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This report develops a systematic approach for determining the acceleration capability and 
the acceleration properties of the end-effector of a planar two degree-of-freedom manipulator. The 
acceleration of the end-effector at a given configuration of the manipulator is a linear function of the 
actuator torques and a (nonlinear) quadratic function of the "joint-velocities". By decomposing the 
functional relationships between the inputs (actuator torques and "joint-velocities") and the output 
(acceleration of the end-effector) into two fundamental mappings, a linear mapping between the 
actuator torque space and the acceleration space of the end-effector and a quadratic (nonlinear) 
mapping between the "joint-velocity" space and the acceleration space of the end-effector, and by 
deriving the properties of these two mappings, it is possible to determine the properties of all 
acceleration sets which are the images of the appropriate input sets under the two fundamental 
mappings. The determination of the properties of the quadratic mapping, a key feature of the 
present work, allows us to obtain analytic expressions relating important acceleration properties of 
the end-effector to all the manipulator parameters and input variables of interest. 





1 Introduction 

In this paper, we develop aud apply a systematic approach for studying tbe ClccCldw capability and 

d e m t i o n  properties of (a reference point on) thc end-effm of a plauar two dcgnt-of-frdom 

manipulator. The application of the theory developed in this paper to two important problems which 

arise in the design of manipulators -selection of a manipulator type and determination of actuator sizes - 
are described in companion paper (Desa and Kim. 1989). Acceleration theory for spatial manipulators is 

developed in a third paper (Kim and Desa 1989). 

An informal statement of the acceleration problem is as follows: 

Consider the planar two degnc-of-frcedom manipulator shown schematically in Figure 1. We an 

interested in -dying the acceleration of a EfmnCc point P on l i i  2. (P is typically a point on the joint 

anis of the mdcffector therefore the acceleration of P is often loosely refemd to as the acceleration 

of the endcffector.) The usefulness of studying the acceleration of the end-effector of manipulators has 

been discussed in (Yosbikawa 1985). (Khatib aud Burdick. 1987) and (Graettinger and ha, 1988) and 

will additionally be demonstrated in (Desa and Kim, 1989). 

As will be shown below, the acceleration capability of the poiat P under various conditions is best 

described by cefiain acceleration sets. Two propenies which are used, in general, to characterize these 

sets are the maximum possible magnitude of the acceleration of P and the maximum magniNde of the 

acceleration of P whicb is available in all directions. “be fonna  property is simply called the maximum 

acceleration of P and the latter the isotropic amleration of P (Khatib aud Burdick. 1987). 

The study of the acceleration properties of the “end-effector” has been a subject of recent intenst 

(Yoshikawa, 1985; Khatib and Burdick. 1987; Graettinger and h g h ,  1988). It is therefore useful 

to clearly state what makes the problem of studying acceleration propenies complex and bow these 

researchers have addressed this complexity. 

The acceleration of the reference point P at a given configuration (ii the workspace of the manipulator) 

is a linear function of the actuator toques and a (nonlinear) quadratic function of the rates of cbaoges 

of the joint-variables rjoint velocities”). The complexity of the “acccleration problem” arises from 

these quadratic nonlinearities in the ‘soint velocities”. (Yoshiiawa, 1985) studied tbe acceleration of (a 

reference point P on) the endcffector in connection with developing a dynamic manipulability measure: 
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in this study the nonlinearities were essntially ignored since the measure was estimated at zero ‘3oint 

velocities”. In studying isotropic acceleration, (Khatib and Burdich, 1987) dealt with the ndmearities 

in a somewhat ad-hoc fashion by evaluating isotropic acceleration at a “low” and a “high” joint velocity 

vector. (Graettinger and Kmgh, 1988) handled the ndinearities by posing the problem of determining 

the isotropic acceleration as an optimization problem. 

In c o n m  to the above approaches, the present paper demonsmes how these nonlinearities can 

be handled in an analytical manner. The fundamental hypothesis of this paper is the following: By 

decomposing the functional relationships between the inputs (actuator torques and joint variable rates) 

and the output (acceleration of P) into two fundamental mappings, a linear mapping between actuator 

torque space and rhe acceleration space of point P and a quadratic (nonlinear) mapping between the “joint 

velocity” space and the acceleration space of P, and by deriving the properties of these two mappings, 

it is possible to determine the propenies of all acceleration sets which are the images of the appropriate 

input sets under the two fundamental mappings. 

The propenies of linearmappings are well-!mown. The determination of the properties of the quadratic 

mapping between the joint velocities and the acceleration-space of P is one of the contributions of 

this paper and permits us to obtain exact analytic solutions for the isotropic acceleration under various 

conditions. 

In summary, the conuibutim of this paper are the following 

1. Development of a systematic approach (stated in section 2) for defining, determining and charac- 

terizing acceleration sets. 

2. Closed-form analytic expressions relating important acceleration properties of manipulators to all 

the manipulator parameters and input variables (torques, joint variable rates or “joint velocities”) 

of interest. m e  only exception is the maximum local acceleration which is specified in terms of 

tight lower and upper bounds in section 6.) 

3. Necessary and sufficient conditions for the existence of isotropic acceleration. (Earlier studies seem 

to implicitly assume that isotropic acceleration always exists.) These conditions are stated explicitly 

in terms of manipulator parameters and input variables. 
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4. Analytical expressions for delermining the maximum and isotropic acceleration of the end-effector 

at any (“local”) configuration of the manipulator. 

5 .  The theory treats nonlinearities in an “exact” manner (as mentioned above). 

One consequence of 2 and 3 above is the development of simple algorithms (Desa and Kim 1989) 

for sizing actuators in order to guarantee a specified isotropic acceleration. The theory developed in this 

paper is also applicable to two degree-of-freedom manipulators with closedchains @esa and Kim, 1989). 

The next section, which describes our approach, also provides the dual function of being a “road-map’’ 

of the paper. 
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2 Description of the approach 

A systematic approach for smdying the acccleiation of (a reference point P on) tbe cndcfftnor based on 

tbe use of input-output mappings is as foIIows: 

1.  Define the input variables and output variables of intemt {subsection 3.1). The output of interest is 
Ihe acceleration of the mference p i n t  P. 

2. Define the input sets of inwmt  (subsection 3.1). 

3. Define the input-output functional relations. These are obtained from the dynamical and kinematical 

quations of the manipulator (subsection 3.2). 

4. Define fundamental mappings from these functional relations (subsection 3.3). Then arc two 

fundamental mappings. a linear mapping and a quadratic mapping. 

5. Defie the image sets of tbe input sets under the mappings obtained in set 4 (subsection 3.4). These 
image sets are the acceleration sets of intemt 

6. Define general properties which can be used to characterize (“measun”) acceleration sets (subsection 

3.5). 

7. Determine the propenies of the mappings defined in slep 4 (section 4). 

8. Determine the acceleration sets defined in step 5 using the propenies of the mappings obtained in 

step 7 (section 4). 

9. Determine the specific properties of tbe acceleration sets delemined in slep 8 using the ‘hasuns” 

or general propenies defined in step 6 ( s d o n  5). 

IO. Determine the local acceleration properties for any configuration q of the manipulator using the 

pmpenies of the acceleration sew obtained in sup  9 (section 6). 
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reference point P 

Figure 1: Schematic diagmn of a planar two dep-of-kzdorn manipulator 

3 Definition of the acceleration sets 

3.1 Manipulator input and output variables 

Consider a serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. In ais 

subsection, we define the link parameters, the input variabIes, the input sets, the output variables and the 

output sets for a planar two degree-of-freedom manipulator. The manipulator is assumed to be rigid with 

negligible joint friction and operates in a horizontal plane perpendicular to the “gravity vector”. (The 

case of manipulators operating in gravity fields is relatively straightfonvard and is dealt with in (Kim and 

Desa, 1989).) 

The link paramelers necessary for describing the kinematic and dynamic behavior of the planar two 

degree-of-freedom manipulator (Figure 1) are as follows. Let 11 denote the length of link 1. (11 the distance 

from joint axis 1 to the center of mass of link 1, rnl the mass of link 1, and 11 the principal moment of 

inertia of link 1 with respect to its center of mass about an axis perpendicular to the plane of the motion. 
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Similarly, let f2.02, m2, and 12 denote the corresponding variables for link 2 (see Figure 1). 

Next, we define the input variables, the input constraints and the corresponding input sets of the two 

degne-of-freedom manipulator. Let q1 and 42 denote the generalized coordinates of the manipulator (see 

Figure 11, qi being the joint variable at joint 1 and 42 the joint variable at joint 2. Define 

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If 

4 i ~ I 4 i 5 q l ~ 7  i = 1 , 2  (1.2) 

denotes the constraint on joint variable i. then we can define the workspace W of a manipulator as 

W =  {qlqiL 5 4i I qiu, i =  I J} .  (1.3) 

Let 41 and 4 2  denote, respectively. the rates of change of the joint variables q1 and 42; 41 and & will 

be referred to as joint variable rates for shon Define 

to be the vector of the joint variable rates. If 

I 4i 1s &,, i =  1,2 (1 5)  

denotes the constraints on the joint variable rates, then we can define 

F={ql I ili IS @h, i =  1,2} (1.6) 

to be the set of all the possible joint variable rate vectors: graphically F can be represented by (the interior 

and boundary of) the rectangle I I K I J z K ~  shown in Figure 2. 

Let 71 and +2 denote the actuator torques. respectively, at joints 1 and 2, and define 
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$2 

Figure 2: Set of the joint variable rates of a two degree+f-freedom manipulator 

to be the actuator torque vectors.'  et 

I ri 15 rb, i =  1,2 (1.8) 

denote the constraints on the actuator torques at joints 1 and 2. We define 

T= {TI I ri 15 rb, i =  1,2} (1.9) 

to be the set of the allowable actuator torques; graphically T can be represented by (the interior and 

boundary of) the rectangle ABCD in Figure 3. 

The vectors q, 4 and T will be referred to as the input variables (more precisely the input variable 

vectors) of the manipulator. We will also refer to the vector q as a configuration of the manipulator. 

Let ( X I .  x2) denote the coordinates of a reference point P on link 2 (see Figure 1) in a coordinate 

system fixed to the base reference frame N, (XI. xz) are commonly referred to as task coordinates. Define 

(1.10) 
L A  

to be the vector of task coordinates; the corresponding vector space of all xp is called the task space. 

'The v e c m  of actuamr torques. joint variables. wd joint variable rates denote column maaiccs. not physical vccto~s. 
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Figure 3: Set of Ihe achlator torques of a two depof-hxdorn manipulator 

The velocity xp and the acceleration xP of the point P of the manipulator are, respectively, given by 

xp = [;:I 
and 

(1.11) 

(1.12) 

The acceleration of P, Xp, is the output variable of inkrest in the present work. The corresponding vector 

space A of all possible x p  is called the acceleration space, expressed by 

A = {x 1 x E R z } .  (1.13) 

3.2 Functional relations between the inputs Q, 7 and the acceleration xp 

The next step is to obtain the functional relations between the acceleration xp and the inputs q and i- 

for a given configuration q. In this subsection, we show how the necessary functional relations can be 

obtained from the manipulator dynamic equations and the (so-called) manipulator Jacobian relation. 

The dynamic behavior of the two degree-of-freedom planar manipulator in the joint space can be 

obtained using well-known methods (Kane and Levinson, 1983; Kane and Levinson, 1985; Desa and 
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Ro& 1985) and is described by the following pair of equations: 

diiqi + d12& - WIZ(& + 24142) = 71, 

dziiii + d22&+~21&=% 

where the coefficients, dg (i, j = 1,2) and Y. are given in the Appendix. 

Defining the following mauix operators 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

dynamic equations.(l.l4) and (1.15). become 

Dq + W{q}’ = T. (1.20) 

Note that equation (1.20) is the most general expression of the dynamics of a two degree-of-freedom 

planar manipulator. The matrices D and W standard for various planar manipulator types are given in the 

Appendix. The matrix D is the mass matrix of the manipulator. 

Since the matrix D is always invenible, we can write (1.20) in a more convenient form for our 

purposes as 

q = D-’[r - W{q}’]. (1.21) 

A crucial step in the acceleration analysis of a two degree-of-freedom manipulator is the definition 

of the matrix operator W and {q}’, which allows all fie “non-Iinearities” (i.e. terms in the dynamic 

equations (1.14) and (1.15) which are non-linear in the joint variable rates, 41 and &) to be written as 

the product of W and {q}’. The notation {)* is used to draw attention to the fact that the elements of 
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the vector {q}2 are quadratic in the joint variable rates 41 and k. Note that {q}* is a vector and should 

not be confused with the scalar q2 which is the square of the magnitude of q. 

The relation between the velocity, xp, of the point P, and the joint variable rate vector 4 is well known 

(Desa and Roth, 1985): 

Y=JQ (1.22) 

where J is a (2 x 2) matrix called the manipulator Jacobian. The detailed expressions of the Jacobian 

matrix for various planar manipulator types are given in the Appendix. 

To obtain the expression for the acceleration XP of the point P, we differentiate equation (1.22), 

lip = JQ+Jq. (1.23) 

In the Appendix, we show that the second term in (1.23), J4. can be written in the form 

J4 = -E{4}’ (1.24) 

where matrix E is skew-symmetric. 

Substituting equation (1.24) into (1.23), we obtain 

(1.25) P = J q - E { Q ) .  2 

Defining the quantities, 

A = JD-I,  

B = -AW-E, 

(1.26) 

(1.27) 

it is easy to verify that the expression for the acceleration XP of the point P. obtained by combining 

equation (1.20) with equations (1.25) through (1.27), is given by 

xF = A+ + B{q}2 (1.28) 

where A,B are configuration dependent. 

Equation (1.28) expresses the required (Input-Output) functional relation between the input variables, 

q and T ,  and the acceleration xp of the point P (the output variable) at a given configuration q. It is 

important to note &at the definition of the matrix “operators” W, E and {qlZ enables us to write the 

dynamic equations in the compact form (1.28) which is critical in the sequel. 
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3 3  Mappings 

In this subsection, we define two fundamental mappings between the input variables and the acceleration 

xp of the point P (the output variable). 

It is convenient to regard the functional relation (1.28) as a mapping between the input variables q 

and T and the output variable xp for a given codguration q of the manipulator. Funhermore, defining 

a, e [ 4 AT (1.29) 

and 

equation (1.28) can be written as 

j i p  = Q, +aq. 

(1.30) 

(1.31) 

The following two simple and obvious relations are useful when we define acceleration’ sets below: 

xp(q= 0) = CY, = AT (1.32) 

xp(r=O) = ~q=B{a} ’ .  (1.33) 

It is convenient to think of the vector (I, as the contribution of the torques to the acceleration of the 

reference point P, and the vector 04 as the contribution of the joint variable rates to the acceleration of P. 

The sum of these two vectors, therefore, gives us the acceleration of P as expressed by equation (1.31) 

for a two degree-of-freedom manipulator. 

Equation (1.29) can be viewed as a linear, configuration-dependent, mapping between the toque vector 

T and its contribution Q, to the acceleration of P. Similarly, equation (1.30) can be viewed as a quadratic, 

configuration-dependent, mapping between the joint variable rate vector q and its contribution a+ to the 

acceleration of P. These are the two mappings of interest in this section. 

3.4 Manipulator acceleration sets 

Having defined two fundamental mappings of interest, we are interested in the image sets of the input 

sets under the mappings (1.29) and (1.30) at a given configuration q of the manipulator. There are three 



image sets of interest. 

3.4.1 Image set S, of the actuator torque set T under the linear mapping 

For a given set T of the actuator torques r described by equation (1.9), and represented graphically by the 

rectangle AECD in the r - plane (see Figure 3). we define the image set S, of T under the linear mapping 

(1.32) as 

S, = ( X P l f ( 4  = 0) = Ar,r  E n. (1.34) 

(Note that S, lies in the acceleration plane A.) From equation (1.32) and the above definition (1.34), we 

see that S, represents the set of all possible accelerations (the acceleration capability of the manipulator) 

when it is at mt (4 = 0) in any configuration q and the actuators are turned on. 

3.4.2 Image set S4 of the joint variable rate set F under the quadratic mapping 

For a given set F of the joint variable rates 4 described by equation (1.6), and represented graphically 

by the rectangle I I K ~ J ~ K z  in the q - plane (see Figure 2), we defme the image set S, of F under the 

quadratic mapping (1.33) as 

S,j = {XplXp(~ = 0) = B{4}',4 E F}. (1.35) 

(Note that S+ lies in the acceleration plane A.) From equation (1.33) and the above definition (1.35). we 

see that the image set Sq represents the set of all possible accelerations (the acceleration capability of the 

manipulator) when the actuators are turned off (7 = 0) in any configuration q. 

3.4.3 State acceleration set 

When a manipulator is in motion, the (dynamic) state of a manipulator can be specified by the joint 

variables. (41, 42). and joint variable rates, (41. &). 'Ihe state vector u which characterizes the dynamic 

state of the manipulator is defined as follows: 

u=( 8 ) .  
12 

(1.36) 



For a specified dynamic state of a two degree-of-freedom manipulator, the second term of the accel- 

eration XP in equation (1.28) is a constant vector, which we denote by k(u) and define as follows: 

(1.37) 

Equation (1.28) can then be written as follows: 

f = A r + k .  (1.38) 

For a given dynamic state u of the manipulator, we define the state acceleration set, Su, as the image set 

of the actuator torque set T under the linear mapping (1.38): 

Su = { X P ( ? F  = A r + k , r  E T), (1.39) 

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since 

the dynamic state u of the manipulator essentially specifies the velocity 3 of the point P in (1.11) in any 

configuration, we can also interpret the state acceleration set S, (the set of available accelerations) BS the 

acceleration capability of the manipulator when the manipulator is moving with the velocity XP in a given 

configuration q. 

3.5 Characterization of the acceleration sets 

Once the acceleration sets defined in the previous section have determined, one would like to characterize 

them. In this section, we define two properties which am useful in characterizing acceleration sets. 

Figure 4 shows an acceleration set S in the acceleration plane x, and two circles C1 and Cz. The circle 

CI of radius r1 is the smallest circle centered at the origin which completely encloses S. Its radius q 

therefore represents the maximum (magnitude of the) available acceleration in S. The circle Cz of radius 

r2 is the largest circle centered at the origin which lies within S. Its radius r2 therefore represents the 

largest (magnitude ofj acceleration available in all directions. 

We define the following two properties of S: 

rn the maximum acceleration of S: &(S) = q,  

rn fie isotropic acceleration of S: ai&) = Q, 
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.. 

acceleration set S 

isoeopic 

Figure 4: Chmxterization of.an acceleration set in the acceleration plane 

Comments: 

1. As will be shown, the maximum acceleration and isotropic acceleration are two measures which 

can be readily e x m t e d  once the acceleration set is known. 

2. The isotropic acceleration (Khatib and Burdick, 1987; Graettinger and Kmgh, 1988) is a useful 

measure of the acceleration set, since it is a property which does not depend on direction. 

3. The average acceleration of the set S cannot readily be exmcted in closed-form (or by appropriate 

bounds) from the acceleration set S. It can however be numerically determined from descriptions 

of the various acceleration sets given in the next section. Also the physical meaning of the average 

acceleration is not clear. 
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4 Determination of the acceleration sets 

Analytic expressions for the determination of the three sets S,, Sa and SU are presented, respectively, in 

section 4.1. 4.2 and 4.3. The determination of S, and the state acceleration set S, follows directly from 

well-known propedes of linear mappings while the determination of the set Si, requks the derivation of 

the properties of quadratic mappings which are new 

4.1 Determination of the image set S, 

The set S, is the image set of the actuator torque set T under the h e a r  mapping (1.32). 

Result 1: The image set S, of the actuator torque set T under the linear mapping (1.32) is (the interior 

and boundary of) the parallelogram A'B'6D' in the si -plane whose vertices A', B', 6,  and D' are 

as follows: 

(1.40) 

where a4 (i,j=1,2) are the elements of the matrix A defined in equation (1.26). The centroid of the 

parallelogram A'B'C'D' is the origin o of the x-plane. 

Result 2: The sides A'B', B ' d ,  dD', and D'A' of the parallelogram S, (I3gure 5), which comprise the 

boundary of the set are given by the following equations: 

A'B' : aujil - a1z.f~ = det(Ah0, 

B C : -azlxl + allxz = det(A)w, 

C D : 4 2 x 1  - a& = - det(A)q,, 

D A : -azlxI + a1 1x2 = - det(A)q,,. 

I ,  

l ,  

I ,  

where det(A) is the determinant of the Q x 2) matrix A. 

(1.41) 

(1.42) 

(1.43) 

(1.44) 
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x 

I*  

Figure 5: Image set of the linear mapping of a two degree-of-freedom planar manipulator 

Proof of Result 1: 

The following are well know properties of a linear mapping: 

1. A line in the r-plane will map into a h e  in the x-plane. In particular, the line 11, with equation TI 

= 0, maps into the line whose equation is 

1; : 491 - a 1 ~ 2  = 0, (1.45) 

and the line 12. with equation Q = 0. maps into the line 4 whose equation is 

i2 : -adi1 + a119 = 0. (1.46) 

Both ( and 1; pass through the origin (Figure 5). 

2. ~ n y  line g1 parallel to 11 maps into a line g; paral1e.I to I;. 

3. ~ n y  line gz parallel to 12 maps into a line 4 parallel to 4. 
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Regarding the rectangle ABCD (set r)  as a set of l i e s  parallel to 21 and 12 one can easily show the 

well-known fact that the image of ABCD is a padlelogram A'B'dD'. The vertices A', B', d and D' 

are the images, respectively. of the vertices A,  B, C and D. Substituting the coordinates of A(?,, w). 
B ( q O ,  -%), C ( - q 0 ,  -%) and D(-riO, %) into equation (1.32). we obtain the coordinates of the 

vertices A', B', C' and D' as given in equation (1.40). From equation (1.40). we see that the vertices 

A' and d are equidistant from the origin and that the vertices B' and D' are equidistant from the origin. 

Therefore, the origin of the x-plane is the centroid of the parallelogram A'B'6D'.  

Proof of Result 2: 

We next need to determine the equations of the lines A'B', B ' d ,  C'D', and D'A', which form the 

boundary of the parallelogram A'B'dD' in the I - plane. A'B' is the image of the line AB. whose equation 

is r = 718; to obtain the equation of A'B', substitute the equation of AB (r = rl0) into (1.32) to obtain the 

following parameuic equations in 72: 

f 1  = Q 1 1 ~ 1 o + Q I Z T z ,  (1.47) 

x2 = QX+Io+ 4uTz.  (1.48) 

Eliminating the parameter +z between (1.47) and (1.48). we obtain the equation of the line A'B' in the f 

- plane as given by equation (1.41). In a similar fashion, we can obtain the equations of the lines B'd, 
d D ' .  and D'A' as in equations (1.42) through (1.44). Note that fmm equations (1.41) thmugh (1.44) we 

see that A'B' is parallel to dD' and B ' d  is parallel to D'A' so that A'B'dD' is indeed the parallelogram 

shown in Figure 5. 

4.2 Determination of the image set SQ 

The set Sa is the image set of the joint variable rate set F under the mapping (1.33). Set S, is determined 

from the following results 

Results: 

The set F in the q - plane is considered as a family of line segments passing through the origin. There 

are two such types of line segments: those which end on the boundaries J1Kl and J& parallel to the 
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Figure 6: Image. set of the quadratic mapping of a two degree-of-freedom manipulator 

42 - axis. a typical member of which is the line segment gl in Figure 6 (a), and those which end on the 

boundaries JlKz and JzK1 parallel to the QI - axis, a typical member of which is the line segment g2 in 

Figure 6 (a). 

1. Every line of the type gl maps into a line & (see Figure 6 (b)) in the f - plane, one end of which 

is the origin and the other end of which lies on the line segment I d  whose equation is: 

(1.49) 

where XI lies in the interval [ b & ,  + b12(&, + 241&), bll&o + bl2(&, - 241~420)l. 

2. Every line of the type gz (see Figure 6 (b)) maps into a l i e  g2 in the j i  plane, one end of which 

is the origin and the other end of which lies on the quadratic curve did/ (shown dashed between 

k and d )  whose equation in the parametric (in 41) form is: 

(1.50) 
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3. The image set of F is (the interior and boundaty 00 the region & / i f  shown in Figure. 6 (b). and 

the coordinates of d , / ,  and d are as follows: 

Proof: 

The quadratic mapping is defined by the following equation (1.33): 

x = B ( 0 2  

which can be written in the expanded form 

XI = h i &  + biz(& + 2@1ih)~, 

xz = Sld + h(4: + z9,i12)2- (1.54) 

The determination of the set Sq which is the image of the set F figure 6 (a)) consists of two steps? 

1. Establishment of the pmpertim of the quadratic mapping, and 

2. Determination of the boundary of the image set Sq. 

Consider the (input) 9 - plane, It is convenient to t h i i  of this plane as being generated by the 

continuous family of limes passing through the origin with pa rame~c  equation 

41 = 1 

q2 = m! 
, -m<m<oo .  (1.55) 

Each value of rn gives us a member of the family of lines, a typical member of which is the line 1 

shown in Figure 7. The image f in the x - plane of the line I is obtained by substituting (1.55) into (1.54) 

%'bile the approach described below is adequate for our present purpmes. a more basic npproach to determining Sq is 

desaibed in (Kim and Des& 1989). 
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Figure 7: Roperties of the quadratic mapping 
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Figure 7: Roperties of the quadratic mapping 

and is described by the following parametric equation, 

XI = [bll + blz(m2 + h)]?, 
ji2 = [91+h(n;L+Zm)lZ. 

From equation (1.55) and (1.56), one can enumerate the 

Fact 1. The image of 1. vir. i, is a straight lime. 

lllowing 

(1.56) 

acts: 

Fact 2. The origin of the q - plane maps into the origin of the x - plane. 

Fact 3. Two distinct points (91. in) and ( -41,  -42) map into the same point of the X - plane. 

These results are shown graphically in Figure 7. 

Fact 1 follows from the fact that (1.56) is the equation of a straight line in the parameter t. Fact 2 

follows from the fact that the point (0, 0) in the q - plane, represented by the parameter f = 0, maps 

into the point (0, 0) in the x - plane. I f f  is the parameter corresponding to the point ( q l ,  &) in the 
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Figore 8: Input 4 - plane 

q-plane, then - r  is the parameter of the point (-41. -42) from (1.55). From (1.56). we see that points 

with parameters t and --t will map into the same point in the x-plaue. This proves Fact 3. 

We can therefore. state the following propelties of the quadratic mapping: 

Property 1. The image of any line segment in the q-plane. one end of which is the origin, is a lie 

segment in the x-plane with one end at the origin of the x-plane. 

Property 2. The image of the line I passing through the origin in the q - plane is the half-line i, one 

end of which is the origin (see Figure. 7). 

Property 3. Given any line I passing through the origin, and the two half-planespl andpz formed by it 

(see Figure 8). p1 and pz will have the same image set in the % - plane. 

Property 1 is a direct consequence of Facts 1 and 2. property 2 a direct consequence of Facts 1. 2 and 3 

and property 3 follows from Fact 3. 

We now apply the above properties to determine the image set Sa of the set F in the q-plane (See 

Figure 6). Property 3 tells us that if we “bisect” F into two “half-sets” with a line passing through the 

origin, then we only need to determine the image of one of these “half-sets”. ?he most convenient half-set 
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Figure 9 Input set F in Q - plane 

for our purposes is the set KlJlK2 (see Figure 9), one of the two half-sets formed by the "bisecting" line 

KIKz. 

In order to use Property 1. it is convenient to view the set KlJlKz as a family of line segments passing 

through the origin; we now need to determine the image of any line segment passing through the origin 

in this set. There are two cases to consider: the family of lines such as gl, shown in Figure. 9. which 

have one endpoint on the origin and the other endpoint on the line segment KlJl and the family of lines 

such as 82. also shown in Figure 9, which have one endpoint on the origin and the other endpoint on the 

line segment It&. 

It is convenient to decompose the half-set KlJlK2 into two subsets OK1J1 and OKzJl as shown in 

Figure 10. Subset OKlJ1 includes only the families of lines such as g1 while subset OK2/1 includes only 

the families of lines such as gz. The desired image set is the union of the images of OKlll and OK2J1. 

From pmpeny 1 of the quadratic mapping, we know that my line segment, such as gl or gz of the set F, 

will map into a line segment with one endpoint passing through the origin of the x - plane. To obtain the 

other endpoint of the images of the two families of lines, we need to find the image of the line segment 

IiK1 of the subset OJlKl and the image of the line segment J1Kz of the subset OJ&. 

First, we determine the image of subset OJlKl (10 (b)) by finding the image of KlJl .  The equation 
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Figure 10: Determinalion of the image set SQ 
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of KlJl is 

41 = 910; I Qz I I  &c. 

To obtain the image kf of K l J l .  we substimte (1.57) into (1.54) to obtain 

Xi = ~ I I &  + b1& + 241oQz)'~ 

X2 = b21& + b2dq: + 2 b O Q z Y .  

Defining a parameter t as 

(1.57) 

(1.58) 

t !  c$ .+ 2illo42r (1.59) 

equation (1.58) can be written in the form 

Xi = bil&+b~zt ,  

x2 = b 2 1 ~ o + b u t .  

Eliminating the parameter t between the two equations, w obtain the equation for the line segment 

JK' as given by equation (1.49). (This proves the first part of the result.) The resulting subset (S,j)i 

which is the image of UKlJl is shown in Figure 10 (d). 

Next. we determine the image of subset OJlKz by finding the images of K d l .  To obtain the image 

f d d  of hK2.  we substitute the equation for JlKz, 

42 = 920: I i l l  I5 410 (1 62) 

into (1.54) to obtain the parametric equation (1.50). Note that (1.50) represents the equation of a quadratic 

cuwe in terms of the parameter 41. (This completes the second part of the result.) The resulting subset 

(S& which is the image of OKzJ1 is shown in Figure 10 (e). 

The desired image set S, of F is the union of (S4)l and (S& and is shown in figure 10 (0. 
Note that the intersection of &,)I and (Si&. (S& n (S&, is not empty. Because Sh is the image 

of F under a quadratic mapping, there are points inside Sq which are the image of two distinct points in 

K1JlKz. In particular, any point in the set (S& n (S& will be the image of two points are belonging to 

OKlJl and the other to O K d l .  



Figure 11: State acceleration set of a two degree-of-freedom manipulator 

The images d ,  and d .  respectively, of W O ,  b). Ji(4io, b) and Kl(qt0, -&A are obtained 

by substituting their (GI,&) coordinates into equation (1.54) to obtain the required results (1.51). (1.52). 

and (1.53). 

4.3 Determination of the state acceleration set S. 

The state acceleration S. corresponding to a state u = (q,aT of the planar manipulator was defined by 

equation (1.39) and is the image set of the actuator torque set T under the mapping (1.38). We obtain the 

following results for the determination of tbe state acceleration set Su. 

Result 1: For every element V(S,) of the image set S,, there is a corresponding element X(S,) of the 

state acceleration set S., given by 
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where 

Result 2: The state acceleration set Su, corresponding to a state u = (q, JT of the planar RO degree-of- 

freedom manipulator is the parallelogram A”B’’CI)D’’ shown in Figure 11 obtained by translating 

the set S, by the vector k(q, il) in the x - plane. The centroid of S, is (ki, kz). 

Proof of Result 1: 

The results 1 and 2 are straightfonvard 

From (1.34). a member x(S,) of S, is given by 

x(&) = AT. 

From (1.39). a member x(Su) of Su is given by 

x(Su) = Ar + k 

where k is given by equation (1.64). Combining (1.65) and (1.66), we obtain 

x(Su) = x(S,) + k, 

which is equation (1 63) .  

(1.65) 

Proof of result 2: 

From equation (1.63). we see that if we take a vector x(&) of S, and add the vector k to it we obtain 

the corresponding member x(Su) of Su. So, if we add the vector k to every vector in the set Sr we obtain 

the required set S.. Therefore, Su is the parallelogram A”B“6‘D‘‘ (Figure 11) obtained by translating the 

set S, (the parallelogram A’B’dD’ in Figure 11) by the vector k. The centmid of S, is x(S,) = (0, 0). 

From (1.67). we see that the corresponding centroid of SU is 

%(Su) = 0 + k = k. (1 6 8 )  

This completes the proof of Result 2. 
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gree-of-fieedom manipulator 

5 Properties of the acceleration sets 

In this section, we extract the propelties - defined in subsection 3.5 - of the acceleration sets S,. Sq and 

S, determined in the previous section. 

5.1 Properties of the acceleration set S, 

We characterize the image set S, of the linear mapping as follows: 

Result 1: The maximum acceleration of the acceleration set S, is denoted by u,,,&~) and is given by 
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Result 2: The isotropic acceleration of the acceleration set S, will be denoted by and is given 

by 

aim(&) = minMA'B'), p(B'C')I (1.70) 

where 

Proof of Result 1: 

The maximum acceleration of S, is the distance from the origin to the furthest vertex of the p a d e l -  

ognun A'B'dD' (see Figure 12). Letting d (OA') through d (00') denote, respectively, the distances of 

vertices A' through 0' from the origin 0 in the x - plane, u,,,~(&) is given by 

U,, ,~(W = max[ ~(oA' ) ,   OB'), d(ocj, ~ ( o D ' )  I. (1.71) 

A' and d are equidistant from the origin 0. Also, B' and D' are equidistant from the origin 0. So. 

a,,,.&%) is given by 

h U ( S T )  = m a [  d(OA'), 408') 1. (1.72) 

Using (1.32), the distance d(0A') from the origin 0 to the point A' 

d(0A') = d(aii% + ( ~ ~ i r i o  + ~ 2 2 % ) ~ .  

In exactly analogous fashion, we obtain 

40s') = J(a1171, - a ~ z % ) ~  + ( U Z I ~ I ~  - aunJ2. 

Equations (1.72). (1.73) and (1.74) comprise Result 1. 

(1.73) 

(1.74) 

Proof of Result 2: 
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The isotropic acceleration of S, is the shortest distance from the origin to the sides of the parallelogram 

A'B'6D'. Lctting p (A'B'). p ( B ' d ) ,  p (do ' ) ,  and p (D'A') denote, respectively, the perpendicular 

distances from 0 to the sides A'S', B ' d ,  C'D', and D'A', Q & ~ )  is given by 

&.,(ST) = min[p(A'B'), p(B'C'), p(C'D'), p(D'A')]. (1.75) 

Since the origin 0 is the centroid of the parallelogram ST, parallel lines of the parallelogm A'E'C'D' 

must be equidistant from the origin. Therefore, we can write the foIlowing relations: 

p(A'3') = p(C'D'), (1.76) 

p(B'C') = @'A'). (1.77) 

Using (1.76) and (1.77). (1.75) can be written 

ai,&) = min[p(A'B'), p(B'd)l. (1.78) 

The distance from a point P(&, yo) to line ar +by + k = 0 is given by the following well-known result: 

(1.79) I m o  +bo + k I 
%mS' 

Using equation (1.41). (1.42) and (1.79). we obtain 
I 

Sl 
441 + 4, 

aituting (1.80) and (1.81) into equation (1.78). we can I :require 

(1.80) 

(1.81) 

wult (1.70) for ~ :isotropic 

acceleration 

5.2 Properties of the acceleration set Sa 

We characterize the image set Sa by the maximum acceleration and the maximum distance of any element 

of Sil from the two references lines 11 and 12 shown in Figure 5. 

Definition 1: 

Kq) 2(@1, 42) 

g J(bii# + b i z 4  +2bizQ1@2Y + (hi8 + + 2622iriirZ)' 

29 

(1.82) 



Definition 4: 

( I  .86) 
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Definition 5: 

(1.87) 

Result 1: For a general hvo dcgrtc-of-freedom planar manipulator, the maximum acceleration of the 

acceleration set Sa will bc denoted by &(Sa) and is givcn by 

~ x ( ~ i ) = m a x [ ~ ( q i o ,  -410), ~ d ,  QZO), KQI., W ,  ~ i ~ ,  - 4 2 ~ 1  (1.89) 

where 4; is defined in (1.83). 

For the two degru-of-freedom open-loop planar manipulator. shown in Figure 1. 

where is defined in (1.86) . 
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The maximum magnitude squared of the acceleration for the set Sq, denoted by &(SQ). is given by 

a L ( ~ q ~ q )  = max ~ ‘ ( 4 1 ,  ih), 
W P )  

where F is shown in Figure 2 and specified by the constraints 

(1.94) 

(1.95) 

(1.96) 

The maximum of Zz, required in equation (1.94), will occur at point q E F which is either inside F or 

on the boundaries of F where one or both constraints might be active. Furthermore. because of propetty 

3 of the quadratic mapping, we only need to look at the boundaries J1K1 and JlKz of the half-set K z J ~ K I .  

Therefore, to obtain the maximum of (1.82) under the constraints (1.95) and (1.96), we should consider 

the following possibilities: 

1. Neither of the constraints is active, Le.. the max[P(QI, 42)l occurs at a point q inside F. 

2. Constraint (1.95) is active, i.e., max[kl(&, &)I occurs at a point 4 lying on the boundary J I K ~  of 

F. 

3. Constraint (1.96) is active, Le., max[&@l, 42)l occurs at a point q lying on the boundary J1K2 of 

F. 

4. Both constraints are active, Le.. max[Z2(&, &)I occurs at either (a) point 1 1  (b) point K1 or (c) 

point K2. Since, by virtue of Fact 3 of subsubsection 3.12, points Kl and Kz have the same image, 

we only need to consider either KI or Kz: we will choose Kl. 

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate 

l’(q1, h) with respect to q l  and & to obtain 

(1.97) 

(1.98) 

32 



Now, we consider each case. 

Case 1 

To obtain the required Q for the case where both constraints are inactive, we set the right-hand side 

of (1.97) and (1.98) to zero, 

and obtain 

@ 1 = & = 0  (1.100) 

which actually corresponds to the minimum value of ~ ( Q I ,  42) .  viz, zero. Therefore, max@) does not 

occur at a point q inside F. 

Case 2 

Since constraint (1.95) is active on the boundary J1K1 of F, we have 

41 = @lo (constant). (1.101) 

To obtain the maximum of p. we set 8Zz/O& = 0. We therefore set the right-hand side of (1.98) to 

zero to obtain 

41 + 112 = 0. (1.102) 

Combining (1.101) and (1.102), we obtain 

42 = -410 

and 

m=1~*(41, &)I = &I,,, -419). 

Case 3 

Since constraint (1.96) is active on the boundary JIKZ of F, we have 

4 2  = (constant). 

(1.103) 

(1.104) 

(1.105) 
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Figure 14: Common tangency between the quadratic curve and circle 
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To obtain the maximum, we set aP/a& = 0. We therefore set the right-hand side of (1.98) to zero 

and set = Qb to obtain 

[bllil: +bld& + 2illi12o)l(bll41+ b12b) 

+ [hlc# + b22(i&+2QlOgZ)l(bzlill + b22b) = 0. (1.106) 

Equation (1.106) is a cubic in QI and will therefore have three solutions. Using simple ideas from algebraic 

geometry, we now show that (1.106) can have at most one real solution in the region < illo. 

If P(&, 42) does have a maximum l,,,,x then the condition aP/i?& = 0 for obtaining Zmax is the 

condition for the quadratic curve (1.50) -the image of .TI& in the x-plane- and a circle of radius LX 
to have a common tangent (see figure 14). By Bezout's theorem (Semple and Roth, 1949), a quadratic 

Curve and a circle can have at most two comnon points of tangency. Therefore, equation (1.106). which 

expresses the condition appla4l = 0. can have at most two mal mots (one for each point of tangency). 

However, (1.106) is a cubic in & and can therefore have either one real root or three real mots, Combining 

the last two statements, we see that (1.106) can have at most one real mot. (Since we are looking at 

the quadratic a w e  in the region lqll 4 41.. the real solution of (1.106) might lie outside the constraints 

which simply means that (1.93) does not have an extremum in the region 1q11 < illo). Denoting the real 

solution (1.106) in the region 1411 4 4l0 by 4; and using (1.105), we can write 

max[12(41, 4 2 ~  = P(4, b). (1.107) 

Case 4-a 

When both constraints (1.95) and (1.96) are active, and maxI12(41, &)I occurs at JL(@I~, &o), then 

maxV2(91, 4211 = ~ ' ( Q I ~ ,  in.,). (1.108) 

Case 4-b 

When both constraints (1.95) and (1.96) are active, and max[p(Ql, 42)l occurs at KI(&, -Ob), then 

(1.109) 

Therefore, amaX(S,j) is obtained as the maximum of four quantities defined by equations (1.104), 

max[i?irl, MI = Z ' ( ~ I ~ ,  -w. 

(1.107), (1.108), and (1.109). This concludes the Proof of Result 1. 
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Proof of Result 2: 

The distance of any point 17(Sq) of Sq from the l i e  li, i=l, 2, is given by 

A17(Sq),W = Ol(il1, 42) 

P ( W & l Z )  = m(il1, 42) 

(1.110) 

(1.111) 

where V I  and u2 are defined in equations (1.87) and (1.88). We first wish to determine pmll(f(Sq),Z~) the 

distance of 21 from that point of Sq funhest away from it ( I ] ) .  p,&x(S&Zi) is shown in Figure 13 for 

given Sq and given reference line 11 and can be defined as follows: 

~ ~ d * ( S q ) ,  11) = max h(c?l, &)I 
(*EO 

where F is shown in Figure 2 and is specified by the constraints 

I41 I5 @lo, 
I & I5 4%. 

(1.112) 

(1.113) 

(1.114) 

The maximum of (11, required in equation (1.112), will occur at a point 4 E F which is either inside 

F or on the boundaries of F where one or both constraints might be active. Furthermore, because of 

property 3 of the quadratic mapping, we only need to look at the half-set K2JIK1 and its boundaries J1K1 

and J1Kz. Therefore, to obtain the maximum of (1.110) under the constraints (1,113) and (1.114). we 

should consider the following possibilities. 

1. Neither of the constraints is active, i.e.. rnaxal(&,&) occurs at a point q inside F. 

2. Constraint (1.1 13) is active, is., m a x u ~ ( q ~ , & )  occurs at a point q lying on the boundary JlKl of 

F. 

3. Constraint (1. I 14) is active, is., max 01 (41, &) occurs at a point q lying on the boundary JlKz of 

F. 

4. Both constraints are active, i.e., max q ( q 1 ,  42) occurs at either (a) point J1 or (b) point K1 or (c) 

point Kz. Since K1 and Kz have the same image we only need to consider K1. 
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To obtain lhe conditions for each one of the above cases to yield a maximum of ul, we first differentiate 

ul(ql, &) (equation (1.87) with respea to q l  and ifz to obtain 

(1.115) - 801 

891 

- =  801 ~ ( U Z Z ~ I Z  - ~1zbu)(41+ 4~) .  (1.116) 
842 

Xszb11 - a~zbzl)G + 2(azblz - alzbrd41, - _  

Now we consider each case. 

Case 1 

To obtain the required q. we set 

(1.117) 

We therefore set each of the right-hand sides of (1.115) and (1.116) to zero to obtain 

q 1 = 4 2 = o  (1,118) 

which actually corresponds to the minimum value of ui(@i, ifz), viz, 0. Therefore. max(ol(41, 42)) does 

not occur at a point q inside F. 

Case 2 

Since constraint (1.113) is active on the boundary IlK1 of F, we have 

41 = &,, (constant). (1.119) 

To obtain the maximum. we set auI/a& = 0. We therefore set the right-hand side of (1.116) to zero 

to obtain 

(1,120) 41 + 42 = 0. 

Combining (1.119) and (1.120). we obtain 

42 = -410 (1.121) 

(1.122) 
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Case 3 

Since constraint (1.114) is active on the boundary /I& of F, we have 

42 = qb (constant). (1.123) 

To obtain the maximum, we set aul/BQl = 0. We therefore set the right-hand side of (1.115) to zero and 

set ih. = & to obtain the linear equation 

(aubii - aizb21)41+ (rrub12 - ai2h)ih = 0. (1.124) 

Combining (1.123) and (1.124), we obtain the solution of the equation (1.124) 

(1.125) I ,  

41=4 3 

where 

(1.126) 

Therefore, 

Case 4-a 

When both constraints (1,113) and (1.114) are active, and rnaxui(q1, Q1) occurs at JI(&~, &). then 

(1.128) max[ol(ili, ih)l = ~ i ( i l i o r  b). 

Case 4-b 

When both constraints (1.113) and (1.114) are active, and rnaxoi(Q1, ih.) occurs at Kl(qiO, -&,), 

then 

max[m(ili, &)I = ~1(41 . ,  -b). (1.129) 

Therefore. p,,,-(x(Sa), 11) is obtained as the maximum of four quantities defined by quations (1.122). 

(1.127). (1.128), and (1.129), In exactly analogous fashion, pmu(x(S4),h) is obtained as in (1.E). 
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5.3 Properties of the state acceleration set Su 

Definition: 

K : centroid of the acceleration set in the Y - plane with coordinates kj, kz given by (1.38). 

p(K, f1) : distance from point K to the Eference liie. 11. 

p(K, 22) : distance from point K to the. reference liie. 12. 

p(A'E'), p(A''B"), . . . : distance from the origin to A'B', A"B", . . . (see Figure 16) 

. 

Result 1: The maximum acceleration corresponding to any dynamic state u of the manipularor is denoted 

by u&S,,) and is given by 

omax(&) = rnax[d(OA"), d(OB"), d(OC"), d(OD")] (1.130) 
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where 

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the 

following: 

(1.131) 

(1.132) 

Result 3 The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted 

by air&,) and, if conditions (1.131) and (1.132) are satisfied, is given by 

(1.133) 

Proof of Result 1: 

Let d(0A") through d(0D") denote, respectively, the distances of vettices A" through D" from the 

origin 0 in Ihe x - plane. Then u,,,.&) is the distances of the furthest vertex of the set Su which is the 

parallelogram A''B"61D''. Therefom, is given by 

&,.(Su) = max[d(OA"), d(UB"), d(Of l ) ,  d(0D")l. (1.134) 

Using (1.40), the coordinates fl(A") and &(A") of vertex A" in the f - plane are given by 

(1.135) Zl(A ) = fl(A') + k1 = + UIZ% + kl, 

&(A") = Xz(A') + kz = g l r l 0  + ( 1 2 2 ~ 2 ~  + kz. (1.136) 

,I  

The distance d(0A") from the origin 0 to the point A" is given by 

d(0A") = 4- 
(1.137) 
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x2 
I 

Figure 16: Isompic acceleratiw of h e  state acceluation set of a two degree-of-fxedorn 

manipulator 

In exactly analogous fashion, we obtain 

d W " )  = J(cllln0 - u n a  + k1I2 + (UZISI, - am% + ki)', (1.138) 

(1.139) 

(1.140) 

Equations (1.134) and (1.137) through (1.140) comprise result 1. 

Proof of Result 2 and 3: 

In Figure 16, we have shown two sets. S, and S, which is obtained from S, by a translation k = 

( k l ,  kz)T. The centroids of S, and S. are, respectively. by 0 and K. 
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Using equations (1.79). (1.64). (1.45), and (1.46), the distance fromK to the reference lines I 1  and 12 

ate given by 

(1.141) 

(1.142) 

p(K, 1 1 )  represents the perpendicular distance between the lines A'B' and A"B" and also between the lines 

d D '  and d'D" (see Figure 16). Similarly, p(K, 12) is equal to the peqendicular distance between the 

lines B ' d  and B"< and also between the l i e s  D'A' and D"A" (see Figure 16). 

The state isotropic acceleration aid&) is the maximum acceleration which is available in all dim- 

tions. It i s  therefore equal to the m i n i u m  of the distances from the origin 0 (of the acceleration plane) 

to the four sides of A"B"fD" (the set Su). 
Referring to Figure 16. we can write the following expression for ui,(Su): 

u~&u) = min[p(A"B"), p(B"d'),  p ( f D " ) ,  p(D"A")I (1.143) 

where p(A"B") is the (perpendicular) distance frmn 0 to A"B" and similarly for p ( B " f ) ,  p ( f D " ) ,  

p(D"A"). all assumed positive by definition. from the geometry of Figure 16, we can write, 

p(A"B"),p(fD") = p(A'B') f p(K, Zi). (1.144) 

(Comment: In Figure 16, for example, p(A"B") = p(A'B') + p(K,Zl) and p(C"D") = p(C'D') - p(K, [I); 

the correct choice of signs will depend on the direction of the translation but as will be shown below we 

do not have to worry a b u t  the correct choice of signs.) 

Similarly, 

We above comment holds for (1.145). too.) 

Combining equations (1.143). (1.144), and (1.145), we obtain 

n i 4 W  = min[p(A'B') f p(K, ZI), p(B'C') f p(K,  MI. 

(1.145) 

(1.146) 
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Since all distances p 0  in the above equation are positive by definition. we can rewrite the a b v e  equation 

as 

Substituting equations (1.80). (1.81). (1.141) and (1.142) into (1.147), we obtain the required result 

(1.133). 

Equation (1.147) clearly demonstrates that the isotropic acceleration ai,(&) for any state u # 0 is less 

than ab(&) = rnin[p(A‘B’),p(B’d)]. In fact, if& l l )  and p(K, 12) are sufficiently large (equivalently, 

the “nonliearities” k1 and k2 are sufficiently “large”). we may not have any isotropic acceleration. The 

necessary and sufficient conditions for the existence of the isotropic acceleration can be obtained either 

from (1.147) or (1.133). From (1.133), we obtain the following two necessary and sufficient conditions 

for the existence of the isompic acceleration: 

I det(A)Im - lklau - kzalzl > 0, (1.148) 

I det(A)lsl, - Iklazl - kzalll > 0. (1.149) 

These are exactly the necessary and sufficient conditions expressed in (1.131) and (1.132) of result 2. 

43 



6 Local acceleration properties 

At any given (local) configuration q in the workspace, the following questions are of theoretical and 

practical impoflance. 

What is the magnitude of the maximum acceleration at any configuration q in the workspace? 

What is the magnitude of the isotropic acoeleration at any configuration q in the workspace? 

To answer both these questions, we need to use the propenies of the sets S,. Sg Su developed in the 

preceding subsection. 

Result 1: The local maximum acceleration k w  at a given configuration q is specified by 

(&ar,kul)lb 5 Llmu,local< (&x,localkb (1.150) 

where (anux,loeal)b is given by (1.130) with kl(q, Q) and k2(q, Q) evaluated at that joint variable 

vector q which maximizes I(@,, Qz) in equation (1.89). 

(&si,lacslhb = &&q) + hax(&) 

where u,,,&Q) is given by (1.89) and b&) is given by (1.69). 

Result 2: The local isotropic acceleration &w at a given configuration q is specified by 

uiro,W 

= min[p(A’B’) - pm~x(X(~~) ,Z~) ,p(B’C‘)  - p m d W g ) ,  Id1 

(1.151) 

(1.152) 

where p(A’B‘) and p(E’d) are given, respectively, by equations (1.80) and (1.81), and where 

max(X(Sq>, 11) and max(X(Sq),ld are. given by equation (1.92). 

Proof of Result 1: 

The local maximum acceleration u,,,,~ is the maximum acceleration over all possible state acceleration 

sets Su at a given position q in the workspace. Therefore, hU can be written as 

(1.153) 
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Figure 17: Maximum local acceleration of a two degreeof-freedom manipuhx 

It is not possible to find an exact analytical expression for haxj~ .  However, we can find an upper 

bound and lower bound which are very good approximations to U,,,=W. 

Corresponding to every point P of the set Sa. we have a State acceleration set Su(P). Let P' be €he 

funhest point (from the origin) ofS4, and let s,(P') be the corresponding state acceleration set, as shown 

in Figure 17. Also shown in Figure 17 is the set S;(P') obtained by rotating the set S.(P') about P' till 

the longest diagonal (A"6' in this case) of S, is collinear with the line Of' joining the origin to the 

funhest point PI of SQ. It is easily seen fmm Figure 17, that if veztex A' is the funhest vertex of Su(f') 

from 0, then a lower bound is given by 

and an upper bound for & , n a x , ~ ~  is given by 

(1.155) 
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(hmu.loul)ub = &ax(&$ + Gnar(S7). (1.156) 

In general, one of the four vertices A", B", d' , or D" would be the furthest vertex of So and therefore we 

should write (1.154) as 

(hax,1oul)b = max[d(OA"), d(OE"), d(OC"), d(OD")]. (1.157) 

Combining (1.157) with equation (1.137) through (1.140), we obtain equation (1.130). The values of 

k~ and kz in (1.130) correspond to the funhest venexp' of Sq from the origin, i.e., to that joint variable 

vector q which maximizes I ( q l ,  &) in equation (1.89). This is simply a matter of computing I ( q 1 ,  42) 
at the four vectors (illo, - 4 1 ~ )  , (ql, pzo)', (@lo, 420)~ and (410, -420)~ defined in subsection 3.2.2 and 

determining which of these four vectors maximizes Z(41, h). This completes the determination of the 

lower bound (%m&cal)!b. 

T .' 

Substimting for *(Sa) and u,-(S,) from equations (1.89) and (1.69). respectively. we obtain 

equation (1.151). Thus, Result 1 is proved. 

Proof of result 2: 

The local isotropic acceleration is obtained in the following steps. 

1. The maximum possible isotropic acceleration is obtained when 4 = 0 and is equal to ais&) as 

given by equation (1.70). 

2. Every state acceleration set will have an isotropic acceleration which is less than that given by 

(1.70) because the "nonlinearities" effectively reduce the isotropic acceleration. The resulting state 

isotropic acceleration is &,(So) which is given by equation (1.147). 

3. The local isotropic acceleration aim- is the magnitude of the smaIlest state isotropic acceleration 

at a given local configuration q, Le. 

qEP 
aiao,l& = min &,(So). (1.158) 

4. Using equation (1.147) and (1.158). we can express the local isotropic acceleration U ~ ~ , J ~  as 

a i s o , l d  = minminMA's') - P(K,h), p(B'C') - P(KMI 
4EF 

= min[min{p(A'E') - p(K, ZI)}, min{p(B'd) - p(K,Iz)}l. (1.159) 
qfP 9EF 
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5. Since p(A’B’) and p(B‘d) are constauts for a given manipulator and given amator constraints, 

(1.159) can be written as 

airo.iacal = min[p(A’B’) - manp(K,Ii), p(B’d) - mmp(K,h)l. (1.160) 

where max@(K, 21)) is the distance from the l i e  11 to the element of S4 furthest away from 11 

which we denoted in subsection 3.2.2 by p,-(x(S~), l l ) .  and max(p(K,lz)) is the distance from the 

line 12 to the element of Si, fudest away from 12 which we denoted by pm,x(x(S$,Zz). We can 

therefore write 

(1.161) 

(1.162) 

Combining (1.160), (1.161) and (1.162). we obtain the required result (1.152). (Note that all 

quantities in (1.152) have k e n  analytically determined earlier.) 
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7 Summary and conclusions 

In this paper, we have developed a theory for the acceleration sets of planar manipulators. In particular, 

we have accomplished the following: 

Given the kinematical and dynamical equations of a manipulator, we have defined the image set S, 

corresponding to the set T of actuator torques, and the image set S, corresponding to the set F of 

the joint variable rates. We have also defined the state acceleration set Su at a specified point u in 

the state space. 

We have determined the image sets. S, and Sa, and the state acceleration set Su. 

We have characterized the image sets S, and the state acceleration set Su by their maximum and 

isotropic acceleration. The image set S, has been also characterized by the maximum acceleration. 

At a configuration or position, q. in the workspace, we have established two local acceleration 

properties: the local maximum acceleration and the local isotropic acceleration. The local maximum 

acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the 

end-effector. The local isotropic acceleration specifies the magnitude of the maximum available 

acceleration of the end-effector in all directions. 

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the 

analytical properties of acceleration sets can be determined from the properties of the linear and quadratic 

mappings which define them (the acceleration sets). Furthermore. the acceleration properties of interest 

- especially the isotropic acceleration - have been determined in temis of the manipulator parameters 

and the torque limits and joint variable rate (“joint velocity”) limits. The stage has now been set for 

the application of the theory developed in this paper to problems in the design of manipulators in the 

companion paper mesa and Kim, 1989). 

Acknowledgements 

Both authors would like to acknowledge the critical comments made by Professors Matt Mason, Bill 

Hughes and Leonidas Paparizos who served on Yong-$1 Kim’s doctoral thesis commitee. Yong-yil Kim 

48 



would like to acknowledge financial suppott from the Korean Government in the form of a scholarship. 

49 



Appendix. Equations of motion for the two degree-of-freedom planar manipulators 

1. Jacobian matrix 

The joint variable rate is dated 10 Ihe velocity in Cartesian space by the Jac~bim matrix. 

t = J4. 

The Jacobian matrix J of the two degroc-of-fmcdm manipulator shown in Figufe 1 is the following: 

1 

1 

-11 sin 91 - 12 Sin(q1+ a) -12 sin(q1+ 42) J =  [ 

E= [ 

b COS 91 12 ms(9l + 92) 11 m(9l + 92) 

When this relationship is differentiated witb respect IO the time. we obtain the following quarion, 

It = J4+ J4 = J& - E{4)2 (1.163) 

where E is Ihe mawix which has the following elements: 

I1 COS 91 + 12 ws(ql+ 92) 

11 Sin 91 -t 12 Sin(9l + 92) 

12 WS(9l + 42) 

fZ b ( 9 l +  92) 

2. Dynamic equation 

The dynamics of the two-degrcc-of-freedom planar manipulator shown in Figure 1 is described by the 

folIowing quation: 

Dq+ V{Q)* = r , (1.164) 

where Lhe components of matrices D and V are as follows: 

1 11 + rn14 +IZ +m& +Za211 cos92 + 6) 12 + m z ( 4  + gt1 cosq2) 

rz + m z ( 4  + ~h COS qd 12 + m2u: 
D= [ 

so 



3. Acceleration equation 

?he expression of the acceleration of the endeffector is as follows: 

Y = AT + B{Ql2 

where 

A E JD-’ 

B -AV - E 

(1.165) 

(1.166) 

(1.167) 
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