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In this report the approach developed by the authors, for systematically studying the 
acceleration capabilities and acceleration properties of the end-effector of a planar 2 degree-of- 
freedom manipulator, is extended to the gtnaal spatial manipulator with thm degrees-of-freedom. 
A central feature of this report is the determination of the propaties of the quadratic mapping 
between the ‘)oint-velocity” space and the acceleration spaoc of P which then makes it possible to 
obtain analytical solutions for most acceleration properties of interest. We show that a fundamental 
way of studying these quadratic mappings is in terms of thc mapping of (input) line congruences 
into (output) line congruences. 





1 Introduction 

In this paper, we apply the approach developed in (Desa and Kim, 1989-1) to the problun of d e t e d n g  

the acceleration capability and acceleration properties of (a reference point on) the endeffector of a spatial 

three degne-of-freedom manipulator. 

An informal statement of the problem is as follows: 

Consider the general thrae degrae-of-fradom revolute-joint manipulator shown schematically in Rgure 

1. We are interested in studying the acceleration of a reference point P on link 3. (P is typically a point 

on the joint axis of the end-effector, the acceleration of P is therefore often referred to as the end- 

effector acceleration). The usefulness of studying the acceleration of the end-effector has been discussed 

in (Yoshikawa, 1985; Khatib and Burdick. 1987; Graettinger and h g h ,  1988; Desa and Kim, 1989-2; 

Kim, 1989). 

As shown, for example, in (Desa and Kim, 1989-lhthe acceleration capability of the point P under 

various conditions is best described by certain acceleration sets. W o  properties which mused, in general, 

to characterize these sets are the maximum possible magnitude of the acceleration of P and the maximum 

magnitude of the acceleration of P which is available in all directions. The former property is simply 

called the maximum acceleration of P and the latter the isotropic acceleration of P OUlatjb and Burdick, 

1987). 

Acceleration properties of the endeffector have also been studied by (Yoshikawa, 1985: Khatib and 

Burdick, 1987; Graettinger and Krogh, 1988). The approach of each of these researchers has been 

discussed and compared with our approach in the paper (Desa and Kim, 1989-1) and we will not repeat 

that discussion here. We will however repeat the fundamental hypothesis underlying our approach which 

is as follows. By decomposing the functional relationships between the inputs (actuator torques and 

joint variable rates) and the output (acceleration of P) into two fundamental mappings, a linear mapping 

between actuator toque space and the acceleration space of point P and a quadratic (nonlinear) mapping 

between the ‘Toint velocity” space and the acceleration space of P, and by deriving the properties of these 

two mappings. it is possible to determine the properties of all acceleration sets which are the images of 

the appropriate input sets under the two fundamental mappings. 

The contributions of this paper are as follows: 
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1. ?he antral cauibution of this paper is the determination of the pmperties of thc quadratic mapping 

be.twem the joint velocity space and the acceleration space of P which then makes it possible to 

obtain analytical mlutions for the isotropic d e r a t i o n .  We show that a fundamental way of 

developing the propertics of the quadratic mappings of intcrcst is in terms of the mapping of (input) 

line congrumccs into (output) line Ewgruglas. 

2. Qoad-form analytic expmsim me obtained dating imponant acceleration propcIties of manip- 

ulators to all the manipulator parameters and input variables (torques, joint variable mtes or “joint 

veIoCitics”) of intcrcs~ C h e  m l y  exception is the maximum local acceleration whicb is specified 

in terms of tight l o w  and upper bounds in saction 6.) 

3. Ntccssary and wflicicnt conditicms for the existcnct of isotropic dera t ion  have beM detenniued. 

(Earlier studies s t u n  to implicitly a w m e  that isotmpic accclerarion always exists.) These d t i o n s  

a stated explicitly in tcms of manipulator parameters and input variables. 

4. Analytical expressions ll~t derived for determining the maximum and isotropic acceleration of the 

endcffector at any ~ l d )  configuration of the manipulator. 

We will demonstrate tbe @plicMiao of the thcory to a pdcular three degne+f-fdom spatial 

manipulator. The application of acceleration thcory to proMrms in manipulator design has bem dealt 

with in (Desa and Kim. 1989-2). The next section. which describes our approach, also provides the dual 

function of being a “road-map” of tbe paper. 
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2 Description of the approach 

The approach for studying the acoeleratiw of (a reference point P on) the end-effector, given in @esa 

and Kim, 1989) is as follows: 

1. Define the input variables and output variables of intemt (subsection 3.1). The output of interest 

is the acceleration of the reference point P. 

2. Define the input sets of interest (subsection 3.1). 

3. &fine the input-output functional relations. These are obtained from the dynamical and kinematical 

equations of the manipulator (subsection 3.2). 

4. Define fundamental mappings from these functional relations (subsection 3.3). There are two 

fundamental mappings, a linear mapping and a quadratic mapping. 

5. Define the image sets of the input sets under the mappings obtained in step 4 ;subsection 3.4). 

These image sets ate the acceleration sets of interest. 

6. Define general properties which can be used to characterize (“measure”) acceleration sets (subsection 

3.5). 

7. Determine the pmperties of the mappings defined in step 4 (section 4). 

8. Determine the acceleration sets defined in step 5 using the properties of the mappings obtained in 

step 7 (section 4). 

9. Detemhe the specific properties of the acceleration sets determined in step 8 using the “measures” 

or general properties defined in step 6 (section 5). 

10. Determine the local acceleration properties for any configuration q of the manipulator using the 

properties of the acceleration sets obtained in step 9 (section 6). 
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3 Definition of the acceleration sets 

3.1 Manipulator input and output variables 

Consider the general spatial lhnx degra-of-freedom manipulator with thnc revolute joints shownschcmat- 

i d l y  in Figure 1. In this s u ~ o n .  we define the link parametus, the input variables, the input sets, 

the output variables and thc oylput seta for this geoual spatial manipulator. ?he manipulator is llssumcd 

to bc rigid with negligible joint Erictim. 

The manipuIamr will be described by a set of geometric and inenia parametus, which will depend 

on the manipulator type. The geomettic and inertia pariuneters for the spatial thne degrec+f-medom 

manipulator of Figure 1 ere also &own m Figure 9 are enumemted in the Appendix. 

Nexs we define the input varillbles, the input cmstmn ' ts and the comspondjng input sets of the 
thrce degtaeof-fiwdom spatial manipulator. k t  q1.qz. and 43 denote the generalized coordinates of the 
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manipulator (see Figure 9). 41, qz and being the joint variables, respectively, at joints 1, 2, 3. Define 

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If 

4 i tS4;<4 iu7  i = 1 , 2 , 3  (2) 

represents the constraint on joint variable i, the workspace W of a manipulator is defined as 

W =  {qlqir. 5 ~i -<W, i= 1,2,3). (3) 

Let 41, &. and q 3  denote the joint variable rates. Define 

to bc the vector of the joint variable rates. If 

1 Qi 15 qio, i= L2,3  (5) 

denotes the consmints on the joint variable rates, then we can define 

F =  (41 l4i I-< i =  1,253) (6)  

to be. the set of all the possible joint variable rate vectors. represented by regular paralklopiped JiKiLtMiJzKzLMI 

in Figure 2. (We will refer to this parallelopiped as the parallelopiped F for short.) 

Let TI, 72, and 15 denote the actuator torques, respenively, at joints 1,2,  and 3, and 

r L [  ,] (7) 

denotes the vector of actuator torque vectors. Let 
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42 

43  

Figure 2: Set of the joint variable r w  of a three degree-of-freedom manipulator 
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7-2 

Figure 3: Set of the actuatm toques of a three degree-of-freedom manipulator 

denote the constraints on the actuator torques at joints 1,2 ,  and 3. Define 

as the set of the allowable actuator toques, represented by regular parallelopiped ABCDEFGH in Figure 

3. W e  will refer to this parallelopiped as the parallelopiped T for short.) 

The vectors q, q and 7 will be referred to as the input variables (more precisely the input variable 

vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator. 

Let ( X I ,  x7.. x3) denote the coordinates, in a reference frame fixed to the base, of a reference point P 

on link 3 (see Figure 1) and define 
r i  

as the vector of task coordinates; the corresponding vector space of all jY' is called b e  lask space. 
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The velocity XP and the acceleration xp of the point P of the manipulator are, respectively, given by 

and 

x _ [  

The acceleration of P, j i p ,  is the output variable of interest in the present work. The corresponding vector 

space A of all possible 3' is called the acceleration space, expressed by 

- 3.2 Functional relations between the inputs 4, T and the acceleration j t p  

The next step is to obtain the fmctional dations between the acceleration XP and the inputs q and 7 

for a given configuration q. In this subsection, we show how the necessary functional relations can be 

obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relationship. 

The dynamic behavior of the most general three degree-of-fdom rigid spatial manipulator (Figure 

1) can be written in the following symbolic form (Craig, 1985): 

where D is the so-called mass matrix of the manipulator, V(q, 4> is the vector consisting of all terms 

which are non-linear in the products of the joint variable rates &, (i = 1, 2, 3), and p is a vector of all 

terms due to gravity. 

We next express non-linear terms V(q, 4) as products of a matrix and a vector. To understand how 

this is done, we hrst write V(q, il) in its most general expanded form, 
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Defining the two matrix OperatOrS, 

u11 u12 u13 

101 1132 u33 

and 

and two vector operators 

4: 
= 

Substituting equation (21) into (14), we can express the dynamic equation of a general spatial manipulator 

This is the most general expxssion of describing the dynamics of a three degree-of-freedom spatial 

manipulator in the joint space. The matrix D is the mass matrix of the manipulator and the vector p 

denotes the gravitational terms which influence the dynamic behavior. 
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The relationship between the velocity, xp. of point F, and the joint variable rate vector q is well known 

(Desa and Roth, 1985): 

kp = Jq (23) 

where J is a (3 x 3) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix 

is given in the Appendix. 

To obtain the expression for the acceleration XP of the point P, we differentiate equation (23). 

j l p  = Jq+Jq. 

The second term in equation (24), Jq, can be written in the form (see the Appendix) 

jq  = -F < 4 >2 -G[QI~. 

Substituting equations (25) into (24), we obtain 

jiP = Jtj - F < 4 >’ -G[q]’. 

Defining the quantities, 

A = JD-’, 

B = -AU-F,  

N = -AW-G, 

and 

s = -Ap, (31) 

we can easily show that the acceleration xp of point F, obtained by combining equation (22) with equations 

(26) thmugh (3 I), is given by 

XP = Ar + B  < 4 >‘+N[q]’+s (32) 

where A,B,N, s are configuration dependent and have the components uij, bi,, njj, si, (i, j = 1, 2, 3). 
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Equation (32) expresses the required (Input-Output) functional relation between the input variables, 

q and T. and the acceleration xp of the p i n t  P (the output variable) at a given configuration q. It is 

important to note that the definition of the matrix “operators” U, W, F and G and the vectors < 4 >2 and 

[qI2 enables us to write the dynamic equations in the compact form (32) which is critical in the sequel. 

3.3 Mappings 

In this subsection, we define two fundamental mappings betwcen the input variables and the acceleration 

XP of the point P (the output variable). 

It is convenient to regard the functional relation (32) as a mapping between the input variables q and 

r and the output variable ?ip for a given configuration q of the manipulator. Furthermore, defining 

a17 

(33) e=[. , / ;* .  A 

X P = X P + X P  (35) 

It is convenient to think of the vector g as the contribution of the toques to the acceleration of 

the reference point P, and the vector as the contribution of the joint variable rates and gravity to 

the acceleration of P. Equation (35) expresses the fact that the sum of these two vectors gives us the 

acceleration of P for a three degree-of-freedom manipulator. 

7 4‘ 

Equation (33) can be viewed as a linear, configurationdependent, mapping between the toque vector 

to the acceleration of P. Similarly, equation (34) can be viewed as a quadratic. 

to the 

T and its contribution 

configuration-dependent, mapping between the joint velocity vector q and its contribution 

acceleration of P for a given configuration q. These are the two mappings of interest in this section. 
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3.4 Manipulator acceleration sets 

Having defined two fundamental mappings of interest, we are interested in the image sets of the input sets 

under the mappings (33) and (34) at a given configuration q of the manipulator. There are three image 

sets of interest. 

3.4.1 Image set Sr of the actuator torque set T under the linear mapping 

For a given set T of tbe actuator toques r described by equation (9) and represented graphically by a 

regular parallelopiped in the T - space (see Rgurc 3). we define the image set S, of T under the linear 

mapping (33) as 

S, = {$I+$ = AT,T E T). (36) 

(Note that S, lies in the acceleration space A,) 

3.4.2 Image set Sq of the joint variable rate set F under the quadratic mapping 

For a given set F of the joint variable rates Q described by equation (6) and represented graphically by a 

regular parallelopiped (see Figure 2). we defme the image set Sa of F under the quadratic mapping as 

Sq ={+?Is ' 1 4  = B < Q >'+N[#+s,Q E F } .  (37) 

(Note that Sq lies in the acceleration space A.) From equation (34) and the above definition (37). we see 

lhat the image set S4 represents the set of all possible accelerations (the acceleration capability of the 

manipulator) when the actuates are turned off (T = 0) in any configuration q. 

3.4.3 State acceleration set 

When a manipulator is in motion, the dynamic state of amanipulator can be specified by the joint vm'ables, 

(41.42). and joint variable rates (41. b). 'Ihe state vector u which characterizes the dynamic state of the 

manipulator is defined as follows: 

.=( ;). 
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-- 

For a specified dynamic state of a three degree-of-freedom manipulator, The second term of the 

acceleration XP in equation (32) is a constant vector, which we denote by k(u) and define as follows: 

Y = A7 +k. (40) 
- 

For a given dynamic state u of the manipulator, we define the state acceleration set Sum the image set 

of T under the linear mapping (40): 

Su = {xplxp = AT+ k , r  E 7'). (41) 

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since 

the dynamic state u of the manipulator essentially specifies the velocity XP of the point P in (1 1) in any 

configuration, we can also interpret the state acceleration set S, (the set of available accelerations) as the 

acceleration capability of the manipulator when the manipulator is moving with the velocity XP in a given 

configuration q. 

3.5 Properties of the acceleration sets 

The definitions of the acceleration sets in the previous subsection will be used in section 5 to determine 

them. Once these sets have been determined, one would like to characterize them. 

Consider an acceleration set S in the acceleration space x, and two spheres C1 and CZ: C1 is the 

smallest sphere centered at the origin which completely encloses the acceleration set and C2 is the largest 

sphere centered at the origin which lies inside the acceleration set The radius TI of the sphere Cl is the 
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maximum available acceleration in S. The radius Q of sphere 2 represents the largest (magnitude of) 

acceleration available in all directions. 

We therefore define the following two properties of S 

the maximum acceleration of S: hu(S)  = q, 

the isotropic acceleration of S: ai&‘) = Q. 

comments: 

The isotropic and maximum acceleration are paniculady attractive for characterizing set S, in contrast 

to the average acceleration. since they can be readily exvacted from the dynamic equations in “closed- 

form” (or by appropriate bounds). The average acceleration, if required can be. numerically determined 

from the description of the acceleration sets given in the next section, 
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Figure 4: Image set S, of a three degreeaf-freedom manipulator 

4 Determination of the acceleration sets 

Analytic expressions for the determination of the lhree sets S,, S4 and SU are presented, respectively, in 

section 4.1.4.2 and 4.3. The determination of S, and the state acceleration set S, follows directly from 

well-known propetties of linear mappings while the detemhation of the set S4 requires the derivation of 

the propenies of quadratic mappings which are new 'Ihe approach for determining the set Sq under the 

quadratic mapping is more fundamental than that given in (Desa and Kim, 1989). 

4.1 Determination of the image set S, 

The set S, is the image set of the actuator torque set T under the linear mapping (33). We determine the 

image set S, of the linear mapping of a three degree-of-freedom manipulator in the x - space. Additionally, 

we identify the boundaries of set S,. which are planes in the x - space. 
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Result 1: The image set S, of the actuator torque set T under the linear mapping (34) is (the interior and 
boundary of) the paraUelopiped A'B'dD'ifF'G'd in the x-space whose vertices A', B', . . ., d are 
as follows: 

A' : 

8' : 

c' : 

D' : 

E' : 

F' : 

G' ; 

H' : 

16 



All three planes i1. p i  and pass through the origin of the x-plane. 

2. ~ n y  plane gl parallel to pi maps into a plane g; parallel to p i .  

3. ~ n y  plane g2 parallel to pz maps into a plane g2 parallel to p i ,  

4. ~ n y  plane e paraUe1 tom maps into a plane 9; parallel to p i .  

Proof of result 1: 

By regarding the rectangular parallelopiped AB.. . H (set T )  as a set of planes parallel top i ,  pz and p3 

one can easily show the w e ~ l - ~ ~ ~ o w n  fact that the image of AB.. . H is a pdlelopiped A'B' . . .H'. me 
vedces A', B', . . ., H' are the images, respectively, of the vertices A, E ,  . . ., If which are as follows: 

into equation (33). we obtah the coordinates of the vertices A', B', . ._, H' as given in equation (49). 

From (49), we see that the vertices A' and G' am equidistant from the origin and so are the pairs (B', d), 
(6. E') and (D', F'). Therefore, the origin of the x-space is the centroid of the parallelopiped A'E' . . . H'. 

Proof of' result 2: 

We next need to determine the equation of the planes A ' B ' g d ,  D ' d G ' d ,  A'D'H'd, B'dG'g,  

A'B'dD' and d$G'd which form the boundary of Ihe parallelopiped A'B' _. .d in the x-space. The 

plane A ' B ' g g  in the':space is the image of the plane ABFE whose equation is TI = ~1~ in the 7-space; 

to obtain the equation of A'B'HE), substitute the equation of AEFE (-si = 7i0) into (33) to obtain the 

following parametric equations in FZ and 73: 
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Eliminating the parameter 72 and Q between equations (a), (61) and (62). we obtain the equations of 

the plane A'B'F)E' as given by equation (50). In a similar fashion, we obtain the equations of planes 

D ' d G ' d ,  A ' D ' d g ,  B'dGF', A'B'dD', and &lfG'd  as in equations (51) through (55).  

4.2 Determination of the image set Sq 

The set SI is the image set of the joint rate set F under mapping (34) for a 'Ihree de-of-freedom 

manipulator. We decompose the set F (FQm 5 (a)) into 3 subsets F1, F2 and F3 described as follows: 

Definition 1: The set F1 is the Uuncated line congruence (Semple and Kneebone. 1952) consisting of 

the doubly infinite set of line segments passing bough the origin with one endpoint on the plane 

J1K1M2k and the other endpoint on the plane M i L ~ J f i z .  A typical member of F1 is the line 

segment gi shown in Figure 5 (b). 

Definition 2: The set Fz is the truncated line congruence consisting of the doubly infinite set of line 

segments passing through the origin with one endpoint on the plane JlL&M1 and the other 

endpoint on the plane KlM2J2L1. A typical member of Fz is the line segment gz shown in Figure 

5 (c). 

Definition 3: The set F3 is the m a t e d  line congruence consisting of the doubly infinite set of line 

segments passing through the origin with one endpoint on the plane J ~ K ~ L I M ~  and the other 

endpoint on the plane L.&d&. A typical member of F3 is the line segment g3 shown in Figure 

5 (d). 

We can now state the useful mdts which analytically describe Sa, the image of F. 

Result 1: 

l.(a) Every line of the type gl belonging to set F1 maps into a line g; in the x-space (Figure 6 (a)), one 

endpoint of which is the point S whose coordinates si, i = 1, 2, 3 are given by (40) and the other 



Figure 5: Image set SQ of a three degree+f-fraedom manipulator 
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Figure 6: Quadratic mappings of a three degree-of-freedom manipulator 
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l.(b) The set F1 maps into a set (S*), in the x-plane which is a doubly-infinite system of line segments. 

one endpoint of d i c h  is the p i n t  S with coordinates si (i = 1,2, 3).  given by (31) and the other 

endpoint of which lies on the quadratic surface described by (63). 

Result 2: 

2.(a) Every line of the type gz belonging to the set F2 maps into a h e  g; in the x-space (see Figure 6 
(c)). one endpoint of which is the point S and the other endpoint of which lies on the quadratic 
surface patch (Figure 6 (d)) whose parametric equation (in 43 and 41) is: 

bii& +bi&, + 6134 + 2 n l l Q l 9 b  + % b Q 3  + h & @ 1  +Si  [ ; I = [  +h 

&I& +h& + bad + Z n n Q i Q z .  +2nu&.& +2nt3&4i +sz (W 

where 

1411 < 410 

l & l <  420 

2.(b) The set Fz maps into a set (S,& in the x-plane which is a doubly-infinite system of line segments, 

one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface 

described by (64). 
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Result 3: 

3.(a) Every line of the type g . ~  belonging to the set F3 maps into a line g; in the x-space (see figure 6 
(e)), one end of which is the point S and the other end of which lies on the quadratic surface patch 
(Figure 6 (0) whose parametric equation (im 41 and @) is: 

b&+b~2& +tu&. + 2 n ~ 1 ~ ~ ~ + + ~ ~ ~ * + + ~ ~ ~ ~ 1  +sz . (65) 

h , ~ t b 3 ~ ~ + b 3 3 ~ ~ + 2 n 3 1 m ~ + + 3 2 ~ ~ * + + 3 3 p 3 o ~ 1  +a i bil#+blzQ:+bl& + 2 n 1 l m ~ + + 2 n 1 ~ ~ 4 3 0 + + 1 3 4 3 . i l l  + S I  [ ; I = [  
where 

3.(b) The set F3 maps into a set (S& in the x-plane which is a doubly-infinite system of line segments, 

one endpoint of which is the point S and the other endpoint of which lies on the quadratic surface 

described by (65). 

Result 4: 

The image set of S,j of the joint variable rate set F is the union of the sets (S&, (S4)2, (Sqh described 

above. 

Proof of Results 1,2, and 3: 

We will first derive certain useful properties of the quadratic mapping defined by equation (34): 
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The above equation can be written in the expanded form 

&I& + && + h 3 9 :  + h z l q i b  + hn~ihih + 2nu43il1+ s?. . [ j=[ + h& + h38 + 2n314i& + Znn@& + h 3 3 b q l  + s3 
(66) 1 b u g  + b12G + b13& + 'h1@142 + h 1 2 k i h  + h1343@1 +SI 

Consider the (input) 4-space. It is convenient to think of this space as being generated by the 

continuous doubly-infinite set of lines (also called a line conpence) passing through the origin with 

parametric equations 

Each value of ml and m2 gives us a member of the line congruence. a typical member of which is 

the l i e  I shown in Figure 7. The image r' in the x-space of the line I is obtained by substituting (67) into 

(66) and is described by the following parametric equations, 

where 

mi = bl1+ b12m7 + b13d + 2nlIml+ 2 n l m l n ~  + 2n13m 

4 = b1+ h m :  + + 2nzlml+ 2nzzrnlmz + 2n23mz 

mi = b1+ + ~ 3 m :  + 2n31ml+ ~n3zrnlm2 + ~n33rn2. 

From equation (67) and (68). one can infer the following facts: 

Fact 1. The image of I ,  viz. 1, is a straight line. 

Fact 2. The origin of the q-space maps into the point S of the si-space. 
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.. 
X1 

Figure 7: properties of the quadratic mapping for a lhree degrec-of-freedom manipulam 
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Fact 3. Two points with coordinates (41. 42, &) and (-41. -&, -&) map into the same point of the 

f-space. 

These results are shown graphically in Figure 7. 

Fact 1 follows from the fact that (68) is the equation of a straight line in the parameter 6. Fact 2 

follows from the fact that the point (0, 0, 0) in the 4-space. represented by the parameter t = 0 in (67), 

maps into the point (si, s2, s3) in the x-space. If t is the parameter componding to the point (41, &, 

43) in the q-space, then, frmn (63, -? is the parameter of the point (-41. -@z, -&). From (68). we see 

that points with parameters t and --t will map into the same point in the f-space, This proves Fact 3. 

The following two important properties of the quadratic mapping (33) (or (66)) follow directly from 

the above facts: 

Property 1: The image of a lie I passing through the origin of the q-space is the half-line l, one endpoint 

of which is the point S(s1, m, g) of the x-space (sec Figure 7 (a)). 

Property 2: Consider a line segment g passing h u g h  the origin of the a-space and with endpoints 

P1(41,@z,Q3) and Pz( -@I ,  -Qz, -&) corresponding, respectively, to parameters rand -r, g maps 

into a l i e  segment g’ in the x-plane, with one endpoint at S(SI,S~,S~) and the other endpoint at Q 
whose coordinates are given by (68) (see Fig 6 (b)). Q is the image of both points P I  and P2. 

Property 1 is basically a statement of the fundamental “folding” property of the quadratic mapping. 

h p e d y  2 is more useful for our purposes. 

We now determine the image, under the mapping (34), of the set Fl which consists of the doubly- 

infinite system of line segment of the type gl, (see Figure 6 (a) ), which passes through the origin and 

which has endpoints PI and P2. respectively, on planes J I K I M ~ L Z  and MlLlJzKz Figwe 6 (a) ). 

The plane J1 K1M& is described by 

41 = ill0 

and the plane MILIIZKZ is described by 

41 = -41.. 
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Therefore, if P1 lying on J1KiMz.h has coordinates (Qi,Qz,&), then P2 lying on M1L1J2K2 has 

coordinates (-@lo, -&. -43). By propeny 2 of the quadratic mapping, the line segment gl  with endpoints 

P I  and P2 will map into a line se.gment with one endpoint at S(sl,s~,s3) and the other endpoint at Q 
Figure 7), which is the image of both PI and P2 and which we need to determine next. For every 

point PI(&, &, 4 3 )  lying in the plane JiK1M&, there is a point P2(-@i0, -&, - 4 3 )  lying in the plane 

MlL1JzK2 which, by Fact 3 established above, has the same image as PI. Therefore, planes J I K I M ~ ~  

and MIL&& have the same image. It is sufficient therefore to determine the image of plane JlK1M2L.2. 

Since plane J1KlM2L.2 is the set of all possible PI, the image of JlK1MzLz is the set of images of all 

possible P I .  To obtain the image of I ~ K I M Z L ~ ,  we substitute its equation (69 ) into (66) to obtain (63) 

which, because it is quadratic in the parameters 41 and 42, represents a quadratic surface in the X-plane. 

The quadratic surface (63) is the image of the plane M1LiJfi2 as well as the image of the plane 

J l K 1 M d 2 .  Any point P I  of M I L ~ J ~ K ~  with coordinates (&, in. @) and any point 4 of J 1 K i M d z  with 

coordinates (-41~. -&, -43) will have the same image Q with coordinates (XI, .&,A) given by (68). - 
We have thus shown that the line segment with the endpoints PI and 9 will map inio a line segment 

in the x-plane with one endpoint at S(sl, m, s3) and the other endpoint Q lying on the quadratic surface 

(63). This completes Result l(a). 

It is now a simple matter to determine the image (S& of F1. By Result l(a), the doubly-infinite set of 

line segments F1 of the type gl with endpoints PI(&,&,&) and P2(-41,, -@z, -&) lying, respectively, 

in the planes M1LiJ2K2 and JIK~MZLZ will map into the doubly-infinite set of l i e  segments (S$l with 

one endpoint (always) at S and the other endpoint on the quadratic surface (63). This completes the prwf 

of Result l(b). 

In exactly similar fashion, we can show Results 2(a) and 2@) and Results 3(a) and 3’3). 
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Figure 8: Stale acceleration set of a three degEe-of-fFXhm manipulator 

and 3@). This completes the proof of Result 2. 

Comment: 

The analytical description of (S,) by means of (S&, (S& and (S& is sufficient for the extraction 

of the acceleration properties which we are interested in. 

4.3 Determination of the state acceleration set Su 

The state acceleration S, corresponding to a state u = (q, aT of the spatial manipulator was defined by 

equation (41) and is he image set of the actuator torque set T under the mapping (40). We obtain the 

following results for the state acoeleration set Su. 
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Result 1: For every element x(SI) of the image set S,, then is a corresponding element x(&) of the 

state acceleration set S., given by 

Y(Sd = x(STs,) + k(q, 4). (71) 

where 

Proof of Result 1: 

The results 1 and 2 are straightfonvard. 

From (36), a member %(ST) of S, is given by 

x(S,) = AT. 

From (411, a member x(S,) of Su is given by 

x(&) = AT + k 

where k is given by equation (72). Combining (73) and (74), we obtain 

x(Su) = x(S,) + k 

which is equation (71). 

(73) 

Proof of Result 2: 
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From equation (71). we see that if we take a vector %(ST,) of S, and add the vector k to it we obtain 

the corresponding member x(S.) of S.. Therefore, if we add the vector k to every vector in'the set S, we 

obtain the required set Su. Therefore. So is the parallelopiped A"B"d'D"E"F"G"f/ figure 8) obtained 

by translating the set S, (the parallelopiped A'E'dD'E'F'G'd in Figure 8) by the vector k. The centroid 

of S, is x(&) = (0, 0). From (75). we see that the corresponding centroid of S. is 

X(Su) = 0 + k = k. (76) 

Thii completes the proof of Result 2. 
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5 Properties of the acceleration sets 

In this section, we explain how to charamxize the image set, S,, S,, and the state acceleration set, Su. 
using the results in section ??. 

5.1 Properties of the acceleration set S, 

We characterize the image set S, of the linear mapping as follows 

Result 1: The maximum acceleration of the acceleration set S, is denoted by Q,,,,~(S~) and is given by 

u,,,&,) = max[d(OA’), d(OB’), d(Od), d(0D’)I (77) 

where 

Proof of Result 1: 

The maximum acceleration of ST is the disrance horn the origin to the furthest vertex of the par- 

allelopiped A‘B‘eD‘gpG’k. Letting d (O’A’) through d ( U ‘ d )  denote, respectively, the distances of 

venices A‘ through d from the origin in the x-space. &(ST) is given by 

&(ST) = max[d(dA’), d(O’B‘), . . . ,d(O’H’)J. (79) 
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A' and G' are equidistant from the origin 6. Also. B' and d, C' and E'. and D' and $ art equidistant 

from the origin. So, a,,,&7) is given by 

u,- (S,) = max[d(dA') , d(O'B'), d(O'd) ,  d(U'D')]. (80) 

Using (33) and the well-known "distance" formula, the distance d(0A') from the origin 0 to the point A' 

is given by 

Proof of Result 2: 
The isotropic acceleration of Sr is the shortest distance from the origin to the sides of the parallelopiped 

A ' B ' ~ D ' ~ F ' c ' ~ .  Letting (A'B'F/E' 1, p ( D'C'G'H' ), ( A'D'H'E' ), p ( B'&G'F' ), p ( A'B'L'D' 
) and p ( d F / G ' d  ) denote, respctively, the distances from 0' to each plane. ai&,) is given by 

(85) 
, # I  

&(S,) = min[p(A'B F E ), p(D'C'G'H'), pfJ'D'H'E'), pB'C'G'F'), p(A'B'C'D'), p(E'F'G'H'I1. 

Since the origin is the centroid of the parallelopiped S,, parallel faces of the parallelopiped A'B'dD'E'F/6d 

must be equidistant fmm the origin. Therefore, we can write the following relations: 

Using (86), (87) and (88), (85) can be written as 

(89) 
, , I  

aim(&) = min[p(A'B F E ), p(A'D'dEj,  p(A'B'dD')J. 
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The distance p from the origin to a plane u x + b y + c z + k  = 0 in the x y z  - space is given by the 

well-known equation: 

Substituting (91). (92) and (93) into quation (89). we can obtain the nsq& result (78) fot the isotmpic 

acceleration uiso(S7). 

- 5.2 Properties of the acceleration set $, 

Sine  each element of the set Sk npresents the total non-linearity. we characterize the set Si, by the 

maximum magnitude element which denote the maximum Mll-h%l&y. Also, we calculate the maximum 

distances from direction planes in subsection 4.1 to measux the effects of the non-linearity on the state 

acceleration ~ c t .  

Similar to a two degree-of-freedom manipulator. we illustrate the steps to the analytical expression of 

the M e s t  point of Set Sq, and the steps to the analytical expression of the futthest point from direction 

planes. 

Definition 1: Letfi, i = 1. 2, 3 denote. respectively, the following cubic functions in the joint variable 
rates &, i = 1, 2, 3; 

fi(h, QZ, ii,)=(b&+h& +h& +2nr1414L+2nuh@ +Zn134~41 tstXbllpi +niiol +n1s43) 

+(hr8 + t&+b& t t 4 1 4 1 4 ~ + & 2 & @  + h 4 3 4 1  + s d h p i  +nil& +mW 

t ( ~ , 4 : + ~ ~ + + b u ~ + + Z n 3 l ~ 1 ~ + Z n n ~ p l t 2 n u ~ ~ ~  + Q X ~ I ~ I  + n 3 1 0 1 + n ~ 4 ~ ) = 0 ,  (94) 

fi(&, 42, ii ,)=(bii4:+bu~+h3q:+2nli((iol+2n~4243+2ni341P1 +siXbu41+n1142+n134) 

t(ki$ t b12& +bod +%414L+&24243 + h34141 + S l K h 4 1  +mlh + W e )  

+(h14: +b& + bud +2n114142 + Z m 4 1 4 3  +2nu4341 +s,Xhipl  +nxlg, +rm@) = 0 (95) 
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Table I: Solutions of cubic quatiom 

wherefi(q1, 41, q l ) ,  (i = 1 ,  2, 3) is cubic in 41. aad &. 

Definition 2: It is useful in our derivaions to be able to refer to the solutions of certain equations which 

play an imponant role in obtaining the maximum acoeleration of S+ &,,&). Each equation or 

equation pair of interest is given in column I and the corresponding variables are indicated in 

column 2. All equations in column 1 are cubics in the variables in column 2. The notation used to 

denote the solution of each equation or equation pair is given in column 3. 

Definition 3: 
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(100) 
(422433 - U2342)(b13ql+ n i 2 4  + n13433) 

+ (1113432 - (llZa33)(b23ql+ n2zQL + m Q 3 )  M@i ,  &, b) = 1 + (11121123 - a l3&@33ql+  W Z k ?  + )?34'3) 

where. h&, in, e), (i = 1, 2, 3) is linear in 41, and &. 

Definition 5: It is also useful in our denvaions to be able to nfer to the solutions of cehn equations 

which play an important d e  in obtaining pmu(x(S.$,pi), i = 1. 2, 3, defined below. In table 2, 

each equation or equation pair of intenst is given in column 1 and the corresponding variables are 

indicated in column 2. AI1 equations in column 1 are linear in the variables in column 2. The 

notation used to denote the solution of each equation or equation pair is given in column 3. 

Definition 6: 



Table 2: Solutions of linear equations 
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p,,,ax(X(S,i),pl), h ( X ( S g ) . p z )  and pmu(X(S~),m) are necessary for determining the local isotropic 

acceleration in subsection 5.4. 

Result 1: For a general three degree-of-freedom spatial manipulator, the maximum acceleration of rhe 

acceleration set S, will be denoted by &&a) and is given by 

u-CSQ) = maxlfw, h, . . . , 1 ~ 1  (107) 

where 

Result 2: For a general thm degree-of-freedom manipulator, tbe maximum distance from an element of 

SQ to the reference planes P I ,  pz and m are, respectively, given by 
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where a,(&, 42, @) (i = 1, 2. 3) are defined by equations (IOI), (102) and (103). 

The maximum magnitude squared of the acceleration for the set Si,, denoted by &&), is given by 



where F is shown in Figute 2 and is specified by the constraints 

1 41 I <  410,  (1 12) 

IihIIb. (1  13) 

I irJ IS 430. (114) 

The maximum of (110) will occur at q E F which is either inside F or on the boundaries of F 

where one, two or three constraints might be active. In section 5.1.2, we showed that "opposite" pairs of 

bounding planes have the same set; Using very similar arguments to those used to demonstrate the result, 

we can show that 

1. The following pairs of bounding edges of F, 

have the same image set 

2. The following pairs of venices of F 

h, L1 

JI, JZ 

Ki, K2 

M2, MI 

have the same image. 

Therefore, to obtain the maximum of (110) under the constraints (112). (113) and (114). we should 

consider the following possibilities: 
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1. Neither of the wnstraints is active, i s . ,  the max[P(&, h, 43)] o m  at a point 4 inside F. 

2. One of the constrainls (112), (113) and (114) is active, Le.. max[P(ql, &., &)I occurs at a point q 

lying on the plane JIKIMzLL or 11LZK2M1 or L ~ M z J f l z  of F. 

3. ' h o  of the amstraints (112). (113) and (114) are active, is.. rnax[&, q2 ,  &)I occm at a point 

Q lying on the edge K h ,  J a 2 .  L2Mz. JIKI, J I ~  and K1M2 of F. 

4. All of the constraints are active, i s . ,  max[P(@~, &.)I o m  at vertex Lz, vertex J1, vertex K1, or 

venex M2. 

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate 

lZ(4i,&, 43)  with respect u) 41. ~IZ and & to obtain 

wherefi(Q1, qz,  q 3 ) ,  (i = 1.2. 3). were defined in (941, (95) and (96). 

Now, we consider each case. 

Case 1 

To obtain the maximum of I for the case where all of the constraints are inactive, we set the right-hand 

side of (115), (116) and (117) to zero. This gives us the equations 

N?I. 41, 43) = 0, (i = 1, 2, 3) (118) 

and the solution 

q1 = qz = 4, = 0 (119) 

of which actually corresponds to the minimum value of P(ql, h, &), viz, zero. Therefore, max(2') does 

not occur at a point 4 inside F which is to be expected. 

Case 2 
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Consider the c8se in which one of the constraints (112). (113) and (114) is active. When constraint 

(1 12) is active on the plane JlK1M& of the F ,  we have 

41 = 41. (constant). (120) 

To obtain the maximum of P. we set both aP/& = 0 and aZ2/a& = 0. We therefore set the 

right-hand sides of both (116) and (117) to zero to obtain the following cubic equations: 

fi ( 41.33 01, i13)=0, 

f3 ( 410, 42, b ) = O .  

5 420, 
Therefore. max [(GI, &, 43) for tbk case is given 

5 4- whose real solution, if it exists, is denoted by 48'' and qs". 

comment: 

Using simple arguments from algebraic geometry (Semple and Roth, 1949). we can show that if the 

cubics (121) and (122) with constraims 1421 5 and 1431 5 &. have real points of intersection, then 

they can at most one real point of intersection. If P(Q1, 42,  &) does have a maximum then the 

conditions 81z/a& = 0 and 812/a& = 0 for obtaining P. and therefore the pair of equations (121) and 

(122) which follow from them, are essentially conditions for the quadratic surface which is the image, in 

the x-space, of the plane J ~ K I M ~ L z  to have a common tangent plane with a sphere of radius ](@I, in, cjd. 

A sphere and a quadralic can have at most two points of tangency. Therefore. the simultaneous solutions 

of (121) and (122) can have at most two real mots. However, since (121) and (122) alp. equations of 

cubic cuwes, they will have, in general, nine points of intersection. If equations (121) and (122) had only 

two real mots in common, the remaining seven common roots would have to be imaginary, which is not 

possible. Therefore, (121) and (122) will have exactly one mot, if we do not impose any constraints on 

42 and q 3 .  In the case where & and 03 are constrained the real mot might lie outside the region specified 

by the canstraintf. 

In an analogous fashion, we obtain the following maximum for I when constraint (1 13) is on plane 

f&&Mi: 
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where @), ilp‘ is the real solution of the following two cubic equations, 

Case 3 
- Consider the case in which two of the constraints (112). (113) and (114) an active. m e n  constraints 

(113) and (114) are active on the edge K& of F, we have the followig conditions, 

42 = &, (constant), 

q3 = q30 (constant). 

To obtain the maximum. we set i@/& = 0. We therefore set the right-hand side of (115) to zero 

and set & = and & = q330 to obtain the cubic: 

Using arguments similar to those used above, we can show that (132) can have at most one real solution 

which we denote by #) The corresponding value of 1 is as follows: 

In an analogous fashion, we can obtain the following maximum for I when constraints (113) and (1 14) 

are active on edge J2M2: 

max[l(irl, ciz, &)I = I(&), -&, ~ 3 ~ ) .  (134) 
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where 4i5) is the real solution of the followiog cubic equation, 

fi ( 41, -b, b)=o; 

For the m e  when constraints (112) and (114) are active on edge W z .  we obtain 

(6) . maxtKill, ih, in11 = 1(41., Q2 , md, 

where is the solution of the following cubic equation: 

f2 ( 410. hr &0)=  0. 

For the case when constraints (112) and (114) are active on adge ~ K I .  we obtain 

rnax[l(Ql, h, WI = KQ~., d'), - 4 3 ~  

where &) is the real solution of the following cubic equation: 

A ( 41. 4 2 ,  - 4 d = O .  

For the case when constraints (112) and (113) are active on edge J h ,  we obtain 

maw[l(irl, h, in)]= K Q ~ ~ ,  b, ~$9, 
where 418) is the real solution of the following cubic equation, 

A ( 41'7, b, b)=O. 

For the case when constraints (112) and (113) on edge KlM2, we obtain 

max[[(ill, ih, in11 = l(in0, -b, 44% 

where #) is the real solution of the following cubic equation: 

f3 ( 41.. -420, 43)=0. 

Case 4 
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Consider the case in which all of the constraints (115). (116) and (117) arc active. When all three 

constraints are active. and if rnax[l’(Ql, 4 2 ,  43)] occurs at Lz(illo, &, bo), then 

maxrm1, i12, @3)1=&210, -42-9, 433. (147) 

Therefore. U,,,,~(S~) (= max[l(q1. or, &)I) is obtained as the maximum of thirteen quantities defined 

by equations (123), (124) (127). (133), (134). (136), (138), (140). (142). (144). (145). (146) and (147). 

Thus we have demonstrated Result 1. 

- 

Proof of Result 2: 

The distance of any point %(Sa) of SQ from the line pi, i=1,2, 3, is given by 

P(X(Sq),p1) 52 Ul(@l, h, 43) (145) 

(14% 

(150) 

We first wish IO determine p-(X(S,$,pl) the distance of p1 fium that point of Sa furthest away from it 

P(Wq) ,PL)  4 02(ar or, 43) 

d*(S4) ,P3)  4 W(il1, in, w. 

@I). 
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where F is shown in Figure 2 and is specified by the constraints 

I41 I5 @lor 

I O r l < b .  

143 I <  Q30. 

' 
The maximum of (101) which is required in (151) will occur at point q E F which is either inside For 

on the boundaries of F where one or two or three constraints might be active. Using the same arguments 

as in Result I above, to obtain the maximum of (101) under the constraints (152). (153) and (154), we 

should consider the fouowing possibilities: 

1. Neither of the constraints is active, i.e., the max[ol(cji, &,&)I occurs at a point q inside F. 

2. One of the constraints (152), (153) and (154) is active, i.e., max[ai(Qt, 42, &)I occurs at a point 

4 lying on the plane JtKlMZLz or plane JlL&M1 or plane L2M232K2 of F. 

3. TWO of the constfaints (152), (153) and (154) are active, i.e., max[al(&, 42,  43)lacurs at apoint 

q lying on the edges KzL2, JzM2. kMZ, J I K I ,  J i b  and K M 2  ofF. 

4. All of the constraints are active, Le., max[ul(&, in, &)] occurs at a point q lying on the vertex 

La. vertex J I ,  vertex K1 or vefiex M2.l 

TO obtain the conditions for each one of the above cases to yield a maximum, we first differentiate 

ai(ili, &, 43) With respect to 41, in and 43 to obtain 
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Now, we consider each case. 

Case 1 

To obtain the maximum of p~ for the m e  where all of the constraints are inactive, we set the right-hand 

side of (155), (156) and (157) to zero. This gives us the equations 

hi(q1, @z, & ) = O , ( i =  1, 2, 3), 

and the solution 

q, = & = g3 = 0 (159) 

of which actually corresponds to the minimum value of PI(&,  &, q 3 ) .  viz, zero. Therefox. maxh) 

docs not occur at a point 4 inside F. 

Case 2 

Consider the case in which one of the constraints (152), (153) and (154) is active. When constraint 

(152) is active on the plane J I K ~ M ~ L ? .  of F. we have 

41 = Q10 (constant). (160) 

To obtain the maximum of p1, we set both 8p l /a& = 0 and aP1/@3 = 0. We therefore set the 

right-hand side of bath (156) and (157) to zero to obtain the following two linear equations, 

h2 ( 4 1 0 7  Q1, q d = O ,  (161) 

h3 ( illo, ih, W = O .  (162) 
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Case 3 
- Consider the case in which two of the constraints (152). (153) and (154) arc active. When constraints 

(153) and (154) are active on the edge K& of F, we have the following conditions. 

q 2  = (constant), (170) 

$3 = ~o(constant). (171) 

To obtain the maximum. we set @/@, = 0. We thenzfore set the right-hand side of (155) to zero 

and set 42 = & and irJ = Q30 to obtain 

h ( P 1 7  4203 bo) = 0, 1411 I @lo. ( 172) 

From equation (172), we obtain the solution which is denoted by 8’. The carresponding value of pi is 

as follows: 

max[pi(Qi, in, @)I = pi($”, iho, +3u). (173 

In an analogous fashion, we can obtain the following maximum for p l  when constraints (153) and 

(154) are active on edge J , M ,  

max(pl(il1, ilz, 4311 = P~(Q\*’, -420. ~ 3 ~ ) .  (174) 
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where 4’’ is the solution of the following linear equation. 

c ( 01, -420, bo)= 0; 

For the case when constraints (152) and (154) are active on edge &M2, we obtain 

161 . max1~1(&, in, @)I = PI(@IO, 42 I 930)~ 

where &‘I is the solution of the following linear equation. 

h2 ( 4103 ih, iho)=Q- 

For the case when conslraints (152) and (154) are active on edge I lKi ,  we obtain 

maxbI(ili, in, &)I = ~ l ( i l i ~ ,  @, -bo), 
where. Qg is the solution of the following linear equation: 

h2 ( 410, ih, - b o ) = O .  

For the case when constraints (152) and (153) are active on edge J i b ? ,  we obtain 

maxIdQi, @z, Qd1= P I ( Q I ~ ,  b, #I), 

where is the solution of the following linear equation, 

h3 ( 410, @ d = o .  

For the case when constraints (152) and (153) on edge  KIM^. we obtain 

PI maxh(Q1, ih, 4 4  = PI(QI~, -b, Q3 ), 

where 4’’ is the solution of the following linear equation: 

h3 I 410, -420, w = o .  

Case 4 
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Consider the case in which all of the consuaints (152). (153) and (154) are active. When all three 

constraints are active, and if max[pl(ql, &, 43)] occurs at rZ(@p, h,, 4d. then 

Therefore, pmu(x(S&q) is obtained as the maximum of thirteen quantities defined by equations 

(163), (164) (167). (173), (174), (176). (178). (180). (182). (I84), (185). (186) and (187). In exactly, 

analogous fashion, p&x(Sq),p3) and p,-(ji(Sq),ps) ate obtained as in (109). thus we have demonstrated 

Result 2. 

5.3 Properties of the state acceleration set 

Definition: 

K : centroid of the acceleration set in the I-space with coordinates kl , kz and k3 given by (40). 

AK, p1) : distance from point K to the reference planepl. 

AK,’ p z )  : distance from point K IO the reference plane h. 

p(K, p3) : distance from point K to the reference plane p3. 

p(A’B‘gE‘), p(A‘‘B”F’’f), . . . : distance from the origin to plane A‘B‘flE’, A”E”F”E”, . . . 
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Result 1: The maximum acceleration corresponding to any dynamic state u of the manipulator is denoted 
by nm,(Su) and is given by 

a- (Su) = max[d(OA"), d(OE"), d(OC"), d(UD"), d(0.F"). d(OF"), d(UG"), d(OH"I1 (188) 

where 

d(0A" ) 

d(O3") 

d(0C") 

d(0D") 

d(UE" ) 

d(0F" ) 

d(0G") 

d(0H" ) 

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the 

following: 

I W A h  - / ( e a =  - madh +(ana1 - u a d k  +(ailan - auankl> 0. (191) 

Result 3: The isotropic acceleration corresponding to any dynamic State u of the manipulator is denoted 

Proof of result 1: 
Let d(0A") through d(0Cl') denote, respectively, the distances of vertices A" through d from the 

origin 0 in the x-space. Then a,,,&u) is the distances of the furhst vertex of the set Su which is the 
parallelopiped A"B"C"D"E"F"G"fl. Therefore. amsx(Su) is given by 

&(&I) = max[d(Uii"), d(OLJ"), d(UC"), d(OD"), d(OE"), d(OF"), d(OG"), d(0H")I. (193) 
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Using (49). the coordinates Xl(A"), &(A") and &(A") of vertex A" in the x-space are given by 

u(0"B") = 

r(O''c'') = 

.Y(O"D") = 

u(0"E") = 

a(0"F") = 

a(0 G ) = 

a(0"H") = 

I, ,I 

Equations (193) and (197) through (204) comprises Result 1. 

Proof of result 2 and j: 

The state acceleration set S, is the parallelepiped centered at k(u) = (kl , kz, k3), shown in Figure 8. 

The centroids of S, and Su are, respectively. by 0 and K. 
Using equations (W), (72) and (56) through (58). the distance from K to the planes pi. pz and p3 are 

given by 

The distance p(K, p1) from the centroid K of Su to the plane pi is equal to the pqendicular distance 

between plane A'B'$& and plane A " B " f f  and also between the plane D ' d G ' d  and plane D"C?G"$. 
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The distance p(K, a) is equal to the perpendicuk distance between plane A'D'Hd and plane A"D"H"& 

and also between plane B'6G'F' and plane B"fG"FI). The distance p(K ,m)  is equal to the perpendicu1ar 

distance between plane E'F'G'd and plane E"F"G"#. 

The state isotropic acceleration aeo(Su) is the maximum acceleration which is available in all direc- 

tions. It is therefore equal to the minimum of the distances from the origin 0 (of the acceleration plane) 

to the six planes of A"B"fD"E"flG"Lf (the set Su). 
Now, we can write the following expression for ais&): 

I ,  ,I I, I ,  11 I ,  (1 I ,  

~ ( S U )  = min[p(A"B"F"E"), p(A".fH"D"), pcE"F"G"H"), pCD"C"G"H"), p(B C G F )- p(A E C D )](208) 

where p(A"B"fE") is the (perpendicular) distance from 0 to plane A''B''YE'' and similarly for 

p(A"&ffD"). p(gF"G"If ) ,  p(D"4fGf'd) ,  p(B"d(&f) ,  p(A"B"dlD"), all assumed positive by 

definition. From the geometry, we can write, 

~ ( A " B " F " E " ) , ~ ( D " ~ G " H " )  = ~(A'B'F"E'') * P~K, p l ) .  (209) 

(Comment: For example, p(A"B"fll?) = p(A'B'FI)if) + p(K,p l )  and p(D"dlG"#) = p ( D ' c G ' ' g )  - 
p(K,pi); the correct choice of signs will depend on the direction of the translation but as will be shown 

below we do not have to worry about the c o a t  choice of signs.) 

Similarly, 

~(A"D"I#E"), ~(B"c"G"F") = ~(A'D'H'E') 5 P C K , ~ ~ ) ,  

p(E''F''G"d),  p(A"B"C"D") = p(E'$G'd)  f p(K,ps), 

(The above comment holds for (210) and (211). too.) 
Combining equations (208), (209), (210) and (211). we obtain 

, , , I  

b ( S d  = minIP(A B F E ) f dK, pi), p(A'D'dE') f pCK, pzX PLE'F'G'H') f (K, pdl. (212) 

Since all distances p 0  in the above equation are positive by definition. we can rewrite the above equation 
as 

I , ,  

b ( S u )  = min[p(A'B'F,E') - p(X, PI), p(A'D'H'E') - p(K, pl). p(€ F G Hi - p(K, pi)]. (213) 
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Substituting equations (56) through (58) and (205) through (207) into (213), we obtain the required 

result (192). 
Equation (213) clearly demonstrates that the isotropic acceleration ~i&,,) for any state u # 0 is less 

than U , ~ ~ ( S ~ )  = rninlp(A'B'F'E') ,p(AfD'~jEI) ,p(E'F1G'~)] .  In fact, if p(K,  p d ,  p(K, p2) and p(K,  p3)  

are sufficiently large (equivalently, the ''nodinearities" k1, kz and k3 are sufficiently "large")), we may not 
have any isotropic acceleration. The necessary and f i c i e n t  conditions for the existence of the isotropic 
acceleration can be obtained either from (213) or (192). From (192). we obtain the following three 
necessary and sufficient Conditions for the existence of the isotropic acceleration: 

?o( &t(A)( 2 I(U3zS3 - U a a d k l  + (a13a32 - aim3)Rz + (Was - Q22Uldk31 014) 

-1 W A ) I  2 b2ia33 - aa03i)ki + (Ui inU - ais@i)k + (QllQa - Q z 1 Q d b I  (215) 

301 W A ) I  2 I(U2192 - a22a3l)h + (Q&I - all@32)k2 + (UilQZa - Ql2QZI)R3! (216) 

These are exactly the necessary and sufficient conditions expressed in (189), (190) and (191) of result 2. 
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5.4 Local acceleration properties 

At any given (local) configuration q in the wohpace, the following questions are of theoretical and 

practical importance. 

Magnitude of the maximum acceleration at any configuration q in the workspace 

Magnitude of the isotropic acceleration at any configuration q in the workspace 

Result 1: The local maximum acceleration h , ~  of a spatial three degree-of-freedom manipulator at 

a given configuration q is specified by 

(UrnsxJoalhb 5 IhanJoul 5 (amuloulhb (217) 

where ((lmu.-h is given by (188) with kI(q,ii), kz(q,ii), and k3(qr4) evaluated at that joint 

variable vector q which maximizes Z(41, in, 6) in equation (107), and 

(&,lOul)ub = k ( S q )  + &ar&) (2 18) 

where &&a) is given by (107) and *(ST) is given by (77). 

Result 2: The local isotropic acceleration aico.w at a given configuration q is specified by 

Proof of result 1: 

The local maximum acceleration amax is the maximum acceleration over all possible state acceleration 

sets Su at a given position q in the workspace. merefore, u,,,,~ can be written as 

~ m u . l o u l  = max(usvSu). (220) 
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It is not possible to find an exact analytical expression for &.Iw. However, we can find an upper 

bound and lower bound which are very good approximations to u,,,,x~d. 

Corresponding to every point P of the set Sa, we have a state acceleration set Su(P). Let P’ be the 
furihest point (from the origin) of Se, and let Su(P’) be the corresponding state acceleration set. Let the 
set fU(P‘) obtained by rotating the set Su(P’) about P’ till the longest diagonal of Su is collinear with the 
line OP’ joining the origin to the W e s t  point P‘ of Sk A lower bound for &nr,loul is given by the 
distance of the funhest vertex of Su from the origin, viz 

(&,M)D = m d d ( O A ” ) ,  d(OB“), d(OC”), &OD”), NOE”), d(OF”), d(UG”), d(0H”)I .  (221) 

and an upper bound for a i i , 0 3 ~  is given by 

Combining (221) with equation (197) through (W), we obtain equation (188). The values of kl, kz 

and k3 in (188) correspond to the furthest vertex P’ of Sa from the origin, Le., to that joint variable vector 

p which maximizes I(Q1, &?,in) in equatian (107). This is simply a matter of computing I ( & ,  &, @) at 

the thilteen v e c l o ~ ~  defined in subsenion 5.2 and determining which of these thineen vectors maximizes 

I ( q 1 ,  &, 43). ’ h i s  completes the determination of the lower bound ( & a x , i ~ ) i b .  

- 

Substituling f o r k ( S 4 )  and amu&) from equations (107) and (77), respectively, we obtain equation 

(218) for the upper bound (u,,,.x~&ib. Thus, Result 1 is proved. 

Proof of result 2: 

The local isotropic acceleration is obtained in the following steps. 

1. The maximum possible isotropic acceleration is obtained when q = 0 and is equal to nil&) as 

given by equation (78). 

2. Every state acceleration set will have an isotropic acceleration which is less ban that given by 

(78) because the “nonlinearities” effectively reduce the isotropic acceleration. The resulting state 

isotropic acceleration is ai,,(Su) which is given by equation (213). 
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3. The local isotropic acceleration hm is the magnitude of the smallest mate isotropic acceleration 

at a given local configuration q, i.e. 

4. Using equation (213) and (224). we can express the local isotropic acceleration &JA as 

a u q ~  = minmin[p(A’B’F’E’) - p(X,p~), pM‘D’H’E’) - p(K,m),  p(E‘F’G’H’) - P(K, p3lI 
q- 
minIminfpVl B F E )- p ( K , p i ) ] ,  m W M ’ D ’ H ’ E ‘ )  - p(K ,@) ,  min{P(E F C H ) - p ( K , M % )  

q e  qEp fIeF 

5. Sin= p(A’B’fE’), p ( A ’ D ‘ d d )  and p(E’F’G’d)  are constants for a given manipulator and given 

I , , ,  I , , ,  

= 

actuator constraints, (225) can be written as 
, 1 1 1  

&,a = min[dA B F E ) - rnaxp(K,p,), p(A’D’H’d) - max p(K,&, p(E’F’G’d) - maxdK,pi)l. (226) 

where max[p(K,pl)] is the distance from the plane p~ to the element of Sq funhest away from p i  

which we denoted in subsection 5.2 by pma.(x(Sq),p2), max[p(K,pz)] is the distance from the plane 

pz to the element of Sq funhest away frompz which we den& in subsection 5.2 by p,..(X(Sq),a) 

and max[p(K,mf] is the distance from Ihe plane m to the element of Sq furthest away from p3 

which we denoted in subsection 5.2 by p&X(Sq),p3), We can therefore write 

Combining (226). (227). (228) and (228), we obtain the required result (219). (Note that all 

quantities in (219) have been analytically determined earlier.) 
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6 w: 
To demonstrate the ease of applicability of the general acceleration set theory for spatial 

manipulators developed in the previous sections, we have written simple computer d e s  to generate the 
acceleration pmprlies of the various acceleration sets for a common type of 3 d.0.f. spatial manipulator 
which is shown in Figure 9 and whose o kinematical and dynamical equations are. given in the Appendix. 
(Tk axis of joint 1 in Figure 9 is vertical), The actual geometric and i&a parameters used in the example 
are given in Table 3. The dynamical equations have been derived using Kane's dynarnical equations (Kane 
and Levinson 1983; Kane and Levinson 1985; Desa and Roth 1985). 

The wnfiguratjon chosen was q1= 0, 92 = 45' and 43 = 45' 

The joint variable rate cjoint velocity") constraints are 

The torque wnstraints are 
zi 5 T ~ O  , i =  12.3. 

T i 0  may be thought of as the size (or maximum toque rating) of the actuators; the numerical values of 710 3 

(i = 1,2,3). are given in Table 3. 

The properties of the state acceleration set were computed at q1 = o , 92 = 45' and 93 = 45'; 

q 1 =  1 d s ,  Q=  1 rad/s q 3  = - 1 MS 

In order to show how the theory might be used for design purposes we have determined the 

acceleration properties for three cases (Table 4). five acceleration properties have been determined in each 
case: the maximum and isotropic acceleration of the set &, the maximum and isotropic accleration of the 

state xderat ion set and the ( ~ o ~ a l )  isompic acceleration at the contiguration (o ,~s ,  45' )T. 

In all three cases the sizes of the first two actuators remain constant (710 = 3.5 N-m and Tu) = 8.2 

Nm) and the size of the third actuator (driving link 3) is varied. In Case 1 of Table 4 (TW = 0.17 N-m), the 

end-effector does not have either a state or local isotropic acceleration). When the size of actuator 3 is 
increased to 0.4 N-m (Case Z), we obtain a state isotropic acceleration of 0.93 m/s2 but the local isotropic 
acceleration is very small 0.03 m/s2. Therefore for given 710 and 7% , %must be greater than 0.4 N-m in 

order that we may have a local isotropic acceleration at the specified canfiguration q. Case 3 shows that for 
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actuator size %of 0.6 N-m we have a local isOttopic sceeleratiw of 1.61 m/s2. Tbe designer must then 
decide (fmm past experienct) whether this m a g n i a  of isompic acceleration is rrasonable. 

1. These compltations can be repeated for various configurations in the wokspace aAer which 
decisions can be made regarding actuator Sizes. 

2. Algorithms for the determination of minimum actuator sizes 10 achieve a desired isotropic 
acceleration are given in (Desa and Kim 1989-2) for the planar case. The extension to the spatial 
case is relatively Wraghtfmard. 

Q1 = 0.0 Q2 = 0.303 P3 = 0,254 (m) 

a1 = 0.0 a2 = 0.1% a3 = 0.094 (m) 
mi = 3.5 m2 = 2.259 m3 E 1.129 0 
I1 = 1.2 J1 I --- K1 = ___-- N-rn2) 
12 = ,129 J2 = ,129 K2 I 0 ( k g - d .  
13 = ,003 J3 = .003 K3 E 0 @-m3 

Table 3 Parameters for the spatial manipulator (see Figure 9 and the Appendix). 

1. 35 8.2 0.17 20.3 1.35 23.7 0 0 

2. 35 8.2 0.4 25.06 3.16 29.1 0.93 0.03 

3. 35 8.2 0.6 30.3 4.75 33.9 2.51 1.61 

Table 4 Acceledon Properties for the manipulator of Section 6. 
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In this paper, we extended the aoceleration set theory for planar maniplators. developsd in @esa and Kim, 
1989-1). to spatial maniplators. As in tk planar case we have auxmplisk-d the f o b W  

Given the kinematical and dynamical equations of a manipulator. we have defined the image set S, 

corresponding to the set Tof achlarortorques, and theimage set q c o m n g  to the set F of the 
joint variable rates. We have also defined the state SCceIeratim sa S, at a specified p i n t  u in the 

-space. 

We have daennined theimage scts. & and q, and the stateacceleration set &. 

We have characterid the image s%s & and the state acceleration set SU by their maximum and 

isoaopic acceleration 'Ihe image set Sj has been elso chmcterized by its maximum acceleration 

At a configuration or position, q. in the workspaEe, we have established two local acceleration 

properties: the local maximum acceleratim and thelocal isoaopic acceleration. T k  local maximum 

acceleration specifies the magnitude of themaximum acceleration of (a reference @it  on) the end- 
effector. The local isovOpk acceleration specifies the magnitude of the maximum avajlable 
acceleration of the &-effector in all directions. 

We then demonstrated the application of the acceleration set theory for spatial manipulator 10 the 3 

d.0.f. spatial manipulator shown in Figure 9. 

We have, Iherefore, demonstrated the hypothesis which we stated in the intmduction, i.e., that the 
analytical propertjes of acceleration sets can be determined from the properties of the linear and quadratic 
mappings which define them (the acceleration sets). Fulthennore. the acceleration properties of interest - 
espcially the isotropic acceleration - have been determined h terms of the manipulator parameters, the 
torque limits and joint vatiable rate ("joint velocity") limits. These results can therefore be applied to 

manipulator design problems as demonstrated in (Desa and Kim, 1989-2). 

Both authors would like to acknowledge the critical comments made by Profesors Man Mason. 
Bill Hughes and h n i d a s  Paparims who sewed on Young-$ Kim's doctoral thesis cornminee. Yongyil 

Kim would like to acknowledge financial support from the Korean Government in the form of a 

scholarship. 
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F-[ 'i] , 
f31 f32 f 3 3  

aad 

when 
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where 

when 

3. Acceleration equalion 

The expression for the acceleration of the endeffector is as follows: 

Y = A r + B < 4 > 2 + N [ q ] 2 + ~  
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