n, de(A), (33}
ABCD : (auam - apan)t — (@nee ~ ananl¥ +(auen ~ apan )t = n, det(A), (54}
EFGH : (enan- open — (anan ~ anan)s + (qnan ~ dodsn Yy = —73 det(A) (55)

where det(A) is the determinant of the matrix A.

The following are well-known properties of a linear mapping:

1. A plane in the 7-space will map into a plane in the ¥-plane. In particular, planes py (r1 = 0). p2 (72
= 0) and p3 (r3 = 0) map, respectively, into planes Pi» p'z and p, whose equations are as follows:

P ¢ (anass — apaan)i - (@pan — anda)i: + (@2a3 — G13an)i =0, (56)

[

P2 {82103 —~ 0na3)% — (G113 ~ 031413)%2 + (@naxs — anan iy =0, (5
r

P {gnaa ~ epdn)i — (Buan ~ anm)iz + (@naxn — gipa s = 0. (58)

16



All three planes p), p, and p; pass through the origin of the %-plane.
2. Any plane g perallel to p; maps into a plane g; parallel to p;.
3. Any plane g; paralle] to p; maps into a plane g} parallel to p,.

4. Any plane g3 parallel to py maps into a plane g3 parallel to p;.

Proof of result 1:
By regarding the rectangular parallelopiped AB.. . (set T} as a set of planes parallel to p1, p2 and p3

one can casily show the well-known fact that the image of AB...H is a parallelopiped A'B' ...H. The
vertices A, B', ..., H are the images, respectively, of the vertices A, B, ..., H which are as follows:

Tle Tio ~Tlo —Tlo
Al mp B| -mp cl —m, Dl
Mo Tie Tio Tio
Tie Tle —Te —TNe

El 1 Fl| -y, G| —m, H| m, (59)
—~Tip — T30 ~Tip —T30

into equation (33), we obtain the coordinates of the vertices A, B, ... H as given in equation (49).
From (49), we see that the vertices A’ and G are equidistant from the origin and so are the pairs (8", H),
(C', E'Yand (D', F'}. Therefore, the origin of the %-space is the centroid of the parallelopiped A'B . H.

Proof of result 2:
We next need to determine the equation of the planes A'BFE, D'CGH, ADHE , BCG'F,

A'B'C'D and EFG'H which form the boundary of the paraliclopiped A'8’ ... H in the %-space. The
plane A'B'F'E’ in the “space is the image of the plane ABFE whose equation is 7 = 71, in the 7-space;
to obtain the equation of A'B'F'E’, substitute the equation of ABFE (r = 71,) into (33) to obiain the
following parametric equations in 7 and 73:

X = anne+danntaenin (60)

17



$2 = anmTetann+anm 61)

¥3 = 31710+ 43272 + d3373. (62)

Eliminating the parameter 72 and 7 between equations (60), (61) and (62), we obtain the equations of
the plane A'B'F'E as given by equation (50). In a similar fashion, we obtain the equations of planes
DCGH ADHE BCGF,ABCD, and EFG'H as in equations (51) through (55).

4.2 Determination of the image set Sy

The set Sy is the image set of the joint rate set F under mapping (34) for a three degree-of-freedom
manipulator. We decompose the set F (Figure 5 (a)) into 3 subsets Fy, £2 and Fa described as follows:

Definition 1: The set Fy is the truncated line congruence (Semple and Kneebone, 1952) consisting of
the doubly infinite sci of line segments passing through the origin with one endpoint on the plane
JiK 1MoL, and the other endpoint on the plane MiL1J/>K3. A typical member of #y is the line
segment g1 shown in Figure 5 (b). .

Definition 2: The set F» is the truncated line congruence consisting of the doubly infinite set of line
segments passing through the origin with one endpoint on the plane JL;KoM; and the other
endpoint on the plane KyM2J2L1. A typical member of F; is the line segment gz shown in Figure
5 ().

Definition 3: The set F3 is the truncated line congruence consisting of the doubly infinite set of line
segments passing through the origin with one endpoint on the plane /1K 418 and the other
endpeint on the plane LyMyJ:K2. A typical member of F3 is the line segment g3 shown in Figure
5 {d).

We can now state the useful results which analytically describe Sg, the image of F.

Result 1:

1.(a) Every line of the type g1 belonging to set F; maps into a line g'l in the X-space (Figure 6 (a)), one
endpoint of which is the point § whose coordinates s;, i = 1, 2, 3 are given by (40) and the other

18



(d)

Figure 5: Image set 5q of 2 three degree~of-freedom manipulator
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Figure 6: Quadratic mappings of a three degree-of-freedom manipulator
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endpoint of which lies on the quadratic surface patch (Figure 6 (b)) whose parametric equation {in

G and g3} is:
% b11d, + bl + b3 + 2mdnodn + 2maids + 2n13d3dho + 51
%2 | = | bndl, +bn + bl + 2ol + D + 2ol 52 | - 63)
3] ity + b0 + buify + 2m1 Q10 + 2n52dds + 2310 + 53
where
—§1o < §2 < G

—f0 <P < ¢

1.(b) The set F, maps into a set (S¢)1 in the X-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point § with coordinates s; (i = 1, 2, 3), given by (31) and the other
endpoint of which lies on the quadratic surface described by (63).

Fesult 2:

2.(a} Every line of the type g, belonging to the set F2 maps into a line g, in the ¥-space (see Figure 6
(c)), one endpoint of which is the point § and the other endpoint of which lies on the quadratic
surface patch (Figure 6 (d)) whose parametric equation (in 3 and 4} is:

* Buidf + baifs, + b1 + 20081 2o + 20280 + R3ay + 5
%2 | = | b +bndk, +bni + 2mnfide + 2nndds + 2nndein +52 | - (64)
i budt + b, + bndd + 2nn i1 G0 + 2280l + 2napdy + 5

where

'qi, < é]a

(42! < q20

2.(b) The set F; maps into a set {5q)z in the ¥-plane which is a doubly-infinite system of line segments,
one endpoint of which is the point § and the other endpoint of which lies on the quadratic surface
described by (64).
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Result 3:

3.(a) Every line of the type g3 belonging to the set F3 maps into a line 3'3 in the X-space (see Figure 6
(), one end of which is the point S and the other end of which lies on the quadratic surface patch
(Figure 6 (f)) whose parametric equation (in &, and §z} is:

i Buds + b2l + badf, + 2o + 2o + 2n3ie i + 51
2 | = | dndd+bnd+bndl, + 2l + 2o+ Lrnlpeds + 52 | - ©5)
I bt + baaif + b, + 2anéh 2 + 2naadnne + 2M33ds0 it + 53

where

10 < 1 < Q1o

—§2 < 2 < 420

3.b) The set F3 maps into a set {54)3 in the X-plane which is a doubly-infinite system of line segments,
one endpeint of which is the point § and the other endpoint of which lies on the quadratic surface
described by (63).

Result 4:

The image set of 54 of the joint variable rate set F i3 the union of the sets (Sg)1, (Sg)2, (S¢)3 described
above.

Proof of Results 1, 2, and 3:
We will first derive certain useful properties of the quadratic mapping defined by equation (34):

% =B < q>2+N[q]*+5.
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The above equation can be written in the expanded form

¥ b + bl + b13dE + 2nnnn + 2n12q2ds + 2mpsdndn + )
X2 | = | budt+bni+ bndl + 2miind2 + 2nninin + 2npdain + 52 | - (65)
X3 b if + bandk + bl + 2nngnén + Znndngs + 2n3adsdn + 53

Consider the (input) §-space. It is convenient to think of this space as being gencrated by the
continuous doubly-infinite set of lines (also called a line congruence) passing through the origin with

parametric equations

=t
pp=mt s —co<m<oo, —00< g <00, {67)
g3 =mt

Each value of m; and m; gives us a member of the line congruence, a typical member of which is
the line { shown in Figure 7. The image 7 in the %-space of the line { is obtained by substituting (67) into
{66) and is described by the following parametric equations,

X m'] £+ 5
¥ | = m'zr2 +85 - (68)
X mé!z + 53

where

[}

my = byy + biam? + byams + 2ny1m) + 2nygmymy + 2ny3my
r

my = by1 + bt + byym3 + 2ngimy + Zngamymg + 2nyam

m; = by1 + baam3 + byym’ + 2n31my + 2n3ammy + 2nz3my.
From equation (67) and (68), one can infer the following facts:
Fact 1, The image of /, viz. 7, is a straight line.

Fact 2. The origin of the §-space maps into the point S of the ¥-space.
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Figure 7: Properties of the quadratic mapping for a three degree-of-freedom manipulator
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Fact 3. Two points with coordinates (g1, ¢, @) and {(—§1, —@2, —¢3) map into the same point of the

X-space.

These results are shown graphically in Figure 7.
Fact 1 follows from the fact that (68) is the equation of a straight line in the parameter 2. Fact 2

follows from the fact that the point (0, 0, 0) in the §-space, represented by the parameter ¢ = G in (67),
maps into the point (s1, 52, §3) in the %-space. If ¢ is the parameter comesponding to the point {Z1. 42,
¢s) in the §-space, then, from (67), —1 is the parameter of the point (~§1, ~§2, —¢3). From (68), we see
that points with parameters f and —¢ will map into the same point in the ¥-space. This proves Fact 3.
The following two important properties of the quadratic mapping (33) (or (66)) follow directly from

the above facts:

Property 1: The image of a line ! passing through the origin of the §-space is the half-line !, one endpoint
of which is the point S(s1, 52,53) of the X-space (see Figure 7 (a)).

Property 2: Consider a line segment g passing through the origin of the ¢-space and with endpoints
P, &2, 43) and Pa(—in, —én, ~&n) comresponding, respectively, to parameters £ and —# g maps
into a line segment g’ in the %-plane, with one endpoint at S(s1, 5z, 53) and the other endpoint at
whose coordinates are given by (68) (see Fig 6 (b)). Q is the image of both points Py and P;.

Property 1 is basically a statement of the fundamental “folding” property of the quadratic mapping.
Property 2 is more useful for cur purposes.

We now determine the image, under the mapping (34), of the set F; which consists of the doubly-
infinite system of line segment of the type g1, (see Figure 6 (a) ), which passes through the origin and
which has endpoints P; and Pz, respectively, on planes J1X)M>Lo and M L1J,K, (Figure 6 (a) .

The plane J;K3M2L; is described by

@ =qo (69)
ang the plane M{L1 /X5 is described by

a1 = —§1o- 70
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Therefore, if Py lying on JiK1Mal; has coordinates (41, &2, ¢3), then Pz lying on M L1/2K> has
coordinates (— 10, —d2. ~d). By property 2 of the quadratic mapping, the line segment g ﬁrith endpoints
P, and P, will map into a line segment with one endpoint at $(sy,52,53) and the other endpoint at 0
(Figure 7), which is the image of both P; and P; and which we need to determine next. For every
point Py(1e,§2, ¢3) lying in the plane J1K;MaL;, there is a point P2(—§10, —§2, —§3) lying in the plane
M L1J:K3 which, by Fact 3 established above, has the same image as P;. Therefore, planes J,K 1Mz,
and M;1,72K2 have the same image. It is sufficient therefore to determine the image of plane J1Ki1MaLa.
Since plane J1K1M2L; is the set of all possible Py, the image of J1K)M2Ls is the set of images of all
possible P;. To obtain the image of /1K1 M2Lz, we substitute ils equation {69 ) into (66) to obtain (63)
which, because it is quadratic in the parameters §; and , represents a quadratic surface in the ¥-plane.

The quadratic surface (63) is the image of the plane M L12K>2 as well as the image of the plane
I Ki\MaLa. Any point Py of M1£L1J;K> with coordinates (J10. &2, ¢3) and any point Py of J1KiM2L; with
coordinates (— 1o, —§2, —&3) will have the same image @ with coordinates (i1, 2, ¥3) given by (68).

We have thus shown that the line segment with the endpoints Py and P; will map into 2 line segment
in the %-plane with one endpoint at S(s1,52,53) and the other endpoint Q lying on the quadratic surface
{63). This completes Result 1(a).

It is now a simple matter to determine the image (Sgh of Fi. By Result 1(a), the doubly-infinite set of
line segmenis F; of the type g1 with endpoints £1(410, 82, 43) and Pa{—-i1., — g2, —§3) lying, respectively,
in the planes M1L1/2K> and J1K1MaL; will map into the doubly-infinite set of line segments (Sq)1 with
one endpoint (always) at § and the other endpoint on the quadratic surface (63). This completes the proof
of Result 1{(b).

In exactly similar fashion, we can show Results 2(a) and 2(b) and Results 3(a) and 3(b).

Proof of Result 4;

Since the images of #1, F2 and F3 are, respectively, (S, (Sq)2, and (Sg)3, the image of F = F1UFUF;
is Sq = (Sq)l u (th U (Sq)g. (Sq)l, (Sq)z and (Sq)g have been defined, respectively, in Results 1(h), 2(b),
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5

Figure 8: State acceleration set of a threc degree-of-freedom manipulator

and 3(b). This completes the proof of Result 2.

Comment:
The analytical description of (Sg) by means of (Sg)1, (S4)z and (S4)s is sufficient for the extraction

of the acceleration properties which we are interested in.

4.3 Determination of the state acceleration set S,

The state acceleration Sy corresponding to a state u = (q,§)" of the spatial manipulator was defined by
equation (41) and is the image set of the actuator torque set 7 under the mapping (40), We obtain the

following results for the state acceleration set Sy.
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Result 1: For every element ¥(5,) of the image set S, there is a corresponding element %(Sy) of the

state acceleration set Sy, given by

%(Su) = %(S.) + k(g, 9, (71)
where
-
k;
k(fh Q) = kZ
i ka

[ bud +bizif + bisih + npinin + 2niedpds + 2l + 51
= b if + b + bni + 2o + 2nadpdp + 2n3iplp + 32
L b31 + a2y + b + 2n iy + 2nninds + 2n3sdadh + 53
B < 4 >% +N[g)* +s. (72)

Result 2: The state acceleration set Su, coresponding to a state u = (g, ) of the spatial three degree-
of-freedom manipulator is the parallelopiped A”B”C"D"E"F"G"H" shown in Figure 8 obtained by

translating the set S, by the vector k(q, ) in the %-space. The centroid of Sy is (k1. k3, k3).

Proof of Result 1:
The results 1 and 2 are straightforward.
From (36), a member %(S,) of §, is given by

%(5.) = Ar. (73
From (41), a member X(S,) of Sy is given by.

X(GSw =Ar+k (74)
where k is given by equation (72j. Combining (73) and (74), we obtain

%(Sp) = %(5;)+k (75)

which is equation (71).

Praof of Result 2:
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From equation (71}, we see that if we take a vector %(3;) of §,; and add the vector k to it we obtain
the corresponding member £(Sy) of Sy. Therefore, if we add the vector & to every vector in the set S, we
obtain the required set Sy. Therefore, Sy is the parallelopiped A"B"C'D"E"F'G"H" (Figure 8) obtained
by translating the set §, (the parallelopiped A'B'C’'D'E'F'G’H’ in Figure 8) by the vector k. The centroid
of §; is X(5;) = (0, 0). From (75), we sec that the corresponding centroid of Sy is

) =0+k=k. (76)

This completes the proof of Result 2,
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5 Properties of the acceleration sets
In this section, we explain how to characterize the image set, §r, S, and the state acceleration set, Sy.

using the resulis in section ?7?.

5.1 Properties of the acceleration set S,

We characterize the image set 5, of the linear mapping as follows.

Resuft 1: The maximum acceleration of the acceleration set Sy is denoted by @max{S;) and is given by

Tmax(Sr) = max{d(0A"), d(OB'), a0C, doD’) {77}
where

dOA) = flautie+anm. + e + (@un, + Gurn + au.F + (@71 + Gute + anT.P

dOBY = (aumo— 0uts, +dumeP + (@nTie — 027w + ATl + (@ T ~ anTs, + a5y

dOC') = /l—aune — C1z7u +apmeP + (=651 — dnT + ENTRP + (—8u T — duTn, + d3T.P

HOD'Y = \J(~a17e + G, + 8131 R + (—80 Tl + G272 + A0 T3P + (~anT, + ant, + EnTLE

Result 2: The isotropic acceleration of the acceleration set Sr is denoted by gi50(S-) and is given by

o= (pA'BFE), pA'DHE), p(A'B'C' DY) (78)
where
p(AJBIF'E!) - 1 detfA) [ Me ,
V{anay — anaeP +(@nan — anan)? +(anan — apapf
[ ] f mt{A} |I Tio
\flenan — anan ) + (@uan — apnan P + (@uads — apnan P
JABCD) = | det{A) |

\{anon — enan P +{anay —apan® +(anop — apan¥

Proof of Result 1:

The maximum acceleration of S, is the distance from the origin to the furthest vertex of the par-
allelopiped A'B'C’D'E'F G'H'. Letting d (0'A’) through d (O'H') denote, respectively, the distances of
vertices A" throngh H' from the origin in the ¥-space, mex(S-) is given by

max(S,) = max[d(0'A"), dO'B)), ..., d(O'H )] (79)
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A' and G’ are equidistant from the origin O'. Also, B’ and #, C’ and £', and D' and F’ are equidistant
from the origin. So, @max(S-) is given by
max(S7) = max[d(0'4"), d(O'B), d(0'C'),d(0' D). (80)

Using (33) and the well-known “distance™ formula, the distance d4(0A’ from the origin O 1o the point A
is given by

HKOA' ) = V(@ T1e + 81272 + BT P + (B0 T1e + 22Ty + BBTR + (@371 + AT + anTRF. 21

In exactly analogous fashion, we obtain

OB = {anne — aums +anteP +{@ntie ~ Gzt + @ +l@nn, — aun, +antol (82)

#OCy = ~anmo — ante + Aol +(—dane — @une + BT} +{—anTis ~ Guf. + Tl (83)
and

dOD) = \(—aumo + et + @uTel + (—ann. +Gu e + TP + (—81 M, + Gt +anTP. (84)

Equations (80), (81), (82), {83) and (84) comprise Result 1.

Proof of Result 2:

The isotropic acceleration of S, is the shortest distance from the origin to the sides of the parallelopiped
ABCDEFGH. Letting p(A'BFE ), p(DCGCH ), p(ADHE ), p(BCGF ), p(ABCD
Yand p ( EF G'H ) denote, respectively, the distances from O 10 each plane, @io(S,) is given by

Gro(S+) = min[p(A B F &'y, p0'C'GH), oA’ DHE), o8B C'CF), oA B D), nEFGH) (85)

Since the origin is the centroid of the parallelopiped S, paraliel faces of the parallelopiped A'B'C D'EF G H

must be equidistant from the origin. Therefore, we can write the following relations:

pABFEY = pDCGH), (86)
pADHE) = pBCGF), @7
JA'BCDY = pEFGH). (88)

Using (86), (87) and (88), (85) can be written as

8iso(S-) = min[p(A' B FE), (A’ D'H'E), p(A’B'C'D')]. (89)
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The distance p from the origin to a plane ax + by + cz + k = 0 in the xyz - space is given by the

well-known equation:

) &}
=, o0
p Val+ b+ 2 ©0
Using equation (90) and equations (50), (52) and (54), we obtain
I B ‘ &L(A} ‘ Ma
ABFE) = - ' o1
# {02201 — apany + (g1ams — 813gs)? + (a12a23 — anzan) en
r T )/ ‘ wt{A) l '729
ADHE) = == = e 2)
o V0anas — apan ¥ + (@nas — aian)? + (@ua — dpan)? ¢

V{@uaiz — anan ¥ + (@1ax; — apan ) + (@nan — aan )
Substituting (91), (92) and (93) into eguation (§9), we can obtain the required result (78) fot the isotropic

acceleration @p(S-).

5.2 Properties of the acceleration set 54

Since each element of the set Sy represents the total non-linearity, we characterize the set Sq by the
maximum magnitude element which denote the maximum non-linearity. Also, we calculate the maximum
distances from direction planes in subsection 4.1 to measure the effects of the non-linearity on the state
acceleration set,

Similar to a two degree-of-freedom manipulator, we illustrate the steps to the analytical expression of
the furthest point of set Sq, and the steps to the analytical expression of the furthest point from direction

planes.

Definition 1: Let f;, i = 1, 2, 3 denote, respectively, the following cubic functions in the joint variable
rates g, i=1, 2, 3;

Ald, @, $) = Eud + bl + bl + 2mig1n + 2k + 2andsd +5)Bud + i +msgs)

Hbndh +bnih + bnih + Dminin + 2radedpy + Dadndy ¥ s2Xbadn + ruds + i)

bl + bulh + b + 2m g + Zmads + 255499 + 3Xbn i ¥ ndp + ) =0, (94)
B, @2, §1) = Eudl +bads + bl + 2 + enipds + 2yl + o lbud + ruds + ands)

Hbn i + budh + bnifi + 2mauip + 2mainds + ey + £ XKbudn +nnde + #ads)

+(bu g + bndh + budl + 2andde + Znadeds + Pndnds + SXbndn + A i tang) =0 95
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Equations Variagbles | Notation used to denote solutions
F2@to, s &) =0 a0d 3(Gia, @2, @) =0| &, & &
£5(@1, G20, @) =0 and il 220, ) =0 5. i g2, ¢
i@, @, B3y =0and (g1, 42, BN=0] @ & &, &
ey, G20, o) =0 & &
£, ~i20, B =0 a &
F&or &2y o) =0 % &
f@10r @2y —o) =0 & a5’
filho, @20, 43) =0 as &
Filitor ~&20y 43 =0 i &

Table 1: Solutions of cubic equations

A= (butﬁ +buq§ +b134§ + 21 + Zmpdpdn + 2rudds + 0 )bud +nuds + )
Hondh + b + Indh + Zmin + 2ondpip + 2adndn + 22)badn +rnd + madn)
Hou gl + buid + bnth + 2mdndn + 2nndhin + Dmdsin + 8 )lbudg +rng o) =0 {96)

thmﬁ(-QIs . s (i=1,2,3)is cubic in q1. @2 and 3.

Definition 2: It is useful in our derivaions to be able to refer to the solutions of certain equations which
play an impontant role in oblaining the maximum acceleration of Sy, dmax(Sq). Each equation or
equation pair of interest is given in column I and the comesponding variables are indicated in
column 2. All equations in column [ are cubics in the variables in column 2. The notation used to

denote the solution of each equation or equation pair is given in column 3.

Definition 3:

W 2 K, d.a
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(b1 +bi2d + bial + 2mndnin + 2rdnds + 2nain + s
+ (Bnif + bndg + bnd + 2and e + 20l + b+ 2 | - O7)
+ (P + bl + b33l + 2nninip + 2nadni + 23 dn +5)Y

flb>

Definition 4: Let k;, i = 1, 2, 3 denote, respectively, the following linear equations in the joint variable

rates, §i,1=1,2, 3;

(axa33 — anan)Xbud + and2 + 213¢3)
min, @, @) = + (213832 — aizaaz)(baidn + N2 + madn) 8
|+ (@12823 — anan)bndy + g+ mgs) |

(axza3s — annazzXbizédn + g + ny2da)
mln, @2, ¢3) = +(@13a32 — a12a33)(bn2d) + nde + nai) 99)
| +(a2a23 — aizan)(bndy + n31d2 + n32ds) |

(@22a33 — ez Xbiagy + rad2 + m3ds)

hilqy, @2, @) = + (313032 — a1@33)0dn + tndn + va3s) (100)

|+ (@12a23 — auaan)(sadn + m3zqz + 23343) |

WhBI'E- hi(‘?]a 3?2,» f}fi)- (i = 11 2: 3) is Iinear in ‘.Zlv @ aﬂd ?3

Definition 5: It is also useful in our derivaions to be able to refer to the solutions of certain equations
which play an important role in obtaining pmn(i(Sq), pi=1, 2, 3, defined below. In table 2,
each equation or equation pair of interest is given in column 1 and the corresponding variables are
indicaicd in column 2. All equations in column 1 are linear in the varjables in column 2. The

notation used to denote the solution of each equation or equation pair is given in column 3.

Definition 6:

ei{d, 42, §)
= [{anas ~ apan) +(auan — anan)’ +(@pan - anan))™?
{anax — anan)2(bui + budi + bisdh + bl + 2madeds + Dnalsds +51)
+(amas —~ apan)Xbuds +balf + bnlh + Imgi g + 2nndnds + 2nainiy +52) (101)
+{@uan ~ aen 2 +buf + bnl + e + 2nudiy + 2 + 5)
o2, 1, &)



Equations Variables | Notation used to denote solutions
h2dioy 420 @) = 0 and hy(Gro, &2, 8D =0| . M, &
W@, G2 @)= 0and b(d1, G200 8 =01 & @1 7, o
min, @, B30 = 0and mo(G1, 42y B) =0 1.2 & &
hi(§1, G2, B30} =0 a1 .
MG, ~@2, H22=0 ] &
rdho, G2, @0} =D o &
h@10, 2> —G30) = 0 & &)
h3(G10, @20y $3) =0 b2 &
B3lilto, —G2er @) =0 b &'

Table 2: Solutions of linear equations

[(anas — anan) + (@san — anan ) +{anars — 41102132]_"!
(anan — anas )20 + budl + bodd + 2 + 2malads + 2madsi + 1)
+(asndn —~ endn2bn gt + baf + buds + 2mbidn + 2deds + 2misdy + 12) (102)
+{@uan — a3an2(bndt +bodh + bndi + Inuids + ménds + 2anipd +5)
ailih, @, )
{(anan — anay ) + (@0 — anap)® + (@uan — auan )"}
(anan — azay JUbudl + b + Bl + i + 2mdads + 2nnpdad +51)
+(enan — eusn2(bndl + budi +bofi + 2anhin + mdads + Zmisd + 52) (103)
+{anan — apan)2bndi +buif + budl + 2 + Tmdpds + asdrgn +)

"

Definition 7: Let p((S4),p1), p(¥(Sq), p2) and p(X(Sy), p3) denote, respectively, the distance of any point
X(5q) of Sq from the planes py, pz and .

Puax((Sq), p1) 2 max p(4(S¢), p1), (104)
Pmax(%(S4), P2) 2 max p(%(Sq), p2), (105)
Prusx (X(Sq), p3) 2 max p(X(S¢), p3)- (106)

Pmax(¥(54), p1). for example, represents the distance of that point of Sq funthest from plane py;
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Poraxc(E(E g ), 1)y Prax((Sq)s p2) a0 Praax (X(S¢), p3) are necessary for determining the local isotropic

acceleration in subsection 5.4.

Result 1: For a general three degree-of-freedom spatial manipulator, the maximum acceleration of the

acceleration set Sy will be denoted by 2ma:(Sq) and is given by
Amax(Sq) = maxliqy, Iy, ..., lanl (107)

where

Iy = Kite, 85, &

Iy = 1(‘1'1 y §20, ":’3))
ky = K& &7, o)
oy = K&, 4o, @30
s = !('1 y =20y §30)
sy = Ui, @5"’, 930)
Iy = Kaior 45, —a30)
ey = Ko, Q00 )
oy = Uto, —220, 459
iy = Uqro, @200 d20)
lay = {qio; §200 —§30)
lay = {§ ~§200 —30)
dazy = Hies ~200 §30)

Result 2: For a general three degree-of-freedom manipulator, the maximum distance from an element of

54 to the reference planes pi, p2 and p3 are, respectively, given by

max[p(E(Sq),pi)],i =1,2,3 (108)

max{(cijay. (T, -.. . {Tdan) (109)

36



where

(CAT
(o)
(o)
AT
CAID
{ods)
(e
CAT
(g9
(oo
(o)
(ei)n2)

(i3

where 0’:‘(‘?] » ‘?2a

Proof of Resuft 1:

= oo
= oi@?,
= o,
= ai 14],
= Ui(filiﬂ,
= oi{1o,
= G0,
= 0ilf1on
= gid1o,
= oi{{t,
= 0i{io
= ooy

= i1,

&, &
320, )
&, @0
&or P0)
~&205 §30)
égﬂ’ o)
&, —&0)
s &)
~20, B
B0r 30)
B0, —ii30)
— 20, —G30)

=201 B0)

éin) (i = 1, 2, 3) are defined by equations (101), {102) and (103).

The magnitude squared of the acceleration of a point ¥(S4) of S4 denoted by a*(S4) is given by

Ay £ P, & 8) =80 .0+ B@, & @+EG 2 B
(B11R + bradh + buatd + 20y indn + 2madadp + 2nnainin + 1)
(bt + boolfs + bndfe + 200G + 2nniniy + 2nnsipdn + 52)°
(b i + bsadf + baa g + 2ma1 s + 2naadpins + i + 531

[}

+

+

(110)

The maximum magnitude squared of the acceleration for the set Sg, denoted by Bz (8g), is given by

axznu(sq) =

max 22 224 8305
fax (&, ¢2.43)
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where F is shown in Figure 2 and is specified by the constraints

V& |< d16s (112)
| &2 1< §20- (113}
| @3 i< q20- (114)

The maximum of (110) will occur at q € F which is cither inside F or on the boundaries of F
where one, two or three constraints might be active. In section 5.1.2, we showed that “opposite” pairs of
bounding planes have the same set; Using very similar arguments to those used to demonstrate the result,

we can show that
1. The following pairs of bounding edges of F,
KzL2), (KL
(f2M2),  (iMy)
{LaM3),  (LiM))
1K),  (2K2)
(hlz), (2ly)
(XiMz),  (K3Mh)

have the same image set

2. The following pairs of vertices of F

Ly, L
Ji, A
5, K
My, M

have the same image.

Therefore, to obtain the maximum of (110) under the constraints ¢112), (113) and (114), we should

consider the following possibilities:
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1. Neither of the constraints is active, i.¢., the max[2(g1, &2, &3)] occurs at a point § inside F.

2. One of the constraints (112}, {113) and (114) is active, i.e., max!P{q, &2, )] occurs at a point §
lying on the plane J1 K Mals or JilaK:My or LyMaJoK; of F.

3. Two of the constraints (112), {113) and {114) are active, i.e., max{{%(§1, 42, ¢3)] occurs at a point
q lying on the edge X2L2, JoMa, LMy, hKy, Jily and K\M; of F.

4. All of the constraints are active, i.e., max[f2(g1, §2)] occurs at vertex Lz, vertex J;, vertex Ky, or
verex Ms.

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate

P41, &2, &3) with respect to &1, ¢2 and g3 to obtain

a2
- 4, @ 115
3 141, 42, g3} (115)
2
2 - (16
qz -
a2
— = 4, ¢ 117
Py i3(q1, 42, g3) a1

where fi{¢1, ¢z, 43) (i = 1, 2, 3), were defined in (94), (95} and (96).

Now, we consider each case,

Case 1
To obtain the maximum of  for the case where all of the constraints are inactive, we set the right-hand

side of (115), (116) and (117) to zero. This gives us the equations

filq, @, 3)=0,G=1,2,3) (118)
and the solution

fh=@p=4=0 {119)
of which actually corresponds to the minimum value of 2(¢1, &, §3), viz, zero. Therefore, max(#) does

not gccur at a point § inside F which is to be expected.

Case 2
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Consider the case in which one of the constraints (112}, {113} and (114) is active. When constraint
(112) is active on the plane J\Ky1M2L of the F, we have
1 = {1, (constant}. (120

To obtain the maximum of £, we set both 82/8¢; = 0 and 32/84: = 0. We therefore set the
right-hand sides of both {116) and (117) to zero to obtain the following cubic equations:

£ ( §io 2y B)=0, (121)
fi ( fqo &, B)=0. {122)
(22! < g2, |G3] <€ &3, whose real solution, if it exists, is denoted by qﬁ‘) and qgl).
Therefore, max X1, &z, 43) for this case is given
max[igs, &2, )= Ko 45 . (123)

Comment:

Using simple arguments from algebraic geometry (Semple and Roth, 1949), we can show that if the
cubics (121) and (122) with constraints |i2| < ¢, and (31| < §30 have real points of i-merscction, then
they can at most one real point of intersection. If £(¢1, g2, §3) does have a maximum Jpas, then the
conditions 82 /8¢, = 0 and 828y, = O for obtaining 7, and therefore the pair of equations (121) and
(122) which follow from them, are essentially conditions for the quadratic surface which is the image, in
the x-space, of the plane J; K1 M>L5 to have & common tangent plane with a sphere of radius K&, &, §¢3).
A sphere and a quadratic can have at most two points of tangency. Therefore, the simultancous sclutions
of (121) and (122) can have at most two real roots. However, since (121) and (122) are equations of
cubic curves, they will have, in general, nine points of intersection. If equations (121) and (122) had only
two real roots in common, the remaining seven common roots would have to be imaginary, which is not
possible. Therefore, (121) and (122) will have exactly one root, if we do not impose any constraints on
gz and §;. In the case where i» and &3 are constrained the real root might lie outside the region specified
by the constraints.

In an analogous fashion, we obtain the following maximum for { when constraint {113) is on plane

J [LszM 1-

max({a, ¢, ) =47, &, 42, (124)

40



where 2;?’, i;?) is the real solution of the following two cubic equations,

h (a1, g2, fh)=0, (125)
A { §, G 43)=0. (126}

We also can obtain the following maximum for [ when constraint (114) is active on plane ZyMz/2K7:
max{{(G1, &, @) =K, &, o). (127)

where 45, 45 is the real solution of the following two cubic equations,

h (@, 42 o)=0, _ (128)
A Cq,dn =0 (129)
Case 3

Consider the case in which two of the constraints (112}, (113) and (114) are active. When constraints
(113) and {114} are active on the edge K21, of F, we have the followig conditions,

g2 = & (constant), ' (130)

4 ¢, (constant). (131)

To obtain the maximum, we set d2/84; = 0. We therefore set the right-hand side of (115) to zero

and set @2 = gz, and 1 = §1, 10 obtain the cubic:

A, d20, @32)=0.linl < G0 (132)

Using arguments similar to those used above, we can show that (132) can have at most one real solution

which we denote by Q?) The corresponding value of [ is as follows:

max[la1, &, a0 =Y, dor @30)- (133)

In an analogous fashion, we can obtain the following maximum for / when constraints (113) and (114)

are active on edge JpMa:
max{ia1, &2, g1 =G, ~f, $0). (134)
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where qﬁﬂ is the real solution of the following cubic equation,

A 0 qu ~dpe, Po)=0;

For the case when constraints (112) and (114) are active on edge L:M2, we obtain
max[Kg1, &2, 1= o, 457, 80D

where 457 is the solution of the following cubic equation:
B2 O Qov 42, B0)=0.

For the case when constraints (112} and (114) are active on edge J1 K, we obtain
maxll@1, &, )= Ko 455 ~ o),

where qg’ ) is the real solution of the following cubic equation:
h (4, §@ —q)=0.

Far the case when constraints {112) and (113) are active on edge J1L,, we obtain
max{kq1, &2, &0 = Kor @20 3,

where qg” is the real solution of the following cubic eguation,
£ O qoy o, 423=0.

For the case when constraints (112) and (113) on edge X M, we obtain
max(fq1, gz, @)1= Udior 20 &5,

where ¢§9> is the real solution of the following cubic equation:

.f3 ( f]lo» —'fi’Za, fl3)=0-

Case 4
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Consider the case in which all of the constraints (113), {116) and (117) are active. When all three

constraints are active, and if max[2(§1, g2, §)] occurs at La{(&ie, 4205 £po), then

max[{l(§y, &, @)= U, §20, Bo)- (144}
If the maximum of 2 occurs at J1(F14, #20» -i3,), then

max[§1, ¢, &)= {q1os G20, —Bo)- (145)
If the maximum of # occurs at Ki{¢1o, -d20» -@50)» then

max[l(g1, §2, )= Udhe, — G20, —30)- (146)
If the maximum of # occurs at M2(310, G0, §30), then

max{Xq1, @2, @M= Ko, 4200 $30)- (147)

Therefore, anax(Sg) (= max{l{§1, &, §5))) is obtained as the maximum of thirteen quantiﬁes defined
by equations (123), (124) (127}, (133), (134), (136), (138), (140), (142), (144), (145), (146) and (147).

Thus we have demonstrated Result 1.

Proof of Result 2:
The distance of any point ¥(§4) of S from the line p;, =1, 2, 3, is given by

pPEEY.PY L o, &, @) (148)
p&S.p) & oxan, @, @) (149)
pGSO.p & o3a, @, &) (150)

We first wish to determine pme (X(Sq).p1) the distance of py from that point of §¢ furthest away from it
).

Pman(X(Sq), p1) = max o1{gq1, &, &) (151)
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where F is shown in Figure 2 and is specified by the constraints

) &1 1< &nos ' (152)
| ¢ (< &2 (153)
@ i< G- 154

The maximum of (101) which is required in (151) will occur at point § € F which is either inside F or
on the boundaries of F where one or two or three constraints might be active. Using the same arguments
as in Result 1 above, to obtain the maximum of (101) under the constraints {152), (153) and (154), we

should consider the following possibilities:

1. Neither of the constrzints is active, i.e., the max[o(d1, ¢2,§3)] occurs at a point § inside F.

2. One of the constraints {152), (153) and (154) is active, i.e., max{e{@1, 42, £3)] occurs at a point
q lying on the plane J1K1M2L2 or plane J1LoKoM or plane LoMa/2K) of F.

3. Two of the constraints (152), (153) and (154) are active, i.e., max{o1{¢1, &2, §3)]-Occurs at a point
q lying on the edges XLz, J2Ma, LoMa, 11Ky, J1Ly and K1M; of F.

4. All of the constraints are active, i.e., max[a;(§1, ¢z, §3)] occurs at a point q lying on the vertex

Ls, veriex Jq, vertex X or vertex M1

To obtain the conditions for each one of the above cases to vield a maximum, we first differentiate

o1(d, &, ¢1) with respect to g, ¢ and &3 to obtain

_g.g_l‘. -2 (155)

-g;—rz]- = %2- (156)

% _ f!f_ (157)
where ki, (i = 1, 2, 3), have been defined in (98), (99) and (100) and

z= \/ (az2a31 — az3an)® + (@283 — anan) + @2an ~ anan) (158)

YSince, by virtue of Fact 3 of subsection 3.1.2, the vertices Jy and J; have the same image, we only need to consider either
J1 or Jo: we will choose J,. So are the vertices Ky and K and vertices M, and M.
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Now, we consider each case,

Case 1

To obtain the maximum of g for the case where all of the constraints are inactive, we set the right-hand

side of (155), (156) and (157) 10 zero. This gives us the equations

hilq, @2, )=0,G4=1,2,3),
and the solution

f=g2=4=0 (19
of which actually corresponds to the minimum value of p1(¢1, §2. §3). viz, zero. Therefore, max{pr)}

does not occur at a point 4 inside £.

Case 2
Consider the case in which one of the constraints (152), (153) and (154} is active. When constraint

(152) is active on the plane J{KjMals of F, we have
41 = 1, (constant). (160)

To obtain the maximum of p;, we set both 8p /8¢ = O and 8p1 /83 = 0. We therefore set the
right-hand side of both {156) and {157) to zero 10 cobtain the following two linear equations,

hz ( $ior 2, .QS)=0F (161)
by ( Qo @2, @3)=0. (162)

42| < G20, 1831 < 30

Denoting the solution gz and g of (161) and (162) by &', &1, the maximum of ! for this case is given
by
max[p1(q1, G2, @) = p1ldne, 35 B (163)

In an anzlogous fashion, we can obtain the following maximum for gy when constraint (153) is active on

plane J1L KMy

max[p1(g1, 42, g3 = M@GE, o, &, (164)
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where cﬂn, q?‘ is the solution of the following two linear equations,

(@, g20, 3)=0, (165)
hy (41, @2, $)=0. (166)

We also can obtain the following maximum for p) when constraint (154) is active on plane LyMaJaK;:
maxpi(n, &2, @) = pi@s & @0 (167)

where &1, 787 is the solution of the following two linear equations,

hl ( ‘;'11 ‘?25 QSO)=0$ ' (163)
hy ( 41, @2, $0)=0. (169)
Case 3

Consider the case in which two of the constrainis (152), (153) and (154) are active. When constraints

(153) and (154) are active on the edge KaL; of F, we have the following conditions,

(2o (constant), (170}

&2
&30 {Constant). {171}

q3
To obtain the maximum, we set 82/84, = 0. We therefore set the right-hand side of (155) to zero
and set §2 = @20 and &3 = 3, to obtain

B, @20, $2) =0, |G1] < Gto- (172)

From equation (172), we obtain the solution which is denoted by qll'”. The comesponding value of p; is

as follows:

max[p{in, G2, @)1 = p1@Y, o, @30)- (173)

In an analogous fashion, we can obtain the following maximum for p; when constraints (153) and

(154) are active on edge JoM;
max(pt(@, g2, @3)] = 1@, —~or d30). (174)
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where c}{sl is the sclution of the following linear equation,
h (&, —G0, Ba)=0;

For the case when constraints (152) and (154) are active on edge LxM>, we obtain
max{pi(gi, g2, §)= 1o, & o),

where (3-561 is the solution of the following linear equation,
by ( oy &2y 30>=0-

For the case when constraints (152) and (154) are active on edge /X1, we obtain
max(p1(@1, &, 1= p1or &5 — @),

where :';g] is the solution of the following linear equation:
hy ( &or @20 — @0} =0.

For the case when constraints (152) and (153) are active on edge JiLz, we obtain
max[px(1, @2, @)1 = P1(dos P20 4D,

where E,-_Efl is the solution of the following linear equation,
3 { 1oy G20y 3 =0.

For the case when constraints (152) and (153) on edge K1M5, we obtain
maxlo (@t &2, 490 = P1{&10r ~G20s @5,

where ¢} is the solution of the following linear equation:

h3- ( Qh‘h "‘?20, t’?33=0.

Case 4
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Consider the case in which all of the constraints {152}, {153} and (154) are active. When all three

constraints are active, and if max{p1{¢1, §2, §3)] occurs at La(d10, @20, §30), then

maxip1(§1, §21=p1(Q12y 201 @30)- (184)
If the maximum of g1 occurs at Ji(§ys, 2o, ~F50), thelt

max{m(qr, §2, ¢ = P1{§1ar G200 —20)s (185)
If the maximum of p; occurs at Xy (o, -20. ~@34), then

max(pi(@, 42, 45)1= 1 tor —dz0r —i30) (186)
If the maximum of p; occurs at M2({@1,, 20, ¢30), 1hen

max(p1(g1, §2. )= P10y — G201 §30). (187)

Therefore, pmax(%(5q),P1) is obtained as the maximum of thirteen quantities defined by equations
(163), {164) (167), (173), (174), (176), (178), (180), (182), (184), (185), (186) and (187). In exactly,
analogous fashion, pmux(X(5¢),p2) and prmax (%(Sg), p3) are obtained as in (109). thus we have demonstrated
Resul 2,

5.3 Properties of the state acceleration set
Definition:
K : centroid of the acceleration set in the ¥-space with coordinates &y, &2 and 4z given by (40).
pK, p1) : distance from point X 1o the reference plane py.
(K, p3) : distance from point X 1o the reference plane p;.
p(K, p3) : distance from point X to the reference plane ps.

L TR | ]

p(A'B'FE), p(A"B"F'E"), ... : distance from the origin 10 plane ABFE,A"B"F'E", ...
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Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted
by dmex(Su) and is given by

ean(Su) = mex[d(OA”), d(OB"), dOC"), ¢©@D"),dOE"), dOF ), 40G"), dOH )] (188)
where
d0A") = laune+enm +onme + 1P + (@ N + @270 + 85730 + k2l +(@1T10 + 5T + @37 + P

d(OB"J = (@11 Me — G12720 + J13700 + 51D + (@1 T — BnToo + A2Th + 2P + (03171 — amT2e + G037 + £2)°

40C") = ViauTi + d1272 — G370 — P + (@1 710 + AnT ~ @07 — KPP + (@370 +anT — GnTR — kY

oD’y = VignTe — 6ume — @t — kP +(@u7ie — 0270 — anTe — k¥ + (@0Tie — anTw — a3Te — kP

dOE ) = V@i, + 272 — a13Tae + kP 4+ (anTie + BT ~ On T + k¥ + (@ Tie + 00T — 05T +45)°
dOFY = flaume — anm, — anme + k)2 + (@7 — @nTae — @nTie + 4P + (@51 70 — nT — anTe + kP
dOG ) = +/(@nTe+ 00T +anTi — kP + (@270 + 00T + o037 — kP +(@uT1s + AT + ante — bF
dOH'Y = ot ~ aar, +anme — k) +(@1Ne — GaTe + 8375 — k2 + (3110 — aut. +ant. ~ kP

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:
jdetfA)r, — |laxman - anapdk + (anen — apan ke +{@nen — anaiais] > 0, {189)
|det{A)me — ((@uan — anasdk + (Guass — di2an )k + (anas — anankal > 0, {150}
|det{A)m, — |augm ~ amandk; + (@) — audns +(@uan — auanls| > 0. {1%1)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted
by @iso(Su) and is given by

detlA) 110 — Hazay —apay Yo Hayzan —~anas e +Hagan—anas
{ap0m —apay P+{ansn —apen P Hanen—anan P

. de1{A Y 72y — Wo2r31 — a3y a3 ik +{apnan —arsan Y +(a 62 —an an ks
min l———b—’-———_i_-——J 192
(a23am —ay az P Hay a5~ anan PHanen—apnanl ? (192)
jder(d) 3o = Viaz ax —Gzpay Yy +Harzam — a1 an Yo+ (a1182 —araen s |
{2r28m —opan P +apas —onan PHanap —apayn P
Proof of result 1:
Let d(OA”) through d(OH") denote, respectively, the distances of vertices A~ through H” from the

origin O in the %-space. Then @max(Su) is the distances of the furthest vertex of the set Sy which is the
parallelopiped A"B"C"D"E"F'G"H". Therefore, @max(Su) is given by

oo (Su) = max[d(GA" ), 408", d0C”y, 4OD"), &OE"), dOF "), dOG "), dOH . (193}
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Using (49), the coordinates $1(A4"), £2(4") and %3(4") of vertex A" in the %-space are given by

0A"Y = B +k = 81T+ a7 + a1aTie + K, (154)
(A" = BA)+h = anTie + anme + anme + i, (195)
B(A") = BA)+ ks = 831710 + G32T20 + A33T20 + K. (196)

The distance d(OA") from the origin O to the point A" is given by

20" A" = \flan T + aumo +apTe + P + (@i, +GnTes + dnTe + P + (@71 + 80T + an T, + k3P (197

In exactly analogous fashion, we obtain

o(O“B") = T, — @12me + @arse + kR + (G 1o ~ Gn T + G237 + k2P + (a3 710 — AT + T+ kP (198)
0 €Y = \lant. +8nn. — @t — B P + (1710 + BT —~ 8nTe — kR + (@n T, + dnT — 8uTe — kLA99)
o0'D") = \leun. ~sume — m3mse — P +(@nne — anru — Enme ~ kY ¥ (@171 — duw ~ a7 — L0
0" E"Y = fanme +0um — qove + K P + (@ + G0 — @57 + kP +{anne + 0nTn, — anT + 6R(201)
0 F) = ann. — e — a3t + kP +(enne — @ame — ant, + P + (@1 — aune - onm. + hiI202)
0 G) = ianT, +anme + a7 — b + (@nTe + anTn, + @t — BP + (@an. + “””-'ﬂ-“’”’-‘“ — ka*203)
@ H'Y = lanne — @t + 61373 — ¥ + (@G0T — anTee + 807 — kP + (@11, ~ aum, + 6570 — £1204)

Equations (193) and (197) through (204) comprises Result 1.

Proof of result 2 and 3:
The state acceleration set S, is the parallelopiped centered at k(u) = (k;,kz, k3), shown in Figure 8.

The centroids of §, and Sy are, respectively, by O and K.
Using equations (90), (72) and (56) through (58), the distance from X to the planes g, pz and p3 are

given by
oK, p1) | {22203 — Ay + (213032 — Grpasadks + (G128 — analky | 205)
’ Vi(anas — apan) + (@303 — a12a13) + (@120 — ana13)
(R, p2) | (anass — aaan i +{anasy — apondks + (@nay — anandks | (206)
‘ V{anas — anany +@1as — apan P + (@uas — anas)?
- +{a - ks + {a - k.
pK.ps) = | (an a3z — tzaas )by +{a1a3) — anaaadks +{andy — apaadks | 207

V(@12812 — G203, + (@1209 — G116 + (611022 — @12a21)?
The distance p(K, p1) from the centroid K of §y to the plane p; is equal to the perpendicular distance
between plane A'B'F E' and plane A”8"F"£” and also between the plane D'C'G'H’ and plane D'C"'G'H'".
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The distance p(K, pz) is equal to the perpendicular distance between plane A'D'H E and plane A" D"H'E"
and also between plane 8'C'G'F' and plane B"C G"F", The distance p(K, ps) is equal 1o the perpendicular
distance between plane E'F'G'H' and plane E'F'G"H".

The state isotropic acceleration @iso(Su) is the maximum acceleration which is available in all direc-
tions. It is therefore equal to the minimum of the distances from the erigin O {of the acceleration plane)

to the six planes of A"B"C"D"E'F'G"H" (the set Sy).
Now, we can write the following expression for @;;0(Su):

LL J ) ¥ L r o (1 P o Ir " T

din(Su) = minp(A" B F'E"), pA"E'H'D™, pE ' F'G'H'), p0"C'6"H"), pB"C"G'F"), pA"B"C" D" V(208

" .

where p(A"8"F'E") is the (perpendicular) distance from O to plane A"B“F'E" and similarly for
p{A"E’"fI"D”), p( 'F“G"ff"), p(DncuGan ), p(B“C"G”F”), p(A"B"C“D"), all assumed pOSiﬁVC by
definition. From the geometry, we can write,

LI LR oM

KA B F'E) D" CGH y= p(A'BF'E"Y % p, pu. (209)

(Comment: For example, p(A"B"F'E") = p(A'B'F'E") + p(K,p1) and p(D"C"'G"H"') = piD'CG"H") -
p(K, p1); the comrect choice of signs will depend on the direction of the translation but as will be shown
below we do not have to worry about the correct choice of signs.)

Similarly,

p(A"D”H‘E"L p(B"C"G"F”) p(AJD’HJE') + p(K,pz), (210)

Lo ] ] rr I

HE'F'G'H),p(A"B"C"'D") = pEFGH)% pK,p3), @iy

{The above comment holds for (210} and (211), too.)
Combining equations (208), (209}, (210) and (211}, we obtain

uo(Su) = min[p(A B F E' Y+ (K, p1), p(A D'H'E Y £ K, p2), plEF G HY: (X, ps)l. (212)

Since all distances p() in the above equation are positive by definition, we can rewrite the above equation
as

Bio(Su) = minfp(A B F.E ) — oK, pr), pAD'HE Y- p(K, p1), HEFGH ~ p(&, pu). (213)
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Substituting equations (56) through (58) and (205) through (207) into (213), we obtain the required
result (192),

Equation (213) cleatly demonstrates that the isotropic acceleration a;,o(Sy) for any state v # 0 is less
than @;s0(S,) = min{p(A'B' F'E"), p(A' D'H'E), (E'F G'H)). In fact, if p(K, p1), p(&, p2) and p(K, p3)
are sufficiently large (equivalently, the “nonlinearities” k), k3 and k3 are sufficiently “large™), we may not
have any isotropic acceleration. The necessary and sufficient conditions for the existence of the isotropic
acceleration can be obtained either from {213) or {192). From (192), we obtain the following three
necessary and sufficient conditions for the existence of the isotropic acceleration:

Tio| det{A)| > |(Gzmazz — anandk +(a13832 — d12a33)k + (@122 — and13)ks) (214}
72| QEtA)| > ((@uas ~ anas )k + (31133 — 213a31)K; + (@160 — a21@13)43] {215)
7ao|det{A)] > |(auasy ~ anan)k + (@185 — aya@szdks + (811623 — drza2 k) (216)

These are exactly the necessary and sufficient conditions expressed in (189), (190) and (191) of result 2.
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5.4 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.
e Magnitude of the maximum acceleration at any configuration q in the workspace

e Magnitude of the isotropic acceleration at any configuration q in the workspace

Result 1: The local maximum acceleration duyes joca Of 2 spatial three degree-of-freedom manipulator at

a given configuration q is specified by
(Zmax,ocalip < Fmaxjocal S (Gmax local ub 21N

where (Gmaxlocaib 15 given by (188) with ky(q,q), k2(q,4), and k3(g,q) evaluated at that joint
variable vector § which maximizes i, i, ¢} in equation (107), and

(Fnax JocalJob = ﬂmu(Sq) + Bmax(S+) . (218}
where amax(Sq) is given by (107) and amu(S,) is given by (77).

Result 2: The local isotropic acceleration g, )0ca 8t a given configuration q is specified by

aisa.lonﬂl(su)
pA'BF'E'Y — puax(¥(Sg), p1)
= min| p(A'D'HE} — prux(%(S¢), P2) (219)

P(A'B'C'D') — prnax(¥(Sq), P3)
where p(A'B'F'E), p(A'D'H'E') and p{A'B'C'D') are given, respectively, by equations (56) through
(58), and where pmax(X(Sg), P1), Prax(%(S¢}, p2), and prax(X(Sq), p3) are given by equation (109).

Proof of result 1:
The local maximum acceleration @max is the maximum acceleration over all possible state acceleration

sets Sy at a given position q in the workspace. Therefore, dm,x can be written as

OmanJocal = MAX(UgerSu). (220)
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It is not possible to find an exact analytical expressiont for Gmas,tecst. However, we can find an upper

bound and lower bound which are very good approximations 10 Gmax jocal.

Corresponding to every point P of the set Sg, we have a state acceleration set Sp(P). Let P be the
furthest point {from the origin) of Sg, and let Su(P') be the corresponding state acceleration set. Let the
set Sy(P') obtained by rotating the set Su(P') about P’ til) the longest diagonal of Sy is collinear with the
line OF' joining the origin to the furthest point P' of Sq. A lower bound for @maxjocat is given by the
distance of the furthest vertex of Sy from the origin, viz

(Busex o)y = Max{d(@A" ), (0B ), AOC” ), d(OD" ), HOE"Y, d(OF '), d(0G" ), d(OH i, (221)

and an upper bound for @iz 1oea 15 given by

(Zmazocatlub = d(OP Y+ d(A"P"), (222)

(Gmax Jocal lub = Bmax(Sq) + Tmax(Sr)- (223)

Combining (221) with equation (197) through (204), we obtain equation (188). The values of &y, 2
and &3 in (188} correspond to the furthest vertex P of Sy from the origin, i.e., 10 that joint variable vector
§ which maximizes ¥¢,, ¢2,4¢s) in equation (107). This is simply a matter of computing Xén, &, ) at
the thirteen vectors defined in subsection 5.2 and determining which of these thirteen vectors maximizes
&1, ¢z, é¢3). This completes the determination of the lower bound (2max,JocalJis-

Substituting for 2, {Sq) and amax(S;) from equations (107} and (77), respectively, we obtain equation
{218) for the upper bound {@max toca)iz- Thus, Result 1 is proved.

Proof of resuit 2:

The local isotropic acceleration is obtained in the following steps.

1. The maximum possible isotropic acceleration is obtained when q = 0 and is equal 10 g;(S,) as

given by equation (78).

2. Every state acceleration set will have an isotropic acceleration which is less than that given by
(78) because the “nonlinearities” effectively reduce the isotropic acceleration. The resulting state

isotropic acceleration is 4;;,(Spy which is given by equation (213).
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3. The local isotropic acceleration gisejoca is the magnimde of the smallest state isotropic acceleration

at a given local configuration q, i.c.
iso local = IIN Biso{Su). (224)
qeF

4, Using equation (213) and (224), we can express the local isotropic acceleration diso,jocat 85
G~ ginwnloAB FE) = o5, o D'HE) oK, p), oEFCH) - oK.
~ mintmin{o(A'BF E) - pK,p1)}, min{p(d'D'H'E) ~ p(K,ps), min{p(E F G H )~ p(K,p 33
qer qeF QeF
5. Since p(A'B'FE), fA'D'HE") and p(E' F'G'H ) are constants for a given manipulator and given
actuator constraints, (225) can be written as

G toent = min[ A B F E') — max (K, 1), p(A'D'H E'y~ max oK., p2), plE F G H )~ max p(K,p)). (226)

where max{#(K,p1)] is the distance from the plane p; to the element of S4 furthest away from py
which we denoted in subsection 5.2 by pmax(¥(Sq), p2), max{p(K, p2)] is the distance from the plane
P2 1o the element of S4 furthest away from p2 which we denoted in subsection 5.2 l:;y Pmax(X(5q), p2)
and max[p{K,p3}] is the distance from ihe plane p3 to the clement of Sy furthest away from p3

which we denoted in subsection 5.2 by pmax(¥(S¢),P3), We can therefore write

max p(K,p1) = pmax(X(Sq),P1) - @29
max P(K,PB) = Pmn{x(sq):Pﬂ (229)

Combining (226), (227), (228) and (228), we obtain the required result (219). (Note that all
quantities in (219) have been analytically determined earlier.)
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6 Example:

To demonstrate the ease of applicability of the general acceleration set theory for spatial
manipulators developed in the previous sections, we have writlen simple computer codes to generate the
acceleration properties of the various acceleration sets for a common type of 3 d.o.f. spatial manipulator
which is shown in Figure 9 and whose o kinematical and dynamical equations are given in the Appendix.
(The axis of joint 1 in Figure 9 is vertical), The actual geometric and inertia parameters used in the example
are given in Table 3. The dynamical equations have been derived using Kane's dynamical equations (Kane
and Levinson 1983; Kane and Levinson 1985; Desa and Roth 1985).

The configuration chosen was ] = 0, q» =45 and q3 =45°
The joint variable rate ("joint velocity™) consiraints are
G € dio = 1 radfs; i=123,

The torgue constraints are
Ti €T , 1=123,

Tio may be thought of as the size {or maximum torque rating} of the actuators; the numerical values of T10
(i = 1,2,3), are given in Table 3.

The properties of the state acceleration set were computed at Q1 =0, g = 45" and q3 = 45°;
qi=1radfs,qz=1rads qa=- 1 radfs

In order 1o show how the theory might be used for design purposes we have determined the
acceleration properties for three cases (Table 4). Five acceleration properties have been detertnined in each
case: the maximum and isotropic acceleration of the set S, the maximum and isotropic accleration of the

state acceleration set and the (tocal) isotropic acceleration at the configuration (0, 45°, 45° yT.

1n all three cases the sizes of the first two actualors remain constant (T1g = 35 N-m and Typ = 8.2
Nm) and the size of the third actuator (driving link 3) is varied. In Case 1 of Table 4 (135 =0.17 N-m), the
end-effector does not have either a state or local isotropic acceleration). When the size of actuator 3 is
increased to 0.4 N-m (Case 2}, we obiain a state isotropic acceleration of 0.93 m/sZ but the local isotropic
acceleration is very small 0.03 m/s2. Therefore for given Tipand Tag , Ty must be greater than 0.4 N-m in
order that we may have a local isotropic acceleration at the specified configuration g. Case 3 shows that for
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axis of joint 1
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joint 2 joint 3

joint 1

diagram of a three degree-of-freedom manipulalor

Figure %: Schematic
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actuator size T3g of 0.6 N-m we have a local isotropic acceleration of 1.61 m/s2. The designer must then
decide (from past experience) whether this magnitude of isotropic acceleration is reasonable.

Comments:

1.

These computations can be repeated for various configurations in the workspace after which
decisions can be made regarding actuator sizes.

2. Algorithms for the determination of minimum actuator sizes to achieve a desired isotropic
acceleration are given in (Desa and Xim 1989-2) for the planar case. The extension to the spatial
case is relatively straightforward,
¢y = 00 R2 = 0.303 03 = 0.254 (m)

a; = 00 a2 = 0.19 a3 = 0.094 (m)
m] = 35 my3 = 2.259 m3 = 1.129 (kg)
I1 =12 1 = Kj = - (kg.m2)
Iy = .129 Jp = 129 K20 kg-m?)
I3 = 003 J3 = .003 K3z 0 kg-m2)
Table 3: Parameters for the spatial manipulator (see Figure 9 and the Appendix).
Actuator Torques Acceleration Properties
Tio  T20 T30 Amax(st) Ajso(st) Amax(su) Aijsolsy) Aiso, Jocal
Case (N-m) (N-m) (N-m) (m/s?) {m/s?) (m/s?) (m/s2) (m/s?)
1. 35 82 0.17 203 1.35 23.7 0 Y
2. 35 8§82 04 25.06 3.16 29.1 093 0.03
3. 35 82 0.6 30.3 4.75 339 2.51 1.61

Table 4: Acceleration Properties for the manipulator of Section 6.
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7 Summary and Condusions:

In this paper, we extended the acceleration set theory for planar manipulators, developed in (Desa and Kim,
1989-1), to spatial manipulators. As in the planar case we have accomplished the following:

» Given the kinematical anid dynamical equations of a manipulator, we have defined the image set S¢
corresponding to the set T of actuator tonques, and the image set S§ corresponding to the set F of the
joint variable rates. We have also defined the state acceleration set Sy at a specified point u in the
state space.

s We have determnined the image sets, St and §q, and the state acceleration set Sy.

s We have characterized the image sets St and the state acceleration set Sy by their maximum and
isotropic acceleration. The image set S§ has been also characterized by its maximum acceleration,

* At a configuration ot position, q, in the workspace, we have established two local acceleration
properties: the local maximum acceleration and the local isotropic acceleration. The local maximum
acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the end-
effector. The local isotropic acceleration specifies the magnitude of the maximum available
acceleration of the end-effector in all directions.

We then demonstrated the application of the acceleration set theory for spatial manipulator 10 the 3
d.o.f. spatial manipulator shown in Figure 9.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the
analytical properties of acceleration sets can be determined from the properties of the linear and quadratic
mappings which define them (the acceleration sets). Furthermore, the acceleration propersties of interest -
especially the isotropic acceleration - have been determined in terms of the manipulator parameters, the
torque limits and joint variable rate ("joint velocity”) limits. These results can therefore be applied to
manipulator design problems as demonstrated in (Desa and Kim, 1989-2).
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Appendix: Functional relationships for the spatial 3 d.o.f. manipulator of Figure 9.
Notation: (See Figure 9)

ag,. 02,83 dextral orthogonal set of unit vectors fixed in link 1 and paralle] 10
the central principal momeats of inertia of link 1.
by, b2, b3 dextral orthogonal 2t of it vectors fixed in link 2 and paralict
the central principal moments of inertia of tink 2.
€1, £2.¢3; dextral orthogonal set of mtit vectors fixed in link 3 and paralle! to
the central principal moments of inertia of link 3.
Q1: length of link 2
03: length of link 3
ay: distance from joint axis of Link 2 1o center of mass of link 2
ay: distance from joint axis of link 3 to center of mass of link 3
m] : mass of link 1
ml mass of link 2
m3 : mass of link 3
I1. 71, Ky : central principal moments of inertia of link 1 for axes parallel to
ll,azmdaarespwﬁvely.l
I7.J2. K3 : central principal moments of inertia of link 2 for 2xes parallel o
bi.b2 and b3 respectively.
13,13, K3 central principal moments of inertia of link 3 for axes paralie] to

c1, ¢2 and ¢3 respectively.
{The input and output variables are as defined in section 3.1)

1. Jacobian matrix

The joint velocity is related to the velocity & of the point P in Cartesian space by the relation
x=J)q

The Jacobian matrix J for a spatial three degree-of-freedom manipulator in Figure 9 is the following:
m ha js
IJ=| 0 i js
M Bk M

where

Ju = singi(l2cosgz+ lycos(gz + 1))
Jiz
Jiz
Juo = hoosq+hkcos(q:+g7)

—cos qu{iz2 singa + & 5in(gz2 + ¢3))

—1 cos g sin{q2 + ¢3)

b cos(ga + g3)

E-.

! For link 1, since the first joint axis is parallel to @, only the principal moment Iy is of importance in
the dynamic equations.
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A1 = ~cosq{lcosgr+ hcos(g +¢3))
B2 = —sinq(lasingy +lasin(gz + ¢3))
Jiz = ~sing hsin{g: +43)

‘When the above relation is differentiated with respect to the time, we obtain the following equation,
£=J4+J9=J4-F < q>* -G[qP* (230)

where F, G are matrices with the following elements:

0 0 fis
F=| 0 f2 0 .
M M fs

where

fis = cosqilacos(ga +¢qs)

fa2 = hsingx+hsin{g+ @)

f1 = —sing({lzcosq + I3 cos(gz + qa))
fiz = singy(acosqz+ 5 cos(gr +¢3))
fis = singihcos(gz+¢s) ,

and
0 g12 O
G=10 gn 0 s
0 g2 O
where
&1z = cosqilycos(g: +q3)
82 = hsin(g+ @)
g = singlycos(gy+q1)

61



2. Dynamic equation

The dynamic behavior of the manipulator is described by the following equation:
Dg+U < §>2 +W[QP+p=T. ' 231)

The components of matrices D, U, and W are as follows:

dy 0 0
D= 0 dp dn
0 di2 dy
where
dn =1 +(!;+m;a%)cos’q;+fgoos’(qz+m)+m(!zcosqz+agcos(qg+q;))2
dn = h+md+]s+m(d+2mbcosgs+ )
dyn = J+mya@+aboos@)
d2 = dn
dy = F+md
o o0 0
U= uy 0 uxn
u3 w3z O
where
iy = (z+myd)oosqzsings +Jycos(qz +ga)sinlgz + @)+
+ m(lzcos gz + @ cos(g + g3)Xf2 singz + a3 sin(q2 + g3))
s = mhazsings

uyy = Jcos(gs +g3)sin(g: + g3) + ma(la cos gz + a3 cos{gz + g3))a3 sin(gz + @)

Uzz 23

_ win 0 wps
W={ 0 wy D
o 0 O
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where

wit = ~[l2+ mpdd)cos gs sin gz + I3 cos(qz + g3) sin(gz + ¢s) +
+ ma(ly cos g2 + a3 cos{q: + 3 )Nz 5in g2 + a3 5i0(g2 + @2))]
wis = ~[l3cos(qz + ¢3)5in(gz + g5) + mala cOs g2 + a3 cos{gz + g3))ea sin{qz + )]

w22 = mbassings

The nonlinear vectors, < § > and [4)* are as follows:

&
<q>*=| g
&%
20
07 = | 2t
2434n

¢

P=1| p2

P3

where
p2 = [mzazcos gy + ma(lzcos g2 + g3 cos(q2 + q3))lg

3 = mallycos g +ascos(q: + @3))g

3. Acceleration equation

The expression for the acceleration of the end-effector is as follows:

x=Ar+B < q>2+N[q’ +s (232)
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where

2 = >

~AU+F
-AW+G
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