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Abstract

This report develops a systematic approach for determining the acceleration capability and
the acceleration properties of the end-effector of a planar two degree-of-freedom manipulator. The
acceleration of the end-effector at a given configuration of the manipulator is a linear function of the
actuator torques and a (nonlinear) quadratic function of the "joint-velocities”. By decomposing the
functional relationships between the inputs (actuator torques and "joint-velocities”) and the output
(acceleration of the end-effector) into two fundamental mappings, a linear mapping between the
actuator torque space and the acceleration space of the end-effector and a quadratic (nonlinear)
mapping between the “joint-velocity" space and the acceleration space of the end-effector, and by
deriving the properties of these two mappings, it is possible to determine the properties of all
acceleration sets which are the images of the appropriate input sets under the two fundamental
mappings. The determination of the properties of the quadratic mapping, a key feature of the
present work, allows us to obtain analytic expressions relating important acceleration properties of
the end-effector to all the manipulator parameters and input variables of interest.






1 Introduction

In this paper, we develop and apply a systematic approach for studying the accelcration capability and
acceleration properties of (a reference point on) the end-effector of a planar two degree-of-freedom
manipulator. The application of the theory developed in this paper to two important problems which
arise in the design of manipulators -sclection of a manipulator type and determination of actuator sizes -
are described in companion paper (Desa and Kim, 1989). Acceleration theory for spatial manipulators is
developed in a third paper (Kim and Desa, 1989).

An informal statement of the acceleration problem is as follows:

Consider the planar two degree-of-freedom manipulator shown schematically in Figure 1. We are
intercsted in studying the acceleration of 8 reference point P on link 2. (P is typically a point on the joint
axis of the end-effector: therefore the acceleration of P is often loosely referred to as the acceleration
of the end-effector.) The uscfulness of studying the acceleration of the end-effector of manipulators has
been discussed in (Yoshikawa, 1985), (Khatib and Burdick, 1987) and (Graettinger and Krogh, 1988) and
will additionally be demonstrated in (Desa and Kim, 1989).

As will be shown below, the acceleration capability of the point P under various conditions is best
described by cerfain acceleration sets. Two propenties which are used, in general, to characterize thege
sets are the maximum possible magnitude of the acceleration of P and the maximum magnitude of the
acceleration of P which is available in all directions. The former property is simply called the maximum
acceleration of P and the latter the isotropic acceleration of P (Khatib and Burdick, 1987).

The study of the acceleration properties of the “end-effector” has been a subject of recent intcrést
(Yoshikawa, 1985; Khatib and Burdick, 1987; Graettinger and Krogh, 1988). It is therefore useful
to clearly state what makes the problem of studying acceleration properties complex and how these
researchers have addressed this complexity.

The acceleration of the reference point P at a given configuration (in the workspace of the manipulator)
is a linear function of the actuator torques and a (nonlinear) quadratic function of the rates of changes
of the joint-variables (“joint velocities™). The complexity of the “acceleration problem™ arises from
these quadratic nonlinearities in the “joint velocities”. (Yoshikawa, 1985) studied the acceleration of (a

reference point P on) the end-effector in connection with developing a dynamic manipulability measure:



in this study the nonlincarities were essntially ignored since the measure was estimated at zero “joint
velocities™. In studying isotropic acceleration, (Khatib and Burdick, 1987) dealt with the nonlinearities
in a somewhat ad-hoc fashion by evaluating isotropic acceleration at a “low™ and a “high™ joint velocity
vector. (Graettinger and Krogh, 1988) handled the nonlinearities by posing the problem of determining
the isotropic acceleration as an optimization problem.

In contrast to the above approaches, the present paper demonstrates how these nonlinearities can
be handled in an analytical manner. The fundamental hypothesis of this paper is the following: By
decomposing the functional relationships between the inputs (actuator torques and joint variable rates)
and the output (acceleration of P) into two fundamental mappings, a linear mapping between actuator
torgque space and the acceleration space of point P and a quadratic (nonlinear) mapping between the “joint
velocity” space and the acceleration space of P, and by deriving the properties of these two mappings,
it is possible to determine the properties of all acceleration sets which are the images of the appropriate
input sets under the two fundamental mappings.

The properties of linear mappings are well-known. The determination of the propertics of the quadratic
mapping between the joint velocities and the acceleration-space of P is one of the contributions of
this paper and permits us to cbtain exact analytic solutions for the isotropic acceleration under various
conditions.

In summary, the contributions of this paper are the following:

1. Development of a systematic approach (stated in section 2) for defining, determining and charac-

terizing acceleration sets.

2. Closed-form analytic expressions relating important acceleration properties of manipulators to all
the manipulator parameters and input variables (torques, joint variable rates or “joint velocities™)
of interest. (The only exception is the maximum local acceleration which is specified in terms of

tight lower and upper bounds in section 6.)

3. Necessary and sufficient conditions for the existence of isotropic acceleration, (Earlier studies seem
to implicitly assume that isotropic acceleration always exists.) These conditions are stated explicitly

in terms of manipulator parameters and input variables.



4. Analytical expressions for determining the maximum and isotropic acceleration of the end-effector

at any (“local™) configuration of the manipulator.
5. The theory treats nonlinearities in an “exact” manner (as mentioned above).

One consequence of 2 and 3 above is the development of simple algorithms (Desa and Kim 1989)
for sizing actuators in prder to guarantee a specified isotropic acceleration. The theory developed in this
paper is also applicable to two degree-of-freedom manipulators with closed-chains (Desa and Kim, 1989).

The next section, which describes our approach, also provides the dual function of being a “road-map™

of the paper.



2 Description of the approach

A systematic approach for studying the acceleration of (a reference point P on) the end-effector based on

the use of input-output mappings is as follows:

10.

. Define the input variables and output variables of interest (subsection 3.1). The output of interest is

the acceleration of the reference point P.

. Define the input sets of interest (subsection 3.1).

. Define the input-output functional relations. These are obtained from the dynamical and kinematical

cquations of the manipulator (subsection 3.2).

. Define fundamenta! mappings from these functional relations (subsection 3.3). There are two

fundamental mappings, a linear mapping and a quadratic mapping.

. Define the image sets of the input seis under the mappings obtained in set 4 (subsection 3.4). These

image sets are the acceleration sets of interest.

. Define general properties which can be used to characterize (“measure”) acceleration sets (subsection

3.5).

. Determine the properties of the mappings defined in step 4 (section 4),

. Determine the acceleration sets defined in step 5 using the propenties of the mappings obtained in

step 7 (section 4).

. Determine the specific properties of the acceleration sets determined in step 8 using the “measures”

or general properties defined in step 6 (section 5).

Determine the local acceleration properties for any configuration q of the manipulator using the

propenies of the acceleration sets obtained in siep 9 (section 6).
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Figure 1: Schematic diagram of a planar two degree-of-freedom manipulator
3 Definition of the acceleration sets

3.1 Manipulator input and output variables

Consider a serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. In this
subsection, we define the link parameters, the input variables, the input sets, the output variables and the
output sets for a planar two degree-of-freedom manipulator. The manipulator is assumed to be rigid with
negligible jeint friction and operates in a horizontal plane perpendicular to the “gravity vector”. (The
case of manipulators operating in gravity fields is relatively straightforward and is dealt with in (Kim and
Desa, 1989).)

The link parameters necessary for describing the kinematic and dynamic behavior of the planar two
degree-of-freedom manipulator (Figure 1) are as follows. Let /; denocte the length of link 1, g; the distance
from joint axis 1 to the center of mass of link 1, i the mass of link 1, and f; the principal moment of

inertia of link 1 with respect to its center of mass about an axis perpendicular to the plane of the motion.



Similarly, let &, a2, mz, and 7z denote the corresponding variables for link 2 (see Figure 1).
Next, we define the input variables, the input constraints and the corresponding input sets of the two
degree-of-freedom manipulator. Let ¢ and g2 denote the generalized coordinates of the manipulator (see

Figure 1), g1 being the joint variable at joint 1 and g; the joint variable at joint 2. Define

Ald
q= (1.1)

to be the vector of joint variables; the corresponding vector space of all q is called the joint space. If
gL £qi<qu, i=1,2 1.2

denotes the constraint on joint variable i, then we can define the workspace W of a manipulator as
W={aler < q: < qw, i=1,2}. (1.3)

Let &1 and &2 denote, respectively, the rates of change of the joint variables ¢; and g2; & and ¢, will

be referred to as joint varable rates for short. Define
Al @
q= (1.4)

to be the vector of the joint variable rates. If

| & 1< Gios §=1,2 (1.5)
denotes the constraints on the joint variable rates, then we can define

F={dl 4|2 o, i=1,2} (1.6)

1o be the set of all the possible joint variable rate vectors; graphically F can be represented by (the interior
and boundary of) the rectangle J1X1./2K> shown in Figure 2.
Let 7 and 2 denote the actuator torques, respectively, at joints 1 and 2, and define

1
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Figure 2: Set of the joint variable rates of a two degree-of-freedom manipulator

to be the actuator torque vectors.! Let

[ i |€ Tigy i=1,2 | ‘ (1.8)
denote the constraints on the actuator torques at joints 1 and 2. We define

T={r]| 7L 1, i=1,2} (19

to be the set of the allowable actuator torques; graphically T can be represented by (the interior and
boundary of) the rectangle ABCD in Figure 3.
The vectors q, § and 7 will be referred to as the input variables {more precisely the input variable
vectors) of the manipulator. We will also refer to the vector g as a configuration of the maniputator.
Let {x1, x2) denote the coordinates of a reference point P on link 2 (see Figure 1) in a coordinate

system fixed to the base reference frame N; (x1, x3) are commonly referred {0 as task coordinates, Define

X
i (1.10)
X2 '

to be the vector of task coordinates; the corresponding vector space of all x? is called the task space.

'The vectors of actuator torques, joint varisbles, and joint variable rates denote columnn matrices, not physical vectors,



4]

..T20

Figure 3: Sect of the actuator torques of a two degree-of-freedom manipulator

The velocity xP and the acceleration ¥7 of the point P of the manipulator are, respeciively, given by

=M : (1.11)
X2
and
5
w#=|""1], (1.12)
X J

The acceleration of P, ¥, is the output variable of interest in the present work. The corresponding vector

space A of all possible ¥? is called the acceleration space, expressed by

A={%|%¢c R?. (1.13)

3.2 Functional relations between the inputs ¢, 7 and the acceleration ¥°

The next step is to obtain the functional relations between the acceleration % and the inputs q and 7
for a given configuration q. In this subsection, we show how the necessary functional relations can be
obtained from the manipulator dynamic equations and the (so-called) manipuiator Jacobian relation.

The dynamic behavior of the two degree-of-freedom planar manipulator in the joint space can be

obtained using well-known methods (Kane and Levinson, 1983; Kane and Levinson, 1985; Desa and



Roth, 1985) and is described by the following pair of equations:
dugi + dipi —wil@+2ne) =7, (1.14)
dni + dph+wad =, (1.15)

where the coefficients, dj; (i, = 1,2) and v, are given in the Appendix.

Defining the following matrix cperators

dn d
D = S (1.16)
_diz dxn
0
W = wiz (1.17)
| w21 0
ga= |2 (1.18)
Ll'?"z
[ A
@ < |4 , (1.19)
| B+ 24

dynamic equations,(1.14) and (1.15), become
D4+ W{q}’=T. {1.20)

Note that equation (1.20) is the most general expression of the dynamics of a two degree-of-freedom
planar manipulator. The matrices D and W standard for various planar manipulator types are given in the
Appendix. The matrix D is the mass matrix of the manipulator.

Since the matrix D is always inverntible, we can write (1.20) in a more convenient form for our

purposes as
q=D""r - W{g}2. (.21

A crucial step in the acceleration analysis of a two degree-of-freedom manipulator is the definition
of the matrix operator W and {q}?, which allows all the “non-linearities” (i.e. terms in the dynamic
equations (1.14) and (1.15) which are non-linear in the joint variable rates, ¢; and ) to be written as

the product of W and {q}2. The notation {}? is used to draw attention 1o the fact that the elements of



the vector {¢}? are quadratic in the joint variable rates & and ;. Note that {¢}? is a vector and should
not be confused with the scalar § which is the square of the magnitude of q.

The relation between the velocity, %7, of the point P, and the joint variable rate vector { is well known

{(Desa and Roth, 1985):
¥ =Jq (1.22)

where J is a (2 x 2) matrix called the manipulator Jacobian. The detailed expressions of the Jacobian
matrix for various planar manipulator types are given in the Appendix.

To obtain the expression for the acceleration ¥° of the point P, we differentiate equation (1.22),
% = Jq +Jq. (1.23)
In the Appendix, we show that the second term in (1.23), J¢§, can be written in the form
Ja=-E{q}’ (1.24)

where matrix E is skew-symmetric.

Substituting equation (1.24) into (1.23), we cbtain
# = Jij — E{q)>. (1.25)
Defining the guantities,
A = JD71, (1.26)

B —AW —E, (127

H

it is easy to verify that the expression for the acceleration ¥” of the point P, obtained by combining

equation (1.20) with equations (1.25) through (1.27), is given by
% = At + B{q}? (1.28)

where A, B are configuration dependent.

Equation (1.28) expresses the required (Input-Output) functional relation between the input variables,
¢ and 7, and the acceleration ¥° of the point P (the output variable) at a given configuration q. It is
important 10 note that the definition of the matrix “operators” W, E and {q}? enables us to write the

dynamic equations in the compact form (1.28) which is critical in the sequel.

10



3.3 Mappings

In this subsection, we define two fundamental mappings between the input variables and the acceleration
¥ of the point P (the output variable).
It is convenient to regard the functional relation (1.28) as 2 mapping between the input variables §

and T and the output variable ¥” for a given configuration ¢ of the manipulator. Furthermore, defining

[ e |
a2 %7 | 2ar (1.29)
2y
L A
and
a r'f’flnq - A 12
oy = = B{q}*, (1.30)
azx

equation (1.2-8) can be written as
¥ =0, +ay. {1.31)
The following two simple and obvious relations are useful when we define acceleration sets below:
¥(G=0 = a,=Ar {1.32)
ag = B{q}>. (1.33)

I

¥ (r=0Q)

It is convenient to think of the vector e, as the contribution of the torques to the acceleration of the

reference point P, and the vector ag as the contribution of the joint variable raies 1o the acceleration of P.

The sum of these two vectors, therefore, gives us the acceleration of P as expressed by equation {1.31)
for a two degree-of-freedom manipulator.

Equation (1.29) can be viewed as a linear, configuration-dependent, mapping between the torque vector

r and its contribution &, 10 the acceleration of P. Similarly, equation (1.30) can be viewed as a quadratic,

configuration-dependent, mapping between the joint variable rate vector q and its contribution oy to the

acceleration of P. These are the two mappings of interest in this section.

3.4 Manipulator acceleration sets

Having defined two fundamental mappings of interest, we are interested in the image sets of the input

sets under the mappings (1.29) and (1.30) at a given configuration q of the manipulator, There are three

11



image sets of interest.

3.4.1 TImage set S, of the aciuator torque set 7 under the linear mapping

For a given set T of the actuator torques 7 described by equation (1.9), and represented graphically by the
rectangle ABCD in the T - plane (see Figure 3), we define the image set S, of T under the linear mapping
(1.32) as

S, ={|¥(q=0)=Ar,7 € T}. (1.34)

(Note that S; lies in the acceleration plane A.) From equation (1.32) and the above definition (1.34), we
see that S, represents the set of all possible accelerations (the acceleration capability of the manipulator)

when it is at rest (§ = 0) in any configuration q and the actuators are tumed on.

3.4.2 Image set 54 of the joint variable rate set F under the quadratic mapping

For a given set F of the joint variable rates § described by equation (1.6), and represented graphically
by the rectangle J1X1/2K; in the § - plane (see Figure 2), we define the image set S4 of F under the
quadratic mapping (1.33) as

Sq = {¥°%°(+ = 0) = B{q}?,q € F}. (1.35)

{(Note that Sy lies in the acceleration plane A.) From equation (1.33) and the above definition (1.35), we
se¢ that the image set Sy represents the set of all possible accelerations (the acceleration capability of the

manipulator} when the actuators are tumed off (r = 0) in any configuration q.

34.3 State acceleration set

When a manipulator is in motion, the (dynamic) staie of a manipulator can be specified by the joint
variables, {g1, g2), and joint variable rates, (41, 42). The state vector u which characterizes the dynamic

state of the manipulator is defined as follows:

u= 1 . (1.36)

q

12



For a specified dynamic state of a two degree-of-freedom manipulator, the second term of the accel-

eration ¥ in equation (1.28) is a constant vector, which we denote by k(u) and define as follows:

k2 | B | o | udirbel@r P —dl | g (137
k2 bag; + bul(qn + ) — 4]

Equation (1.28) can then be written as follows:
%=AT+k. (138)

For a given dynamic state n of the manipulator, we define the state acceleration set, Sy, as the image set

of the actuator torque set T under the linear mapping (1.38):
Sa={¥P|¥* =AT+k,T €T} {1.39)

Su is therefore the set of all possible accelerations at any given dynamic state u of the manipulator. Since
the dynamic state u of the manipulator essentially specifies the velocity %” of the point P in (1.11) in any
configuration, we can also interpret the state acceleration set Sy (the set of available accelerations) as the
acceleration capability of the manipulator when the manipulator is moving with the velocity X? in a given

configuration q.

3.5 Characterization of the acceleration sets

Once the acceleration sets defined in the previous section have determined, one would like 1o characterize
them. In this section, we define two properties which are useful in characierizing acceleration sets.

Figure 4 shows an acceleration set § in the acceleration plane X, and two circles €y and C;. The circle
C of radius r; is the smallest circle centered at the origin which completely encloses §. Its radius ry
therefore represents the maximum (magnitude of the) available acceleration in §. The circle Cy of radius
r2 is the largest circle centered at the origin which lies within §. Its radius », therefore represents the
largest {(magnitude of) acceleration available in all directions.

We define the following two properties of S:
e the maximum acceleration of 8: @n(S) = 71,

» the isctropic acceleration of S: @ (S) = r2.

13
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Figure 4: Characterization of an acceleration set in the acceleration plane

Comments:

1. As will be shown, the maximum acceleration and isotropic acceleration are two measures which

can be readily extracted once the acceleration set is known.

2. The isotropic acceleration (Khatib and Burdick, 1987; Graettinger and Krogh, 1988) is a useful

measure of the acceleration set, since it is a property which does not depend on direction.

3. The average acceleration of the set S cannot readily be exiracted in closed-form (or by appropriate
bounds) from the acceleration set . It can however be numerically determined from descriptions
of the various acceleration sets given in the next section. Also the physical meaning of the average

acceleration is not clear,

14



4 Determination of the acceleration sets

Analytic expressions for the determination of the three sets S,, §4 and Sy are presented, respectively, in
section 4.1, 4.2 and 4.3, The determination of §, and the state acceleration set Sy follows directly from
well-known properties of linear mappings while the determination of the set §¢ requires the derivation of

the propenties of quadratic mappings which are new

4.1 Determination of the image set §,

The set S, is the image set of the actuator torque set T under the linear mapping (1.32).

Result 1: The image set S, of the actuator torque set T under the linear mapping (1.32) is (the interior
and boundary of) the parallelogram A'B'C’ D' in the % - plane whose vertices A B, C, and D' are

as follows:
‘
A (811710 + 21720, @21T16 + 822720,
B' i (auTio — anT, 821710 — G22720);
c (—a11T160 — G21T200, —821T10 — @22T20),
D (—811710 + @21T20, — 021710 + G22T20), {1.40)

where ay (i,j=1,2) are the elements of the matrix A defined in equation (1.26). The centroid of the

paralielogram A'B'C'D’ is the origin O of the %-plane.

Result 2; The sides A'B’, B'C’, C'D', and D'A’ of the parallelogram S, (Figure 5), which comprise the

boundary of the set are given by the following equations:

A'B' 1 axn¥ — aizkz = de(A)ny,, (141)
B'C 1 —ank +ank = det(d)r,, (1.42)
C'D : api - aph = - det(@)my,, (1.43)
D'A" : —an¥ +an i = ~ det(A)r,. (1.44)

where det(A) is the determinant of the (2 x 2) matrix A,

15
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Figure 5: Image set of the linear mapping of a two degree-of-freedom planar manipulator
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Proof of Result 1:

The following are well know properties of a linear mapping:

1. A line in the r-plane will map into a line in the ¥-plane. In particular, the line #;, with equation

= 0, maps into the line §; whose equation is
h @ axky — aia = 0, (1.45)
and the line Z4, with equation = 0, maps into the line fz whose equation is
L —ani +aniz =0 (1.46)
Both #; and % pass through the origin (Figure 5).
2. Any line g parallel to {; maps into a line g'l parallel to I;

3. Any line gz parallel to /3 maps into a line g’z parallel to 1'2

16



Regarding the rectangle ABCD (set T) as a set of lines parallel to !y and & one can easily show the
well-known fact that the image of ABCD is a parallelogram A'B'C'D'. The verices A, B, C' and D’
are the images, respectively, of the vertices A, B, C and D. Substituting the coordinates of A(7y,, T2,),
B(To, =T20}, C(~T1o, —T2,) and D(—71,, T20) into equation (1.32), we obtain the coordinates of the
vertices A', B', €' and D' as given in equation (1.40). From equation (1.40), we see that the vertices
A’ and C are equidistant from the origin and that the vertices B and D' are equidistant from the origin.

Therefore, the origin of the X-plane is the ceniroid of the paralieiogram A'BCD.

Proof of Result 2:

We next need to determine the equations of the lines 4’8, B'C’, C'D’, and D'A’, which form the
boundary of the parallelogram A'B’C’D’ in the & - plane. A'B’ is the image of the line AB. whose equation
is T = T14: 10 oObtain the equation of A'B’, substitute the equation of AB (7 = 71,) into (1.32) to obtain the

following parametric equations in 7:

X = aumne+anm, ) {147)

@110+ G2272. (1.48)

fl

X2
Eliminating the parameter 73 between (1.47) and (1.48), we obtain the equation of the line A'B’ in the %
- plane as given by equation (1.41). In a similar fashion, we can obtain the equations of the lines B'C’,
C'D',and D'A’ as in equations (1.42) throngh (1.44). Note that from equations (1.41) through (1.44) we
sec that A'B’ is parallel to ¢'D’ and B'C’ is parallel to D'A’ so that A'B'C’'D’ is indeed the parallelogram
shown in Figure 5.

4.2 Determination of the image set 54

The set Sg is the image set of the joint variable rate set F under the mapping (1.33). Set §4 is determined

from the following results

Results:
The set F in the q - plane is considered as a family of line segments passing through the origin. There

are two such types of line segments: those which end on the boundaries /1 X; and /2K parallel to the
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Figure 6: Image set of the quadratic mapping of a two degree-of-freedom manipylator

¢ - axis, a typical member of which is the line segment g; in Figure 6 {a), and those which end on the
boundaries /1K7 and J2K parallel to the &, - axis, a typical member of which is the line segment g in
Figure 6 (a).

1. Every line of the type g1 maps into a line g'l (see Figure 6 (b)) in the X - plane, one end of which
is the origin and the other end of which lies on the line segment J' X’ whose equation is: )
1., 1. bn bzl)
bz by - ( 12 4, (145
where % lies in the interval [b114%, + b12(i3, + 2310820), P11, + B12(8%, — 2810820)].

2. Every line of the type g2 (see Figure 6 (b)) maps into a line g'z in the ¥ plane, one end of which
is the origin and the other end of which lics on the quadratic curve K’N'J (shown dashed between

K' and N') whose equation in the parametric (in ;) form is:

buds + b B, + 21dn0),
b + b, + 2i1420)- (1.50)

i

X2
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3. The image set of F is (the interior and boundary of) the region ON'J'K' shown in Figure 6 (b), and

the coordinates of N',.J', and K are as follows:

N ( bnd, bni), (L51)
J' (b - b1)d, + bizlde + q20)%, (021 — baadis, + baa(1o + G200, (1.52)
K ( (&1 —02@, + ha(die — 2005 (B2 — b2)ifl, + ba(ifie — d20)9). (1.53)

Proof:

The quadratic mapping is defined by the following equation (1.33):
% =B{q}"

which can be written in the expanded form

"

bLis + bi(B + 2 &), .
b + b + 2in ) (1.54)

b3

X2
The determination of the set S4 which is the image of the set F (Figure 6 (a)) consists of two steps:?
1. Establishment of the properties of the quadratic mapping, and
2. Determination of the boundary of the image set Sg.

Consider the (input) § - plane. [t is convenient to think of this plane as being generated by the
continuous family of lines passing through the eorigin with parametric equation
o= g
@ , =00 < m< oo | (1.55)
g2 =mt
Each value of m gives us a member of the family of lines, a typical member of which is the line !/

shown in Figure 7. The image [ inthe & - plane of the line ! is obtained by substituting (1.55) into (1.54)

2While the approach described below is adequate for cnr present purposes, a more basic approach to determining Sq is
described in (Kim and Desa, 1989),
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and is described by the following parametric equation,

[By1 + bi2(m® + 2m))2,
(521 + baa(r® + 2m)]E. {1.56)

X

X2
From equation {1.55) and (1.56), one can enumerate the following facts:
Fact 1. The image of /, viz. [, is a straight line.
Fact 2. The origin of the § - plane maps into the origin of the ¥ - plane,
Fact 3. Two distinct points (¢1, §2) and {—41, —¢2) map into the same point of the X - plane.

These results are shown graphically in Figure 7.
Fact 1 follows from the fact that (1.56) is the equation of a straight line in the parameter t. Fact 2

follows from the fact that the point (0, 0) in the § - plane, represented by the parameter ¢ = 0, maps

into the point {0, 0) in the X - plane. If t is the parameter corresponding to the point {§;, 42) in the

20



dy

S0\ e

T

7>\

Figure 8: Input { - planc

{-plane, then —t is the parameter of the point (—§1, —¢2) from (1.55). From (1.56), we see that points
with parameters ¢ and —t will map into the same point in the ¥-plane. This proves Fact 3.

We can therefore state the following properties of the quadratic mapping:

Property 1. The image of any line segment in the §-plane, one end of which is the origin, is a line

segment in the X-plane with one end at the origin of the X-plane.

Property 2. The image of the line / passing through the origin in the q - plane is the half-line 7, one
end of which is the origin {see Figure 7).

Property 3. Given any line [ passing through the origin, and the two half-planes p; and p; formed by it
(see Figure 8), py and po will have the same image set in the X - plane.

Property 1 is a direct consequence of Facts 1 and 2, property 2 a direct consequence of Facts 1, 2 and 3
and property 3 follows from Fact 3.

We now apply the above properties 1o determine the image set Sq of the set F in the g-plane (See
Figure 6). Property 3 tells us that if we “bisect” F into two “half-sets™ with a line passing through the

origin, then we only need to determine the image of one of these “half-sets”. The most convenient half-set

21



q

———t—

Figure 9: Input set £ in § - plane

for our purposes is the set X1J1K; (see Figure 9), one of the two half-sets formed by the “bisecting” line
KiK.

In order to use Property 1, it is convenient to view the set K1 J1K; as a family of line segments passing
through the origin; we now need to determine the image of any line segment passing through the origin
in this set. There are two cases to consider; the family of lines such as g3, shown in Figure 9, which
have one endpoint on the origin and the other endpeint on the line segment K1J; and the family of lines
such as g, also shown in Figure 9, which have cne endpoint on the origin and the other endpoint on the
line segment J1X3. 7

It is convenient to decompose the half-set KihK; into two subsets OK1J1 and OK»J, as shown in
Figure 10. Subset OK\J; includes only the families of lines such as g1 while subset OK>J| includes only
the families of lines such as g2. The desired image set is the union of the images of OK\J) and OKaJ).
From property 1 of the quadratic mapping, we know that any line segment, such as gy or g, of the set F,
will map into a line segment with one endpoint passing through the origin of the % - plane. To obtain the
other endpoint of the images of the two families of lines, we need to find the image of the line segment

J1Ky of the subset OJ1K; and the image of the line segment J; K> of the subset 01K,
First, we determine the image of subset 03K (10 (b)) by finding the image of K;J;. The equation
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Figure 10: Determination of the image set Sg
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of K1.f 1 is
N =da | @2 I1< {0 (157
To obtain the image X' of K)Ji, we substitute (1.57) into (1.54) to obtain

b, + bia( + 281042,
b, + (@ + 2en) (1.58)

X

¥2
Defining a parameter f as

£2 & + 2410, (1.59)
equation (1.58) can be written in the form

bnis, + biat, (1.60)

b, + baat. (1.61)

Xy

Xz
Eliminating the parameter ¢ between the two equations, we obtain the equation for the line segment
JK as given by equation (1.49). (This proves the first part of the result.) The resulting subset (Sgh
which is the image of OKJ; is shown in Figure 10 (d).
Next, we determine the image of subset 01K, by finding the images of K»/;. To obtain the image
JIN'K' of J1K;, we substitute the equation for J1X3,

= |1 |S q10 (1.62)

into (1.54) to obtain the parametric equation (1.50). Note that (1.50) represents the equation of a quadratic
curve in terms of the parameter ;. (This completes the second part of the result.) The resulting subsct
(S¢)2 which is the image of OK,J, is shown in Figure 10 {¢).

The desired image set Sg of F is the union of (S¢)1 and (S4)2 and is shown in Figure 10 (f).

Note that the intersection of (S¢)1 and (S4)2, (Sgh N (S4)z, is not empty. Because Sg is the image
of F under a quadratic mapping, there are points inside S4 which are the image of two distinct points in
K171K3. In particular, any point in the set {S4)1 N (Sq)2, will be the image of two points are belonging to
OK1J1 and the other to OK2J;.
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Figure 11: State acceleration set of a two degree-of-freedom manipulator

The images N, J and X', respectively, of N1(0, §20), J1{f10, &20) and K1(é10, —&20), are obtained
by substituting their {§;,42) coordinates into equation (1.54) to obtain the required results (1.51), (1.52),
and (1.53).

4.3 Determination of the state acceleration set Sy

The state acceleration Sy corresponding to a state u = (q, ) of the planar manipulator was defined by
equation (1.39) and is the image set of the actuator torque set 7 under the mapping (1.38). We obtain the

following results for the determination of the state acceleration set Sy.

Result 1: For every clement X(S;) of the image set S;, there is a comresponding element X(Sy) of the

state acceleration set Sy, given by

%(Su) = X(5:) + kg, @, (1.63)



where

K, 4 = k _ b + b2 (i + 2in i) =B{a} (1.64)

k2 b + bl +2142)

Resuolt 2: The state acceleration set Sy, corresponding to a state u = (q, Q)T of the planar two degree-of-
freedom manipulator is the parallelogram A“B"C"D" shown in Figure 11 obtained by translating
the set S, by the vector k(g, &) in the X - plane. The centroid of Sy is (%1, k2).

Proof of Result 1:
The results 1 and 2 are straightforward.
From (1.34), a member %(S,) of S, is given by

X(S;)= AT, (1.65)
From (1.39), a member %(Sy) of Sy is given by

X(Sy) = AT +k (1.66)
where k is given by equation (1.64). Combining (1.65) and (1.66), we obtain

X(5y) =%(5) + Kk, (1.67)

which is equation (1.63).

Proof of result 2:

From equation (1.63), we see that if we take a vector %(S,) of §; and add the vector k 10 it we obtain
the corresponding member £(Su) of Su. So, if we add the vector k to every vector in the set S, we obtain
the required set Sy, Therefore, Sy is the parallelogram A"B"C"D" (Figure 11) obtained by translating the
set S, (the parallelogram A'B'C’D’ in Figure 11) by the vector k. The centroid of S is #(S-) = (0, 0).

From (1.67), we sce that the corresponding centroid of Sy is
¥ S =0+k=k. {1.68)

This completes the proof of Result 2.
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5 Properties of the acceleration sets

In this section, we extract the properties - defined in subsection 3.5 - of the acceleration sets S, §g and

Su determined in the previous section.

5.1 Properties of the acceleration set S

We characterize the image set S, of the linear mapping as follows:

Result 1: The maximum acceleration of the acceleration set S, is denoted by Gpax(S-) and is given by

Gmax(Sr) = max[d(CA"), 40B)] (1,69)
where
oA = \/(;1 1T1o + 812720 + (@21T10 + G22T20)

d(OB') \/ (@11710 — A12722) + (821710 — A2272)

]
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Result 2: The isctropic acceleration of the acceleration set S, will be denoted by a;,0(S-) and is given
by

aiso(S+) = min[p(4'B’), p(B'C’)] (1.70)

where

| detA | 7,

2 2 '
Vo2 tax

| detA | m,

V ﬂ%l + “%1

pA'B) =

p(B'C)

Proof of Result 1:
The maximum acceleration of S, is the distance from the origin to the furthest vertex of the parallel-

ogram A'B'C’'D’ (see Figure 12). Letting d (OA’) through 4 {OD') denote, respectively, the distances of
vertices A' through D’ from the origin O in the % - plane, aya:(S,) is given by

Gmax(S-) = max[ d(0A"), d(08), d0C"), dOD") ]. (1.71)

A’ and €' are equidistant from the origin O. Also, B’ and D' are equidistant from the origin O. So,
amax(S7) is given by

Omax(Sy) = max[ &(OA'), d(OB') ]. (1.72)

Using (1.32), the distance d(QA") from the origin O to the point A’

d(04’) = \/ (@11T10 + 812720 + (@21 710 + G22T20)%. (1.73)

In exactly analogous fashion, we obtain

d(0B') = \/ (811710 — @12725)? + (221710 — G2272,)%. (1.74)

Equations (1.72), (1.73) and (1.74) comprise Result 1.

Proof of Result 2:

28



The isotropic acceleration of S is the shortest distance from the origin to the sides of the parallelogram
A'B'C'D'. Letting p (A'B), p (B'C), p (CD'), and p (D'A") denote, respectively, the perpendicular
distances from O to the sides A'B’, B'C’, €'D’, and D'A’, aio(S,) is given by

8is0(S-) = min[p(A'B'), p(B'C), p(C'D), p(D'A)]. (1.75)

| QP Ry |

Since the origin Q is the centroid of the parallelogram S, parallel lines of the parallelogram ABC D

must be equidistant from the origin, Therefore, we can write the following relations:

§C'DY, (1.76)

HA'B)

pB'C) = pD'A). .7
Using (1.76) and (1.77), (1.75) can be written

@iso(Sy) = min[p(A'B), p(B'C)]. (1.78)

The distance from a point P(x,, ¥,) to line ax + by + k= 0 is given by the following well-known result:

Vax, + by, + k |
laxo + by, +k | 1.79
Wy (1.79)
Using equation (1.41), (1.42) and (1.79), we obtain
i ¥ A
oAy = [ItAITI (1.80)
\/“?2"‘“%2
detA
| detA | mo 1.81)

pBC) = .
V“%l +a3;

Substituting (1.80) and (1.81) into equation (1.78), we can obtain the required result (1,70} for the isotropic
acceleration (S, ).
5.2 Properties of the acceleration set Sq

We characterize the image set S4 by the maximum acceleration and the maximum distance of any element

of 54 from the two references lines 4 and /» shown in Figure 5.

Definition 1:
2‘('::i"l ) QZJ
V113 + b1y + 00 @P + (buidk + bnd + 2nind)? (1.82)

11

Q)

]
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Se Pmax (x(Sg), 1)

Figure 13; Maximum distance from reference line 4, 10 a point on the set Sq

Definition 2: Let & denote the real solution of the following cubic equation in &;:

[b11d7 + b1a(3, + 24102} (B11én + b1232)
+ (budt + bl + 2012 baidn + b2dn) = 0. (1.83)

Definition 3: Let p(%(Sq), 1) and p(¥(Sq), &2) denote, respectively, the distance of any point X(Sg) of S4
from the Jines ; and &. )
Pmax(%(Sg), 11) € max p(i(S4), b, (1.84)
Pmax (R(Sq), 1) & max p((Sq), k). | (185)
Pmax(X{(Sg), ), for example, represents the distance of that point of Sq furthest from I} prax(%(54), )
and prax(%(S4), 12) are necessary for determining the local isotropic acceleration in subsubsection

6.

Definition 4:

o 4 anbyy - a12bn .
4 ' (1.86)
axnbiz — apbn
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Definition 5:

| az2di(én, &) — araldn, )|
\/“33“‘“}2
| azalbnidh + Bi2(F + 241 0)) — an2ldand + baa(i3 + 28142)] | (1.87)

\/“%1 +ay
| @11(d1, §2) — anda(, &) |
\/“52"'0}1
| @211b11B + b12(@ + 2a1)) — anlbuds + b + 21 a2)) | (1.88)
\/él +ah

Result 1; For a general two degree-of-freedom planar manipulator, the maximum acceleration of the

1.9

o1{g1. §2)

s

02041, §2)

acceleration set Sq will be denoted by amex(Sq) and is given by

Bmax(8q) = maxll(Gro, ~d10)y Ka1s 20}, Ko, @20), Koy —2o)) (1.89)
where §; is defined in (1.83).
For the two degree-of-freedomn open-loop planar manipulator, shown in Figure 1, '

8max(Sq) = U1os §20)- (1.90)

Result 2: For a general two degree-of-freedom manipulator, the maximum distance from an element of

Sq 10 the reference lines /) and /; are, respectively, given by

Poax ( %(Sq), 1)) (1.9D)
= max(oil§io, —10)y TLY s &), Oloy &20), OlG10r ~G20)), i=1,2.  (1.92)

where & is defined in (1.86) .

Proof of Result 1:
The magnitude squared of the acceleration of a point X(S4) of 54, denoted by az(Sq). is given by

(]

a1, ) =8, @)+3B(, ¢@)
(Bt + braifs + 2b12in i2) + (b2t + bl + 2bndy ). 193

2(Sg)
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The maximum magnitude squared of the acceleration for the set Sy, denoted by aﬁm(Sq). is given by

S5q) = max g, &), (1.94)
alzl'l x( q) Q@ER) (&, ¢
where F is shown in Figure 2 and specified by the constraints
| 41 1< §1os (1.95)
| 2 1< 2o (1.96)
The maximum of 7, required in equation (1.94), will occur at point § € F which is either inside F or
on the boundaries of F where one or both constraints might be active. Furthermore, because of propenty
3 of the quadratic mapping, we only need to Jook at the boundaries J1 X and /1K of the half-set K21 XK.

Therefore, to cbtain the maximum of (1.82) under the constraints (1.95} and {1.96), we should consider

the following possibilities:
1. Neither of the constraints is active, i.c., the max[£(¢1, §2)] occurs at a point q inside F.

2. Constraint (1.95) is active, i.e., max[lz(in, &2)] occurs at a point ¢ lying on the boundary /1K of
F.

3. Constraint (1.96) is active, i.e., max[#(y, §2)] occurs at a point  lying on the boundary J1K3 of
F.

4. Both constraints are active, i.e., max{’(g1, &2)] occurs at either {a) point J1 (b) peint X or (c)
point Xz, Since, by virtue of Fact 3 of subsubsection 3.1.2, points K; and X; have the same image,

we only need 1o consider either Xy or X3: we will choose Kj,

To obtain the conditions for each one of the above cases to yield a maximum, we first differentiate

(&, i) with respect o ¢; and & to obtain

% = 4lbud] + b + 20 @) bugs + bizip)

+ Albadd +bn(@ + 201 budn + bad), (1.97)
3%) = d[bnd} +b12(3 + 2in g)1b1alin + @)

+ Albndi + b + 20142)1b2)Xén + ¢2). (1.98)
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Now, we consider each case.

Case 1
To obtain the required ¢ for the case where both constraints are inactive, we set the right-hand side

of {1.67} and (1.98) to zero,

ar o

— =0 and — =0 1.99

8 an ity (1.59)
and obtain

f=@=0 (1.100)

which actually corresponds to the minimum value of £(¢1, 42), viz, zero. Therefore, max(#) does not

occur at a point q inside F.
Case 2
Since constraint (1.95) is active on the boundary J1X; of F, we have
@1 = {1, (constant). (1.101)

To obtain the maximum of 2, we set 82/8g, = 0. We therefore set the right-hand side of (1.98) to

zero to obtain
i+ =0 {1.102)

Combining (1.101) and (1.102), we obtain

2= - (1.103)
and

max[2(1, 201 = P(d1o, —§10). (1.104)
Case 3

Since constraint (1.96) is active on the boundary 1Kz of F, we have

g2 = §2, (constant}. (1.105)
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Figure 14: Common tangency between the quadratic curve and circle
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To obtain the maximum, we set 57 /81 = 0. We therefore set the right-hand side of (1.98) to zero

and set §2 = ¢z, to obtain
(61163 + bra(@3, + 241 420))(b11 41 + b12820)

+ (52 + 522(8B, + 201040} B2dn + badzo) = 0. (1.106)
Equation (1.106) is a cubic in §; and will therefore have three solutions. Using simple ideas from algebraic
geometry, we now show that (1.106) can have at most one real solution in the region |&1| < 1.

If £(41, ) does have a maximum I,y then the condition 82/ = 0 for obtaining lmax is the
condition for the quadratic curve (1.50) -the image of J1X3 in the ¥-plane- and a circle of radius ln.x
10 have a common tangent (see Figure 14). By Bezout’s theorem (Semple and Roth, 1949), a quadratic
curve and a circle can have at most two common points of tangency. Therefore, equation (1.106), which
expresses the condition 8284, = 0, can have at most two real roots (one for each point of tangency).
However, (1.106) is a cubic in & and can therefore have either one real root or three real roots. Combining
the last two statements, we see that (1.106) can have at most one real root. (Since we are Iooking at
the quadratic curve in the region |§| < §10, the real solution of (1.106) might lie outside the constraints
which simply means that (1.93) does not have an extremum in the region |¢1| < §1,). Denoting the real

solution (1.106) in the region |&| < 1, by c’]'; and using (1.105), we can wrile

max[P(g1, 42 = EGiy d20)- (1.107)

Case 4-a
When both constraints (1.95) and (1.96) are active, and max[%{&1, &2)] occurs at Ji{ihe, &20), then

max[(q1, §2)1= E(G10 20)- (1.108)

Case 4-b
When both constraints (1.95) and (1.96) are active, and max[£(§;, 2)] occurs at Ki{G1es —&20), then

max[*(q1, ¢2)]1= P10, —if20) (1.109)

Therefore, dmax(Sy) is obtained as the maximum of four quantities defined by equations (1.104),
(1.107), (1.108), and (1.109). This concludes the Proof of Result 1.
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Proof of Result 2:
The distance of any point £(S4) of S from the line [;, i=1, 2, is given by
ai{q1, 2) (1.110)

o2(q1, i) {1.111)

pE(Sq), 1)
PE(S¢), 1)

where o) and o7 are defined in equations (1.87) and (1.88). We first wish to determine ppnex(¥(S4)./1) the
distance of /; from that point of Sq furthest away from it (1), Pmax(X(S¢).01) is shown in Figure 13 for -
given Sq and given reference line ! and can be defined as follows:

Pmax(X(5¢), 1) = ﬁlg};}lm@h ] (1.112}
where F is shown in Figure 2 and is specified by the constraints

| & {< Qo | (1.113)

| &2 |< G20 (1.114)

The maximum of &1, required in equation (1.112), will occur at a point § € F which is either inside

F or on the boundaries of F where one or both constraints might be active. Furthermore, because of
property 3 of the quadratic mapping, we only need to look at the half-set K2/1K and its boundaries /1K
and J;1X7. Therefore, to obtain the maximum of (1.110) under the constraints {1.113) and (1.114), we

should consider the following possibilities.
1. Neither of the constraints is active, i.e., max 01{g1,¢2) occurs at a point q inside F,

2. Constraint (1.113) is active, i.e., max g1(§1, ¢z) occurs at a point ¢ Iying on the boundary /,X of
F,

3. Constraint (1.114) is active, i.e., max 71(§;, ) occurs at a point { lying on the boundary J, X3 of
F.

4. Both constraints are active, i.c., max o1({1, §2) occurs at either (a} point J; or (b) point X or (c}

point X>. Since X; and K, have the same image we only need to consider X;.
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To obtain the conditions for each one of the above cases to yield a maximum of o, we first differentiate

o1(g1, ¢p) (equation (1.87) with respect to ¢y and ¢ to obtain

a . N

3—‘; = 2anbi — G12b21) + Aanbiz — anbad, (1.115)
doy ,

E’E = XNanbiz — aizbn)(g + ). (1.116)

Now we consider each case.

Case 1
To obtain the required 4. we set
doy Aoy
_—= 0 and —_—— = 0 1.117
4 g2 (L)

We therefore set each of the right-hand sides of (1.115) and (1.116) to zero to obtain
i =g=0 (1.118)
which actually corresponds to the minimum value of a1(q1, @), viz, 0. Therefore, maxﬁal(q1, &) does

not occur at a peint § inside F.

Case 2
Since constraint {1.113) is active on the boundary /1K of F, we have

§1 = §1, (constant). (1.119)

To obtain the maximum, we set 8o1/842 = 0. We therefore set the right-hand side of (1.116) 1o zero

to obtain

a1+ a2 = 0. (1.120)
Combining (1.119) and (1.120), we obtain

g2 = -0 (1.121)
and

max[a1(§1, §2)] =o1{§10, —10)- (1.122)
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Case 3
Since constraint (1.114) is active on the boundary J, X of F, we have

g2 = G2, (constant). (1.123)

To obtain the maximum, we set 80, /8¢ = 0. We therefore set the right-hand side of (1.115) to zero and

set §2 = ¢, to obtain the linear equation
(@x2b11 — a12b21)q1 + (G2bia — a12b22)g2 = 0. (1.124)

Combining (1.123) and (1.124), we obtain the solution of the equation (1.124)

n=q, (1.125)
where
o ambi; —apbn
= . . 1.126
axnbi1 — anzby ( )
Therefore,
max[o1(q1, &) =01 5 o). (1.127)
Case 4-a

When both constraints (1.113) and (1.114) are active, and max a1(¢g1, §z) occurs at J1{@10, §20), then

max[o1{§1, §2)] = 01(G10, &20)- (1.128)

Case 4-b
When both constraints (1.113) and (1.114) are active, and max o1(§1, §¢2) occurs at K1(G1o, —i20)
then

max[c1(g1, &)1 =o01(¢1a, —&0)- (1.129)

Therefore, pmax(¥(Sq), /1) is obtained as the maximum of four quantities defined by equations (1.122),
{1.127), (1.128), and (1.129). In exactly analogous fashion, pma(¥(Sq), 22) is obtained as in (1.92).
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Figure 15: Characterization of the state acceleration set of a two degree-of-freedom

manipulator
5.3 Properties of the state acceleration set S,
Definition:
K : centroid of the acceleration set in the % - plane with coordinates k3, &2 given by (1.38).
pK, 1) : distance from point X to the reference line ;.
P(K, B) : distance from point X to the reference line 4.

o

pA'B"), p(A"B"), ... : distance from the origin 10 A'B’, A"B", ... (see Figure 16)

Result 1: The maximum acceleration corresponding 10 any dynamic state u of the manijpulator is denoted

by amax(Su) and is given by

Gmax(Su) = max[d(OA"), ZOB"), d(OC"), dOD")] (1.130)
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where

d0A")
d(0B™)

\/(anflo +ayam, + k1) + (@710 + G720 + by P

\/(4117‘10 — a1am, + k1)? + (@21 710 — 22720 + K1),

aoc”) = \/ (@710 + G122 — K + (@1 710+ a22720 — k1P,

&OD")

\/(0111'10 — Q12720 — k1)2 + (@21 710 — An2T20 — K1 )%

Result 2: The necessary and sufficient conditions for the existence of the isotropic acceleration are the

following:
| det Ay, — |k1azz — kzarz] > 0, (1.131)
| det A2, — |k1az1 — kaani| > 0. _ {1.132)

Result 3: The isotropic acceleration corresponding to any dynamic state u of the manipulator is denoted
by aiso(Su) and, if conditions (1.131) and (1.132) are satisfied, is given by

| det{Adjri, — |anaky — apaka| | det(A)| e — [@2ik) — aniks| ) ) (1.133)
Vi, +a3, ’ viai + a3

Giso(Su) = min

Proof of Result 1:
Let d(OA”) through 4(OD") denote, respectively, the distances of vertices A through D" from the
origin O in the £ - plane. Then an.x(Sy) is the distances of the furthest vertex of the set Sy which is the

Ll

paraliclogram A" B C’'D". Therefore, @mas(Su) is given by
anax(Sn) = max{d(0A"), KOB"), &OC"), &OD")]. (1.134)
Using (1.40), the coordinates ¥1(A") and %2(4") of vertex A” in the ¥ - plane are given by

#(a") 21A) + k= aumie + L+ ki, (1.135)

it

#2(A") #2(A ) + ke = @170 + G720 + b (1.136)

The distance d(0OA"”) from the erigin O to the point A" is given by

A"+ 5A")

'\/(all'rla +a12725 + k1)2 + (@710 + G22720 + K1) (1.137)

d(0A")
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Figure 16: Isotropic acceleration of the state acceleration set of a two degree-of-freedom

manipulator

In exactly analogous fashion, we obtain

d0B"y = \flanmio - 81270 + ki + (aurio — 22720 + k1)?, (1.138)
doc"y = \/(0111’19 +@12720 — k1) + (@710 + A22T20 — K1 )P, (1.139)
dOD") = \laum, - o - kP +@umie — anme — k12 (1.140)

Equations (1.134) and (1.137) through (1.140) comprise resuli 1.

Proof of Result 2 and 3:
In Figure 16, we have shown two sets, §, and Sy which is obtained from S, by a translation k =

(k1, k2)7. The centroids of S, and Sy are, respectively, by O and K.
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Using equations (1.79), {1.64), (1.45), and (1.46), the distance from X to the reference lines §; and &

are given by
oK, b = Iankaz— aizks| (1.141)
\/%2*“&2
lg21k1 — a11k2] ' (1.142)

(K, ) = ———m-m,
g ’ V“%I'H‘%

PK, 1)) represents the perpendicular distance between the lines A'B’ and A"B" and also between the lines
C'D' and C"D" (see Figure 16). Similarly, p(K, b) is equal to the perpendicular distance between the
lines B'C’ and B"C”" and also between the lines D'A’ and D"A" (see Figure 16).

The state isotropic acceleration aiso(Sy) is the maximum acceleration which is available in all direc-
tions. It is therefore equal 1o the minimum of the distances from the origin @ (of the acceleration plane)

to the four sides of A"B"C”D" (ihe set Sy).

Referring to Figure 16, we can write the following expression for giso(Su):
aiso(Su) = min[p(A"B"), pB"C"y, pC"D"), p(0"A"))] (1.143)

where p(A"B") is the {perpendicular) distance from O to A”B” and similarly for p(8"C"), p(C"D"),

"o mn

p(D A"), all assumed positive by definition. from the geometry of Figure 16, we can write,

& it

pA"B"), p(C"D"y = ptA'B'y % p(X, h). (1.144)

(L /)

(Comment: In Figure 16, for example, p(A"B") = p(4'B") + p(K, 1) and p(C"D") = p(C'D") — p(K, h);
the correct choice of signs will depend on the direction of the translation but as will be shown below we
do not have to worry about the correct choice of signs.)

Similarly,
p(B"C"), pD"A"y = p(B'C') £ p(K, o). (1.145)

{The above comment holds for (1.145), too.)
Combining equations (1.143), (1.144), and (1.145), we obtain

@iso(Su) = min[p(A'B') £ p(X, h), pB'C') £ p(K, b)]. (1.146)
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Since all distances 2() in the above equation are positive by definition, we can rewrite the above equation

as
Giso(Su) = min[p(A'B’) — p(K, 1), p(B'C') ~ p(K, B)). (1.147)

Substituting eguations (1.80), (1.81), (1.141) and (1.142) into {1.147), we obtain the required result
(1.133).

Equation (1.147) clearly demonstrates that the isotropic acceleration aiso(Sy) for any state u # 0 is less
than a;50(S,) = min[p(4'B"), p(B'C')]. In fact, if p(K, h) and p{K, k) are sufficiently large (equivalently,
the “nonlinearities” k1 and k2 are sufficiently “large”), we may not have any isotropic acceleration. The
necessary and sufficient conditions for the existence of the isotropic acceleration can be obtained either
from (1.147) or (1.133), From (1.133), we obtain the following 1wo necessary and sufficient conditions

for the existence of the isotropic acceleration:

| det(A)| 1o — (k1022 — k2ayz| > 0, (1.148)
| det(A)|m, — |kyaz — k2ay1| > 0. (1.149)

These are exactly the necessary and sufficient conditions expressed in (1.131) and (1.132) of result 2.
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6 Local acceleration properties

At any given (local) configuration q in the workspace, the following questions are of theoretical and

practical importance.
¢ What is the magnitude of the maximum acceleration at any configuration ¢ in the workspace?
¢ What is the magnitude of the isotropic acceleration at any configuration q in the workspace?

To answer both these questions, we need to use the properties of the sets §;, Sq Sy developed in the

preceding subsection,
Result 1: The local maximum acceleration @max local 2t 2 given configuration q is specified by

(amn,local}lb < Gmex local < (amnx,loul)ub {1.150)

where (@max local)is 8 given by (1.130) with k1(q, §) and k2(q, ) evaluated at that joint variable

vector ¢ which maximizes I{§, §2) in equation (1.89).
(@max,local ub = Gmax(8q) + Gnax(S-) (1.151)
where amax(Sq) is given by (1.89) and @max(S,) is given by (1.69).
Result 2: The local isotropic acceleration agis,1oca1 at a given configuration q is specified by

disolocal

= min[p(A'B) — pmax(¥(Sg), 1), PB'C') = praar(R(Sq), 12)] (1.152)

where p(A'B'] and ®B'C’) are given, respéctively, by equations (1.80) and (1.81), and where
max(X(Sq4), i) and max(X(54), 2) are given by equation (1.92).

Proof of Result 1:
The local maximum acceleration gma; i5 the maximum acceleration over all possible state acceleration

sels Sy at a given position ¢ in the workspace. Therefore, ay,x can be written as

Gmaxlocal = Max{UgerSy)- (1.153)
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Figure 17: Maximum local acceleration of a two degree-of-freedom manipulator

It is not possible to find an exact analytical expression for GmaxJoca. However, we can find an upper
bound and lower bound which are very good approximations 10 Guax local-

Corresponding to every point P of the set g, we have a state acceleration set Sy(P). Let P’ be the
furthest point (from the origin) of Sg, and let Su(P") be the comresponding state acceleration set, as shown
in Figure 17. Also shown in Figure 17 is the set S,(P") obtained by rotating the set Sy(P") about P’ till
the longest diagonal (A”C” in this case) of Sy is collinear with the line OP' joining the origin to the
furthest point P’ of Sg. It is easily seen from Figure 17, that if vertex A’ is the furthest vertex of Su(P)
from Q, then a lower bound is given by

(@max loca )b = d(OA"), (1.154)
and an upper bound for @may jocal is given by

(AmaxJocal )b = AOP) + d(A" P'), (1.155)
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(Gmax Jocal Jub = Bmax(Sg) + Zmax(S7). (1.156)
- In general, one of the four vertices A", B”. ", or D" would be the furthest vertex of Sy and therefore we
should write (1.154) as
(max Jocat)ie = max[d(OA”), d(OB"), dOC"), d(OD")). (1.157)
Combining (1.157) with equation (1.137) through (1.140), we obtain equation (1.130). The values of
k; and &z in (1.130) correspond to the furthest vertex p’ of S4 from the origin, i.e., to that joint variable
vector q which maximizes {{¢, §2) in equation (1.89). This is simply 2 matter of computing ¢, ¢2)
at the four vectors (§1o, —§10)% (&> @207+ (Q10s &20)7 and (J10, —&20)7 defined in subsection 3.2.2 and
determining which of these four vectors maximizes g, ¢2). This completes the determination of the

lower bound (Zmax jocat)ib-
Substituting for gma(Sq) and gmx(S;) from equations (1.89) and (1.69), respectively, we obtain
equation {1.151). Thus, Result 1 is proved.

Proof of result 2:

The local isotropic acceleration is obtained in the following steps.
1. The maximum possible isotropic acceleration is obtained when § = 0 and is equal 10 2;,,(S5,) as

given by equation (1.70).

2. Every state acceleration set will have an isotropic acceleration which is less than that given by
(1.70) because the “nonlinearities” effectively reduce the isotropic acceleration. The resulting state

isotropic acceleration is ajso(Su) which is given by equation (1.147),

3. The local isotropic acceleration @ise local is the magnitude of the smallest state isotropic acceleration

at a given local configuration q, i.e.

Qiso,local = MiN Bjso(Su). (1.158)
qcF

4. Using equation (1.147) and (1.158), we can express the local isotropic acceleration @z 10cal a8

Guolocal = MRMin[p(A'B') — p(K, ), p(B'C) — plK, )]

min[glég{p(ﬂ'f?') — P&, 1}, min{p(B'C) - p&, )}. (1.159)
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5. Since p(A'B) and p(B'C’) are constants for a given manipulator and given actuator constraints,

{1.159) can be writlen as
Giso Jocal = Min[p(A'B’) — max o(K, 1), p(B'C’) — max p(K, I)). (1.160)

where max(p(X, 1)) is the distance from the line /) to the clement of 54 furthest away from [
which we denoted in subsection 3.2.2 by pmax(%(S¢), /1), and max(p(X, &2)) is the distance from the
line I; to the element of Sq furthest away from J; which we denoted by pmax(X(Sg), &2). We can

therefore write

max p(K, [1) Pmux(X(Sg), 1) (1.161)

Pmax(X(Sg), i2) (1.162)

max p(K, Iz}

Combining (1.160), (1.161) and (1.162), we obtain the required result (1.152). (Note that all
quantities in (1.152) have been analytically determined earlier.)
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7 Summary and conclusions

In this paper, we have developed a theory for the acceleration sets of planar manipulators. In panicular,

we have accomplished the following:

e Given the kinematical and dynamical equations of a manipulator, we have defined the image set S,
corresponding to the set T of actuator torques, and the image set 54 corresponding to the set F of
the joint variable rates. We have also defined the state acceleration set Sy at a specified point u in

the state space.
e We have determined the image sets, Sy and S4, and the state acceleration set Sy.

¢ We have characterized the image sets S: and the state acceleration set Sy by their maximum and

isotropic acceleration. The image set Sq has been also characterized by the maximum acceleration.

» At a configuration or position, q, in the workspace, we have established two local acceleration
properties: the local maximum acceleration and the local isotropic acceleration. The local maximum
acceleration specifies the magnitude of the maximum acceleration of (a reference point on) the
end-effector. The local isotropic acceleration specifies the magnitude of the maximum available

acceleration of the end-effector in all directions.

We have, therefore, demonstrated the hypothesis which we stated in the introduction, i.e., that the
analvtical properties of acceleration sets can be determined from the properties of the linear and quadratic
mappings which define them (the acceleration sets). Furthermore, the acceleration properties of interest
- especially the isotropic acceleration - have been determined in termis of the manipulator parameters
and the torque limits and joint variable rate (“joint velocity”) limits. The stage has now been set for
the application of the theory developed in this paper to problems in the design of manipulators in the
companion paper (Desa and Kim, 1989).

Acknowledgements
Both authors would like to acknowledge the critical comments made by Professors Matt Mason, Bill

Hughes and Leonidas Paparizos who served on Yong-yil Kim's doctoral thesis commitee. Yong-yil Kim

48



would like to acknowledge financial support from the Korean Government in the form of a scholarship.

49



Appendix. Equations of motion for the two degree-of-freedom planar manipulators

1. Jacobian matrix
The joins variable rate is related to the velocity in Cartesian space by the Jacobian matrix,

x=J4.

The Jacobian matrix J of the two degree-of-freedom manipulator shown in Figure 1 is the following:

y= | ~hsira - Isin{g1 + g2) —lz2sin(q1 + q2)
hcosqy+hcos(gi+g2) hcos(qr+q2)

When this relationship is differentiated with respect to the time, we obtain the following equation,
£=J4+Jq= 34 - E{q)° (1.163)
where E is the matrix which has the following elements:

hicosg: + hcos{q1 + q2) hcos(g1 +q2)

5 sing) + hsin(gy + ¢2) By sin{q; +q2)

E=

2. Dynamic equation _
The dynamics of the two-degree-of-freedom planar manipulator shown in Figure 1 is described by the

following equation:
Di+V{§}’=r (1.164)

L4

_ where the compenents of matrices D and V are as follows:

De L+ma+h+myal+2ahcosqz+ B) L+ malad + axly cos )
b+ mz(ﬂ% + azfy cosg2) I+ m;ﬂ%
0 —madsiy sin
V= 20721 S10 42 ,
mzazfy singz 0

and the nonlinear vector {@} is as follows:
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-

[
ta [(‘?H-l?z)‘—tﬁ}

3. Acceleration equation

The expression of the acceleration of the end-effector is as follows:

£=A7+B{q)?

(1.165)
where

A=Jp~! (1.166)

B=-AV-E (1.167)
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