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Abstract

Driving autonomous vehicles on the highway is one
of the most important coming applications of au-
tonomous mobile robots.

Many vision based systems have been developed
for highway navigation and their success in experi-
ments have been reported. While they have impres-
sive success, they cannot as yet handle all conditions
of weather, illumination, and traffic. Thus it is still
necessary to develop other navigation methods to en-
able redundant and robust navigation systems.

In contrast to road-following applications, off-road
navigation usually cannot rely on simple tracking of
visual cues, and therefore must use position-based and
landmark-based navigation, such as in {4, 5]. Our long-
term goal is to integrate this style of position-based
navigation with visual road following in order to build
a more robust and reliable road navigation system.

In this paper, we describe the first part of that
project: constructing a navigation system that can
build maps of highways and landmarks, and use those
feature for position-based navigation. Speed and yaw
rate gyro sensors are used for vehicle motion detection,
and a millimeter wave radar system is used for land-
mark detection. To achieve position estimation and
error correction, we use an extended Kalman filter.

First, a map is built without previous knowledge
of landmarks while human drives the vehicle. Then,
at the stage of autonomous navigation, the previously
produced map is used for position estimation. The
experimental results show that a map produced by the
proposed method can be used for later navigation, and
that vehicle position is estimated accurately.

1 Imntroduction

Many different vision based navigation system have
been developed. One of the pioneer was Graefe et.al.
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in Germany {3]. They developed a real-time vision pro-
cessing system, and demonstrated highway navigation.
In the United States, Pomealau et.al. developed a neu-
ral network based navigation system called ALVINN
(1]. Later they replaced the system with non-neural
network based one called RALPH [2]. These vision
systems find the road geometry ahead, and control
steering so that the vehicle can follow the highway.

Even though these vision based system succeeded in
experimental runs, it is still necessary to develop other
navigation method to make redundant and tolerant
system. The longest runs without human intervention
using the RALPH system, for example, were over 90
miles. This is impressive performance for a research
system, but is still not adequate for a production sys-
tem.

In contrast with highway system, many non high-
way autonomous vehicles use positioning and land-
mark system [4, 5] etc., because non highway environ-
ment is more complex than highway environment, and
position information helps environment recognition by
vision or other sensors. In this paper, we describe the
first results of our system which uses this kind of land-
mark based navigation for highway driving. Tt is our
intent in further work to integrate the position-based
navigation, reported here, with other ongoing work in
vision-based navigation, in order to produce a more
robust driving system.

For position based navigation, our system requires
an accurate map of environment. This paper first de-
scribes methods for building such a map, then dis-
cusses techniques for using it.

2 Strategy of Navigation

In a highway environment the path that the vehicle
should follow is limited to the constructed roadway.
The vehicle must stay in its lane, and changing lanes
must be prohibited unless intended. Then free space
in which the vehicle can move is very limited.

The problem is not planning or selection of the path,
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Table 1: System Parameters and Technical Specifica-
tions for the FMCW Radar

Carrier Frequency 76.5 GHz
Modulation Waveformm | FMCW
Swept Frequency 300 MHz
Range
Coverage 1~ 200 m
Resolution 1m
Accuracy 0.1 m (or better)
Azimuth
Coverage 12°
Resolution 3°
Nominal Accuracy 0.1°
Elevation Coverage 3°
Antenna : 1 Transmitter, 4 Receiver linear array
V¥oV: 3°, HFoV: 12° for each Antenna

but rather specification of an accurate path and posi-
tioning.

In our system, the path is described in a map, and
the map is built while an operator drives on the high-
way. The location of the vehicle is measured by motion
sensors, and landmark observation is recorded simul-
taneously.

The problem of map building and positioning with
motion sensors is that the vehicle position can not be
obtained directly from inertia or motion sensors, but
it is calculated by integrating sensor data. Errors in
sensor data, modeling, and calculation, accumulate in
each iteration of calculation, so that the error in cal-
culated vehicle position could be unacceptable when
the vehicle moves a long distance. This error must be
corrected by observation of landmarks. To achieve this
position estimation and error correction the extended
Kalman filter (EKF) is used.

3 Radar and Motion Sensors
3.1 Radar Range Finder

A millimeter wave radar system for outdoor vehi-
cle navigation has been developed in our group at
Carnegie Mellon University [6]. The radar system op-
erates as a Frequency Modulated Continuous Wave
(FMCW) system. The system parameters and speci-
fication are shown in Table 1.

The radar system provides two dimensional position
information (range and bearing) of objects. The am-
plitude of the reflected wave from each object is also
obtained. The detectable range is up to 200 meters
and the maximum bearing angle is +6 degrees.

The radar is used to detect landmarks beside the
roadway. Landmarks may be corner cubes specially

installed for vehicle navigation or natural metallic ob-
jects such as traffic signs and light poles.

3.2 Doppler Effect Compensation

In the process of radar sensing the Doppler effect can-
not be ignored [6]. The Doppler effect causes a range
error of radar sensing which is proportional to the rela-
tive speed of the vehicle and objects. This range error
can be about 5m when vehicle is running at 100km/h.
Accuracy of landmark position is critically important
for map building and navigation, so we need to cor-
rect for the Doppler shift in the radar output by using
motion sensor data. In a typical situation, the radar
is moving with vehicle, and we assumne the reflection
comes from a stationary object in front of the vehicle.
The frequency shift f; in the received wave 1s
2v

fo = (1)
where A is the wavelength of the transmitted wave, and
v is the relative speed of the vehicle and the object [7].

The range error AR caused by the Doppler effect
can be calculated as follows [6].

c

AR = mfd
C v
7N @

where the carrier frequency is 76.5GHz, we have a
wavelength A = ¢/f = 3.9[mm]. For our system, we
have a swept frequency of 2A f = 300[MHz], a modu-
lation frequency f,, = 1.25[kHz] and ¢ is the speed of
light. Then the result is

AR = 0204v [m] (3)

When » = 27[m/s] which is approximately 100km/h,
the range error will be 5.5[m]. We use equation (3) to
compensate for the Doppler effect in the range data
by using the vehicle velocity v obtained by the speed
sensor.

3.3 Motion Sensors

Dimensions. Vehicle motion is measured by a vehi-
cle speed sensor and a yaw rate gyro sensor. The mea-
sured motion and position, and thus the constructed
map, are only two dimensional, although the actual
road may not be exactly planar. Although the con-
structed map may not be exactly accurate, since it
does not represent true 3-D road shape, it is still use-
ful for navigation because later passes over the same
terrain with the same sensors will have similar sources
of error.

Speed Sensor. The forward component of the vehi-
cle velocity 1s measured by a commercial non-contact
optical speed sensor. The speed sensor detects the
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Table 2: The Speed Sensor Specifications
DATRON Corporation model DLS-1

Sensor resolution 2.5mm
Diameter of optical field 30mm
Speed measurement range | 0.5Kmh to 400Kmh
Accuracy +0.2%
Repeatability +0.1%

Table 3: The Gyro Sensor Specifications

ANDREW Corporation model AUTOGYRO 225140

Description Specification
Input Rotation Rate £100deg/sec
Angle Random Walk

deg/hr/rt-Hz 20

deg/rt-hr 0.33
Bias Drift

(at fixed temperature) | 0.005deg/sec

(repeatability) 0.025deg/sec
Scale Factor Linearity

constant temp. < 0.5%

full temp. < 1%

flow of optical texture of the ground so that the trav-
eled distance i1s obtained. By counting the distance
travelled in a small time interval, the vehicle forward
speed is obtained. Table 2 shows the specifications of
the speed sensor.

Yaw Rate Gyro Sensor. The other motion sensor
is a yaw rate gyro sensor which we use with the speed
sensor to provide a complete 2-D motion measurement,.
The specifications of the gyro sensor is shown in Table

3.

4 Kalman Filter Design for Map
Building

4.1 vehicle kinematics

The speed sensor measures the forward component of
the vehicle velocity, and the yaw rate gyro sensor mea-
sures the angular velocity around the vehicle’s vertical
axis.

These two sensors are sufficient to measure the two
dimensional displacement of the vehicle. We assume
the vehicle body, on which the sensor coordinate is
fixed, is always standing straight up, because the ve-
hicle does not turn sharply on highways and therefore
does not roll or pitch significantly. The advantage of
this set of motion sensors is that the filter design can

sensor

o [

Figure 1: Speed Sensor Configuration

be simpler than systems which use wheel rotation or
steering angle for motion detection.
The vehicle kinematics are

z(t) = /(;v(t)cosQ(t)dt

/0’ v(t) sin 6(t)dt 4

/Ot w(t)dt

where, (z(t),y(t)) is the relative position of the vehi-
cle in the two dimensional plane, and 6(t) is the vehi-
cle orientation described by the angle between vehicle
heading and the x-axis. v(t) and w(t) are the speed
and angular velocity of the vehicle respectively. In
discrete form in time, #;, k = 1,2,3, ..., equations(4)
can be written as follows.

y(t)
o(t)

i

Tppr = ap+vpAtcosly
Y41t = Ui+ vpAtsinby (5)
Orrr = O +wpAt

where At is the interval between each successive time
step.

4.2 Models of Sensor Errors

Speed Sensor. The speed sensor is attached to the
vehicle so that the sensor is aligned along the vehicle
forward direction.

If the alignment is perfect, the sensor detects the
forward component of vehicle velocity correctly. In
Figure 1 V is the vehicle velocity at the point where
the sensor is attached. V} is the sensor output, which
is the velocity along the direction in which the sensor
is pointing. If the sensor is properly aligned with the
vehicle, then the forward velocity of the vehicle’s co-
ordinate frame (centered between the rear wheels) is
also given by V;.
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Figure 2: Alignment Error of Speed Sensor

However in practice, the sensor alignment can not be
perfect. Any errors in alignment can be exacerbated
if the sensor is not mounted on the rear axle and the
center line of the vehicle.

We will consider the sensor error caused by this mis-
alignment. Assume that the angle of misalignment
from the center line is B as shown in Figure 2 and the
sensor output V,,, has an error caused by B. Let A be
the angle between the vehicle forward direction and
the direction of velocity V. V; and V,, are projections
of the vehicle velocity V' onto the desired alignment
line and the actual sensor direction respectively.

Vi = VecosA (6)
Vm = Vecos(A+ B)

Then, we cbtain

cos(A + B)
Vi cos A

V(1- Btan A - %B?) +0(B% (1)

Vm =

I

The angle A varies according to the curvature of
the vehicle trajectory, and the angle B is the fixed
error of alignment. If the sensor is fixed very close to
the vehicle rear axle, tan(A) < B, then |Btan(4)] <
%BQ. Note that %Bz is an unknown constant value.
We model the sensor measurement

vs = Vi(l1+p) (8)

where v, is the sensor output. pis a term caused by
alignment error.

Gyro Sensor. The yaw rate gyro sensor gives us
angular velocity around the vertical axis. We model
the gyro sensor output such that the sensor output in-
cludes a scale factor error and offset (bias drift) errors.
The sensor output w, is written as follows.

we = w{l4+g)+r (9

where ¢ and r are scale factor error and offset er-
ror respectively. We assume that both errors change
smoothly because the average of those errors depends
mainly on temperature.

4.3 Prediction of Vehicle State

Now we can proceed to derive the equations of predic-
tion using the extended Kalman filter technique. In
addition to vehicle position and orientation (z,y, )7
we take sensor error parameters (p,q,r)7 as vehicle
state = (x,y,0,p,¢,7). From equation(4), (8), (9),
and input 7 = (9,@)T from the motion sensors, we
obtain the prediction of the state @44

@rp1 = (Bkgt, Born, Oran, gt Gt Pagn)?
= f(&m) (10)
= F(@, O, Ok, Pr, Grs Tr, Ok, 1)

and

f(mlm) = f(l’,y,@,p,q,r,v,w)
x+{v/(1+p)}Atcosf
y+{v/(1 +p)}Atsind
0+ {{w—-r)/(1+q}at

p

q
r

(11)

Next we will derive the update equation of the covari-
ance matrix. Let @ and m be true state and motion,
and denote them.

T = x+ Az (12)
m = m+Am

Az and Am are the errors included in & and #, and
they are assumed to be Gaussian and uncorrelated. By
putting (12) into (10),

Zre1 = fler+ Axy,my + Amy) (13)
of of
~ f(fL'k,Tnk) + % kA:l}k -+ —a-;;; kAmk

Here, @41 = f(ay,my) 1s the true state of &gy,
then the covariance matrix Py, of the state is:

Peyr = Eldai, Amgy]
= El(#k41 — r1) T (@41 — 2a41)] (14)

where E[] is the expectation operator.
From the above two equations (13), (14), we obtain

of _ of"  of of "
Py = | B2 + 2| ML
kil ox |, " bz |, ﬁmk}\/ dm |,
= FPFl 4+ F,MFT (15)

where, F}, and Fp, are the Jacobian matrix of f(x,m)
derived by ® and = at time {; respectively. This is
the update equation of the covariance matrix.

The covariance matrix of the state at time ¢, is P, =
E{Az{Amk]. The covariance matrix M of the inputs
is constant and triangular because we assume they are
uncorrelated.
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Figure 3: Vehicle and Landmark Position

4.4 Position Estimation with Land-
mark Detection

While no landmarks are found, only the predicted ve-
hicle state and its covariance are calculated. When
the radar detects landmarks, the vehicle state z can
be estimated more precisely.

The radar sensor is fixed on top of the vehicle and
pointed forwards. Consider that the vehicle detects a
landmark where the vehicle state ® = (z,y,6,p,q,7)
and the landmark position (2r,yr). The radar out-
puts range / and bearing angle b. Let us denote them
as a vector I = (I, b).

From Figure 3, we easily obtain

2 = { :1(l,m,$L,yL) }
z(l,®, 20, yL)
_ {z —xp +rcos(f+b)}* _
= [{y—yL+rsin(o+b)}2 =0 (9)

Only the predicted vehicle position and orientation x
are obtained which contain error A®, then

® = &+ Az {17)
Given radar output I with error Al, then
I = I+Al (18)

Putting (17}, (18) into (16) and linearizing equation
(16) with the first order derivatives of @ and I, we

obtain
2 o~ [ zl({):?;:LLayL) ] + [ 'ét * ]Am
Zg(l,Z,l'L’yL) ?9-1%‘*

az
;‘ZIL* Al =0
o |,

i~ HAw—Az=0 (20)

(19)

or
z = HAxz+ Az (21)
where
S [ Zl(l9i’1£L7yL) ]
: = 2
32(lﬁw’xLny)
_ Bz
H:sz[_g*] (22)
oX |»
__ 2z i
Az = ZIAlL, Z;= 2 al
- &

* denotes at the point z = #,1 =1

Equation(21) describes error in the measurement
process. 2 is the observation obtained by the radar
measurement with known & and (zr,yr), and H is
the observation matrix which is multiplied not by the
vehicle state directly but by the state error Az. Az
represents errors (noise) in the observation.

Now we are almost ready to derive the equations of
position estimation.

Let R be a covariance matrix of Az.

R = E[AZTAz]
= ZFE[AITAlZ (23)
T 0'2 0

— 1

- 4T &)
where we assume that the errors of the radar measure-
ments [ and b are Gaussian and uncorrelated, with
variances o? and o? respectively. Consider that the
observation occurred at time #; and put suffix £ in ev-
ery time dependent variable such as Hy, Ry, 2. And
let 24(—) and Pp(—) denote the predicted state and co-
variance matrix at ¢;. With the theory of the Kalman
filter, we get equations of estimated position zz(+)
and covariance matrix P(+) as follows,

(=) + P(H)HTR 'z, (24)
(Pe(=)"' + HI R1H]!

2 (+)
Pi(+)

il

il

5 Map Building and Navigation

5.1 Map Building without Previous
Knowledge of Landmarks

The map we intend to build consists of roadways and
landmarks. A roadway is a path to be followed, and
is represented as series of points on the center of the
road. Landmark information consists of position and
other attributes such as type and sensor dependent
characteristics.

Initially we have no knowledge about the road and
landmarks. We want to build a map by running the
vehicle manually and measuring vehicle motion and
radar observations.

=
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Errors in predicted position and orientation accumu-
late while no landmark is detected. The errors have to
be corrected by position estimation with landmarks.

During a single run, when an object is first detected
its position is noted. If an object 1s detected in the
same place again, such as in the next radar measure-
ment, then it is assurmed to be the same object ob-
served before and the object is labelled as a landmark.
Any errors in motion estimation since the first detec-
tion of this landmark will show up as errors in vehicle
position. The subsequent sightings of the landmark
are used to improve the vehicle position estimate, and
to decrease the effect of motion errors.

5.2 Elimination of Radar Noises

Landmarks are reflectors (usually corner cubes) that
we installed or naturally existing objects (usually
metallic objects) which reflect millimeter wave radar
strongly. However the radar detects not only land-
marks, but also any objects that reflect the wave.
Some of those objects may not be desirable as land-
marks and should be treated as noise.

Elimination of radar noise is not easy. We do not try
to distinguish noise, but statistically reduce the effect
of the noise: first, objects measured only once at the
same place are recorded in a map, but are not labelled
as landmarks. Second we introduce the ambiguity of a
landmark’s position represented by variance ¢2; and
o2, . These variances are set to be large, so observa-
tion of the landmark has a relatively small effect on
vehicle position estimation. A sufficient number of ob-
servations will lead to a correct position estimation,
while a few noisy observations will have little effect.

To introduce the variance of landmark position,
merge (zr,yr) into I in equation (19) and (22), then
we get

s? 0 0 O

0 o7 0 0
R = zF b Zr (25
10 0 o O o (25)

0 0 0 o

This R will be used in position estimation instead of
equation (23).

5.3 Errors in Landmark Position

The accuracy of the radar is usually high. The error
is typically less than 0.1m in range and less than 0.1
degree in bearing angle.

The radar measurement is combined with the posi-
tion of the vehicle to calculate the position of detected
objects, then errors in objects position are the sum
of errors in radar measurement and vehicle position.
However our experiment shows that the dispersion of
object positions is larger than expected. The cause of
these errors could be multi-path dusturbance caused

Distance y[m]
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Figure 4: Detected landmark distribution
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Figure 5: Detected landmark distribution

by nearby objects or timing problem of the radar pro-
cess and the positioning process running in parallel;
we are currently working to diagnose and reduce these
errors. Figure 4 and 5 shows measured positions of
several objects when the vehicle ran along the x-axis.
The upper left cluster in Figure 4 is a corner cube.
Other objects in the both figures are a small number
of naturally existing objects beside the road. Espe-
cially in Figure 5, the plotted positions spread over
10mx2m square and are not distinguishable as a few
objects.

From these results, we have to assume a relatively
large variance in measured landmark positions.

5.4 Experimental Results

Map Building. Corner cubes are placed every fifty
meters along the road to be used as landmarks. In
addition several metaric objects exist along the road
such as light poles and traffic signs and these objects
are also used as landmarks.

Raw dead reckoning trajectories of the vehicle driven
by a human are shown in Figure 6. The vehicle started
from the origin in the figure and moved at 50km/h.
Each trajectory differs and contains accumulated er-
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Figure 6: Vehicle trajectories by dead reckoning
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Figure 7: Vehicle trajectories corrected by landmark
detection and position estimation
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rors in motion sensing. The raw trajectories cannot
be used as a map.

Trajectories corrected by using landmarks are shown
in Figure 7. The method described in 5.1 is used with-
out previous knowledge of landmarks. The trajectories
are closer than raw dead reckoning. Figures 8 and 9
show the estimated standard deviation of errors in ve-
hicle position and orientation of trial 1 in Figure 7.
The rapid error growth seen in raw dead reckoning
is suppressed, and the estimated error in the vehicle
orientation, which is very important in position esti-
mation, is decreasing. This means the built map is
accurate; errors in the map do not diverge and are
kept under certain values.

Navigation with Map. The map built without
previous knowledge of landmarks can be effectively
used for navigation. We would like to show that the
vehicle can estimate its position and orientation with
the built map.

Figure 10 shows a path and landmarks in the map
and trajectories (series of estimated position) when the
vehicle was driven by a human along the road. The
trajectories of both trials are estimated well and very
close to the original path in the map. The differences
are within the expected human driving errors on the
same path.

Estimated errors of vehicle position are suppressed
and kept under certain values as shown in Figure 11

and 12.

6 Conclusion

For position based navigation of Automated Highway
System, a method of map building withcut previous
knowledge of landmarks was proposed and verified by
experiments. The system with radar and motion sen-
sors was introduced, and the extended Kalman fil-
ter was designed for position estimation. The model
of the filter includes sensing errors of motion sen-
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Figure 10: Navigated vehicle trajectories
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sors and landmark measurement by the radar sen-
sor. The experiments showed that a map can be built
without previous knowledge of landmarks, and after
the map building vehicle position was estimated accu-
rately while the vehicle moved along the path in the
map.

In our ongoing work, we are reducing the errors in
radar sensing, and therefore in landmark positions.
We are also preparing for autonomous driving. While
the experiments shown here demonstrate that vehi-
cle position can be accurately obtamed for a human
driver, it is cur goal to have the vehicle positions cb-
tained accurately enough for fully automated driving,
based solely on position estimation. The next step
after that is to mtegrate position-based driving with
vision-based road following, and to measure the accu-
racy and reliability of the combined system.
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