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Abstract

YAREF, like several other road following systems, models the
road as features which form concentric circular arcs lying in
a flat ground plane. This can be thought of as a two-dimen-
sional analog of a generalized cylinder, in which a one-
dimensional feature cross section is swept along a spine
curve which is a circular arc. Two approximations are made
in order to use a linear estimation technique to determine the
spine parameters. In the first, the circular spine arc is
approximated by a parabola. In the second, data points from
different road features are shifted to lie on the spine by trans-
lating them parallel to the X axis rather than perpendicular
to the (unknown) feature tangents. The first section of the
paper demonstrates that errors due to these approximations
are reduced substantially by estimating the spine parameters
in a data-dependent coordinate system rather than in a vehi-
cle-centered coordinate system.

The second section discusses the problem of estimating the
spine parameters in the presence of outlying data. Outliers
may be caused by false positive responses from features
trackers due to incorrect predictions. They can also arise
from unexpected shifts in feature location. The outliers are
usually correlated in both these cases. Using standard least
squares estimation can result in the vehicle drifting off the
road due to errors in the parameter estimates caused by such
contaminants in the data. The use of least median squares
estimation to overcome these problems is discussed.

1. Introduction

Recovery of road structure from segmentation data poses
two issues which must be addressed in designing a road
following system: the nature of the representation of road
structure and the nature of the process which determines the
model parameters given a particular set of segmentation
data. Selection of an appropriate road representation and
data fitting scheme requires balancing a number of
conflicting criteria:

The accuracy with which the class of models
selected can represent the actual structure of the
road;

The computational cost of extracting the model
parameters from segmentation results; and

The robustness and stability of the fitting process
in the presence of noise in the segmentation.

YAREF adopts a representation scheme in which the ground is
assumed to be locally flat, and the road is modelled as a one
dimensional set of features swept perpendicular to a spine
curve. The spine curve is approximated locally as a circular
arc for computational efficiency. Examination of alternative
methods of representation in use suggests that this type of
road model is the best currently available for balancing the
above criteria.

Analysis of the errors introduced by the approximations
made to linearize the circular spine arc model shows that
their magnitude depends on the coordinate system in which
the arc parameters are estimated. Simulation results are
presented to show that the magnitude of the errors intro-
duced by linearizing the circular arc model are small in the
range of curvatures of interest when the data is rotated into a
“natural” coordinate system before parameter estimation.

YAREF incorporates two methods for extracting the spine arc
parameters given a set of feature positions on the ground
plane: least squares fitting and least median of squares
fiting. Least median squares [8) is a robust estimation
technique which attempts to eliminate the influence of
contaminating data points on the estimate of the model
parameters. Such a technique is useful in cases where false
positive responses from segmentation algorithms result in
outlying data points which would otherwise corrupt the
estimate of the model parameters.

2. Discussion of techniques for recovery
of road model parameters and methods
of road representation

2.1. Methods for recovering model parameters

Three main methods have been used to recover road model
parameters given image segmentation data: boundary
backprojection, voting in the model parameter space, and
statistical fitting techniques.

In boundary backprojection, features detected by the
segmentation are backprojected onto the (assumed) ground
plane, and consistency constraints are applied to determine
which features are part of the road. This is the method used
in the VITS [10] , FMC (5], and U. Bristol [9] systems.
Algorithms which recover three dimensional road structure
using assumptions of constant road width and zero road bank

[2] backproject feature points using assumed image
projection geometry. The backprojection process doesn’t
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enforce any higher level constraints on relative feature
location, and as a result errors in the image segmentation can
produce arbitrary errors in the recovered road shape.

In parameter space voting techniques, detected feature
locations vote for all possible roads they are consistent with.
This method is used in the SCARF [1], ALVINN [7], and
U. Michigan [6] algorithms, and in some of the LANELOK

[4] algorithms. The main advantage of these techniques is
their robustness in the face of large amounts of noise in the
segmentation results. The main disadvantage is the difficulty
of using voting for models which have more than two or
three parameters, resulting in large multidimensional Hough
spaces. Also, peak detection in the accumulator space can be
difficult.

In statistical fitting procedures, road model parameters are fit
using the observed data points and the equations of the road
model. Standard techniques such as least squares or robust
techniques which are less sensitive to outlying data observa-
tions can be used, VaMoRs (3] , YARF, and other of the
LANELOK algorithms use this type of technique. Of the
available techniques for model parameter recovery, statis-
tical fitting methods have a number of advantages. They are
computationally efficient and they have a vast literature of
theory, techniques, and tools associated with them.

2.2. Methods for modeling road structure

A variety of schemes have been proposed for representing
roads. In order of increasing number of parameters in the
model, they are: by steering direction; by linear road
segments; by circular arc road segments; by flat road
segments with locally parallel edges; and by three dimen-
sional roads constrained to have constant width and no
banking,.

The simplest road representation is to summarize the
segmentation data by a steering direction, independent of the
actual road geometry. This is the approach taken in the
ALVINN neural net road follower. In principle, ALVINN
could learn appropriate steering commands for roads which
change slope, bank, etc. In practice, images are backpro-
Jjected onto a flat ground plane and reprojected from different
points of view to expand the range of training images. This
may prove to be a limiting factor on hilly roads.

The next simplest road representation is to mode! the road as
linear on a locally flat ground plane (or equivalently, as a
triangle in the image plane). The road has three parameters,
the road width and two parameters describing the orientation
and offset of the vehicle with respect to the centerline of the
road. LANELOK and SCAREF take this approach. The main
limit of this type of scheme is the need to move a sufficiently
small distance between road parameter estimates so that the
straight path being driven along does not diverge too much
from the actual road.

Modeling the road as a cross-section swept along a circular
arc explicitly models road curvature but retains the flat earth
assumption used in linear models. VaMoRs, YARF, and the

U. Bristol system use this approach. The equations
describing feature locations can be linearized to allow closed
form least squares solutions for the road heading, offset, and
curvature, as well as the relative feature offsets.

A more general model of road geometry retains the flat earth
assumption, but requires only that road edges be locally
parallel, allowing the road to bend arbitrarily. This can be
done by projection onto the ground plane (VITS and the
FMC system), or in the image plane (work at U. Michigan
cited above). The lack of higher order constraint on the road
shape can lead to serious errors in the recovered road shape
when there are errors in the results of the underlying image
segmentation techniques.

Several algorithms have been developed to recover three
dimensional variations in road shape under the assumption
that the road does not bank [2] . These current algorithms
use information from a left and right road edge, which
precludes integrating information from multiple road
markings. Evaluation of an early zero-bank algorithm by the
VITS group as part of the ALV project suggested that such
algorithms may be very sensitive to errors in feature location
by the segmentation processes. This is due to the assumption
of constant road width, which leads to errors in road edge
location being interpreted as the result of changes in the
terrain shape.

Circular arc models would appear to be the technique of
choices in the absence of algorithms for the recovery of three
dimensional road structure which are robust in the presence
of noise in the segmentation data. They have a small number
of parameters, they impose reasonable constraints on the
overall road shape, and statistical methods can be used for
estimating the shape parameters, with all the statistical
theory and tools that use of such methods allows the system
to apply to the problem.

2.3. Road model and parameter fitting used in
the YAREF system

YARF models the road as a one-dimensional feature cross-
section swept on a flat ground plane perpendicular to a spine
curve (hereafter referred to as a generalized stripe model).
Such a model lends itself to parameter estimation using
statistical fitting techniques and seems to work reasonably
well even in the presence of mild variations in ground plane
orientation (gentle hills, for instance). Figure 1 shows an
image of a two lane divided road. Feature points have been
detected along both white lines and the double yellow line in
the center. Figure 2 shows the data points and recovered road
shape on the ground plane.

YAREF assumes that the spine curve can be approximated by
a circular arc. In order to have a system which is linear in its
parameters a parabolic approximation is made to a circular
arc. This parabola represents the binomial series expansion
of the circular arc equation. The term representing the
displacement of a detected feature point from the spine is
also linearized. The final linear model that results from these
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approximations is x = curvature x y*/2 + headingxy +
spinetrans — offset, where (x, y) is the position on the ground

Figure 1: Road image with trackers on lane
markings

plane of a detected feature point, offset is the offset of the
feature from the road spine, curvature is the curvature of the
spine arc, heading is related to the tangent of the spine arc at
the x-intercept, and spinetrans is the x-intercept of the spine
arc.

Standard statistical estimation techniques can be used to
recover the spine arc parameters of curvature, heading, and
spinetrans. YARF uses either least squares estimation or
least median of squares estimation. The next section discuss
the errors introduced by the approximations used to derive a
linear system, presenting an analysis of the magnitude of the
errors introduced. After that, fitting techniques are discussed,
with an explanation of least median of squares fitting and
why it is preferable in some cases to standard least squares.

3. Errors introduced by linear
approximations in YARF

There are two sources of error introduced by the lineariza-
tions. The first arises from the approximation of a circular
arc by a parabola. The second arises from translating points
parallel to the x-axis to move them onto the spine.

3.1. Approximating a circular arc by a parabola

Consider the equation of a half circle centered at the
origin, x = JrP—y? . This can be expressed as a series,

x=c0+c1xy+c2xy2+c3xy3+... Performing the
binomial series expansion to solve for the coefficients and
ignoring terms beyond y? yields the parabola
x = r+y2/(2r) . Introducing translation in x simply changes
the interpretation of the constant term of the series from
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Figure 2: Reconstructed road model

enter - Translation in y makes the

coefficient of the y term in the series nonzero by substituting
Y = Y= Y.enter iNto the parabola equation above.

Cpg=r 0 cyp=r+x

The axis of the parabolic fit is implictly the y value about
which the series approximation of the spine arc is being
expanded. The further data points lie from that axis, the
greater the divergence between the estimated arc parameters
and the actual arc parameters. Since the fit constrains the
axis of the parabola to be parallel to the x axis, rotating the
data so that the x axis passes through the mean y value of the
data points reduces the fraction of the arc circumference
spanned by the fit, and increases the accuracy of the estimate
of the spine arc parameters.

3.2. Translating data points parallel to the X
axis rather than perpendicular to the arc

Data points from the features being tracked must be trans-
lated to lie on the spine in order to fit the spine parameters.
The translation is made parallel to the x axis rather than
perpendicular to the (unknown) spine arc in order to keep the
problem linear (see Figure 3 below). The magnitude of the
error introduced is  error = (x-x,,,,) —offset +

J(x-x,,,,.) % - offset — (2x offset x radius)) .

The magnitude of this error is also dependant on the
coordinate system chosen for the fit. Again, rotating the data
so that the x axis is roughly perpendicular to the predicted
road at the mean y value of the data spreads the error more
evenly among the points and reduces the size of the error for
the points with larger y values.
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Figure 3: Error introduced by translating points to
road spine parallel to the X axis

3.3. Evaluation of error introduced by linear
approximations to circular arc model:
Simulation results

Simulations were run in order to provide quantitative
estimates of the errors introduced by the linearizations
described above. These simulations demonstrate the impor-
tance of fitting the data in a “natural” coordinate system in
which the x axis is perpendicular to the road at the mean y
value of the data points. We call such rotation of the data
before parameter estimation virtual panning. The camera
and road geometry models from an actual Naviab run were
used to generate synthetic road images of specified
curvature, and YARF was run on the synthetic images to
gather data on the difference between the estimated road
shape and the actual road shape.

The simulated vehicle drove 2 meters between images,
keeping centered in the lane with the rear axle perpendicular
to the spine curve. The simulator was set up to use the same
road and camera models to generate the images and to
backproject and fit the data, and the image data is idealized.
This eliminates sources of error other than the approxima-
tions described above. After allowing the simulation to run
for 10 frames to allow the system to settle into a steady state,
the fits from the eleventh to twentieth frames were averaged
and compared to the known model.

The error measure chosen was distance from the true lane
center to the estimated lane center at a given distance along
the estimated lane center arc. The error was plotied for
distances along the estimated lane center starting at the rear
axle of the vehicle and extending out to 40 meters. The front
end of the vehicle is about 3.5 meters in front of the rear
axle. The error measure is illustrated in Figure 4 below.

Figure 5 compares the error in the estimated lane center
position with and without virtual panning of the data. The
top graph shows the error for positive radii of curvature with
the estimation done in a coordinate system fixed with respect
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Figure 4: Illustration of estimation error measure for
simulations

to the vehicle. Note that in all cases the error in the range of
5 to 15 meters from the rear axle is very small, staying
within a foot of the actual lane center. As the curves become
tighter the errors increase dramatically for distances greater
than 20 meters along the estimated lane center.

The bottom graph in Figure 5 shows the corresponding
errors when the data is virtually panned prior to estimation of
the spine parameters. The vertical scale is not the same in
this graph in order to improve readability. Note that the
magnitude of the error stays under 80 cm. at all distances out
to 40 meters along the estimated lane center, and for all radii
of curvature down to +/- 30 meters. This shows the
improvement in fit accuracy achieved by rotating the data
into a “natural” coordinate system. Implementation of virtual
panning has permitted the YARF system to successfully
navigate curves which it could not track previously due to
errors in feature prediction.

4. Parameter estimation by Least
Median of Squares fitting

Data can be contaminated by observations which do not
come from the process whose parameters are being
estimated. Such observations are called outliers. Their
presence in a data set can result in parameter fits that are
grossly incorrect when standard least squares techniques are
used as estimators. Outliers pose a particular problem for the
YAREF system. They will arise when there is a false positive
response from a tracker. Because the tracker windows are
placed at the predicted road position, they will not be
random and may pull the fit incorrectly towards the
prediction and away from the actual road. In addition,
unexpected shifts in feature location will produce data points
which are correct responses from the feature trackers, but
whose positions are not consistent with the model of the road
geometry. An example of this can be seen as an exit ramp is
approached. The right edge of the lane veers off, while the
left edge continues.
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Figure 5: Comparison of accuracy of lane center
estimate, fit done in vehicle frame (top) and fit done
with virtual panning (bottom)

A number of techniques have been developed to estimate
parameters reliably in the presence of outliers. An increas-
ingly popular robust estimation techniques is called Least
Median of Squares (or LMS) estimation [8] . Consider the
linear system y; = Bx;+€ , where B is the vector of param-

eters to be estimated, and ¢ is a noise term. The least median
squares estimate of B is the B which minimizes median(r?) ,

where r; is the residual of the i** data point, px; - y;. To give
a simple geometric intuition for what the LMS estimate is,
picture the two dimensional linear case. The LMS estimate is
the line such that a band centered on the line which contains
half the data points has the minimum height in y (the
dependent variable) (see Figure 6).

The computation of the LMS estimate is straightforward.
Random subsets of the data are chosen. The least squares
estimate of the parameters is made for each subset, and the
median squared residual for that estimate is computed. The
estimate which produced the lowest median squared residual
is selected as the final estimate. The LMS estimator can
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Figure 6: Example LMS fit

accommodate up to 50% of the data consisting of contami-
nants, and is less sensitive to correlated outliers than other
techniques.

Figure 7 shows a case in which the outliers are the result of
errors in the segmentation. The lane being followed has a
double yellow line on the left side and a single solid white
line on the right side. Due to error in the predicted road
location some of the trackers for the double yellow line are
off the road on grass and return false feature locations. The
road actually curves off to the right, explaining the tendency
of the points from the left lane edge to fall to the right of the
fit in the middle of the diagram, and the failure of the white
stripe tracker to locate the right lane edge in that same area
(the points marked with asterisks). The LMS fit on the right
shows the correct road fit, with the erroneous feature points
at top far off to the left of the lane. LMS fitting has been
implemented in the YARF system, and has been used
successfully to estimate the road parameters during runs on
our test site.

5. Conclusion

In this paper we have explained the motivation behind
YARF’s selection of road representation and model fitting
algorithms. We have shown how an analysis of the errors
introduced by linearizing the circular arc road model leads to
the idea of performing virtual panning on the data to reduce
the errors in the model parameter estimates, and presented
quantitative results from simulation runs to show the
improvement from virtual panning. Also, we have explained
the motivation for using least median squares estimation to
avoid errors caused by outlying data points

Future work will involve an attempt to characterize the
errors induced in the parameter estimates in cases where the
flat ground plane assumption doesn’t hold. Also there is a
need for the development of algorithms which can recover
three dimensional road structure with less sensitivity to noise
than current algorithms, and which can incorporate informa-
tion from road features other than the edges of the lane being
followed.
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Figure 7: Comparison of least squares fit (left)
and least median squares fit (right) of data with
outliers. [ 10]
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