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Abstract 

This report reviews ongoing research in modeling and control of assembly systems. A modeling 

framework is developed for representing assembly tasks as a collection of discrete operations with 

precedence relations reflecting physical constraints. Devices are mapped into the subtask 

description leading to an operafion precedence graph which is useful for analyzing alternative system 

configurations and supervisory control structures. Underlying continuous processes determine the 

tolerance requirements for accomplishing the subtasks. Since reducing uncertainty in the system 

configuration is the fundamental objective in assembly tasks, two alternatives for representing 

uncertainty are defined and illustrated by examples. These representations of uncertainty are 

discussed with respect to alternative feedback control strategies for satisfying tolerance constraints. 

The concluding section identifies directions for future research. 
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1 Introduction 

As assembly automation systems become more complex, the analysis and design of these systems 

requires more sophisticated tools to achieve desired performance, including speed, reliability, and 

flexibility. Current research efforts in the Flexible Assembly Laboratory at CMU are focussed on 

developing representation and modeling tools to be used as a basis for automated planning, design, 

and programming of assembly systems and their supervisory controls. This report reviews several 

aspects of this research in progress, and describes the components and representation of the 

assembly task which lends itself to a supervisory control structure expressed in terms of discrete 

events and continuous space task constraints. 

Automated assembly has been studied from a variety of different perspectives. Assembly requires 

acquisition, orientation, and mating of parts in a predefined pattern. Engineering approaches to 

assembly have focussed on the development of mechanisms and devices to accomplish these goals 

[l], [2]. A number of studies in the robotics literature [3] have viewed assembly from the robot 

planning point of view as an extension of blocks of world problems in AI. Task-oriented programming 

languages [4], [5] have viewed assembly as a hierarchy of discrete operations. This type of 

hierarchical representation was used by Sanderson and Perry to describe assembly work cell 

con figurations. 

None of these approaches provide a level of description which easily supports the simulation and 

evaluation of control structures in a real-time sense. In particular, the tradeoffs between speed, 

reliability, and flexibility are not accessible in conventional representations. Reliability of assembly is 

achieved by constraining or sensing part positions and may be modeled by various uncertainty 

measures. We have previously described the use of entropy measures [7], [a] to characterize the 

reduction of uncertainty. In this report, we introduce the use of tolerance sets as a method for 

rnedeling uncertainty which lends itself to real-time modeling applications and the evaluation of 

sensor-based control loops in relation to speed and reliability. 

This report is organized as follows. Section 2 describes a high-level view of assembly tasks and 

systems in which discrete operations are the basic modeling units. Much of the system organization 

and supervisory control structure is determined by breaking down the task into discrete operations. 

The actual assembly process evolves in continuous space and time, and the continuous aspects of 

the assembly problem are discussed in Section 3. In particular, task constraints in continuous space 

are defined in terms of tolerance sets, and methods for modeling uncertainty in the system 

configuration are introduced. Section 4 focuses on the issue of sensory feedback for supervisory 
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control of assembly systems. The evolution of uncertainty as the process progresses in time is 

addressed with respect to alternatives for integrating real-time sensory information into the control 

loop. Directions for future research are summarized in the concluding section. 

2 Discrete Operation Models of Assembly Systems 

This section presents a description of assembly tasks and systems in terms of discrete operations 

involving the assembly components and system devices. For a given assembly task, a graph is drawn 

representing the precedence relations among the operations. This model is used as a framework for 

relating discrete task descriptions to underlying continuous processes, and to formulate the problem 

of selecting rys!em devices to execute the task. 

Terms used in this section are defined as follows: 

device Physical element in the assembly system such as a fixture, gripper, tool, etc. 

component An individual part in the assembled product. 

subassembly An ensemble of connected components for which the configuration can be 
specified by less parameters than required to specify the configurations of the 
individual components. 

entity An independent object at some point in the assembly procedure. An entity may be 
simple, that is, an individual component or device; or compound, that is, a 
collection of attached devices and/or components (subassemblies) which are 
identified as a single object. 

An assembled product is composed of a set of individual components connected according to a 

specified set of geometric relations; any subset of connected components is a subassembly. A device 

is an element of the assembly system, not the product. An entity may be any mutually attached subset 

of components or devices; entities may be merged or split by an operation. A subtask is an operation 

which involves only components, not devices. In this representation, the assembly task is described 

by a progression of compound entities. Devices are added and withdrawn from these progressive 

compound entities as successive operations are performed. Figure 1 is a schematic description of an 

assembly task using these definitions. As discussed in the next section, it is often convenient to 

describe the task in terms of component-component operations or subtasks, then map device 

assignments into the subtask precedence graph as a separate step. 
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Figure 1 : Schematic description of assembly tasks 
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2.1 Task Description 

We first describe the assembly task independent of the system devices which accomplish the 

assembly. In this description, the assembly a sequence of operations involving components and 

subassemblies. A decomposition into subtasks, each involving only two subassemblies are used 

here. We assume there is at least one such decomposition of the task into subtasks. 

The physical constraints of the assembly impose precedence relationships on the sequence of 

subtasks since physical access restricts the order in which parts may be mated. As an example, 

consider the flashlight assembly in fig. 2 where the subtasks are identified as TI,. . . ,T,. Any 

sequence of steps to assemble the flashlight consists of these discrete subtasks, each of which can 

be defined in terms of an operation involving two components or subassemblies. Certain subtasks 

must be performed before other subtasks. For example, the bulb must be inserted into the reflector 

(TJ ,  and the lens into the cap (7'') before the reflector-bulb subassembly can be inserted into the 

cap-lens subassembly (7'4. 

There are, however, options in the ordering of some of the subtasks for the flashlight assembly. 

This is illustrated in fig. 3 which shows a subtask precedence graph (SPG) for assembly sequences 

for the flashlight, where the graph nodes are subtasks and the directed branches indicate the fixed 

precedence relations among the subtasks. The point at which each component enters the assembly 

is also indicated. These graphs represent the differences in the precedence relations when the end is 

connected to the casing first, fig. 3(a), vs. first connecting the cap-reflector subassembly to the case, 

fig. 3(b). From these graphs, it is evident that the selection of a particular assembly sequence with its 

corresponding precedence relations imposes constraints on the structure of the system which will 

accomplish the assembly. For example, the amount of parallelism in the precedence graph dictates 

the extent to which the assembly can be decomposed into simultaneous operations at independent 

stations. The specific ordering of subtasks also has implications for the device operations including 

fixturing, manipulation, and sensing required to do each step of the assembly. 

As an analytical tool for representing SPG's we define the subtask precedence matrix (SPM) P with 

elements defined as 
1 if Tiimmediately precedes Tin the SPG 
0 otherwise. 

Pii' 

For example, the SPM corresponding to the end-first assembly sequence SPG in fig. 3a is given in fig. 

4. The SPM is useful for generating certain properties of the assembly sequence. Let the 

components of the task state vectors t be defined by 
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Figure 2: flashlight assembly subtasks 
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Figure 3: Two alternative subtask 
precedence graphs for the flashlight assembly 

\ancestor:l 2 3 4 6 6 7 

1 0 0 0 0 0 0 0  
2 0 0 0 0 0 0 0  
3 1 1 0 0 0 0 0  
4 0 0 0 0 0 0 0  
6 0 0 0 1 0 0 0  
6 0 0 0 0 1 0 0  
7 0 0 1 0 0 1 0  

subtask\ 

= P  

Figure 4: Subtask precedence matrix for SPG in fs. 3a 
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1 i f  subtask Ti is completed 
0 if subtask Ti is not completed. 

At the task level, t represents the current state of the assembly process. 

The following useful properties are derived from the above definitions: 

Property 1 t is a valid task state i f  and only if tPA tC =O. 

Proof: t is a valid task state if f for each r.=l(subtask T j  completed.) Since the SPG is a 
tree, each column of 6 has exactly one nonzero element. Thus, the 
nonzero elements of the vector tP correspond to the ancestors of all 
completed tasks. This implies t is valid if f f,=1. For each nonzero 
element of tP, that is, tP A tC=O.' 

Property 2 The set of subtasks immediately precedent to task state t is given by the set of 
nonzero components of tP  + t.* 

Proof: The nonzero elements of tP correspond to the ancestors of all completed tasks. 
The set of tasks which could have been most recently completed are 
the tasks which are not ancestors to any completed tasks. This set 
corresponds to the nonzero elements of tP + t. 

Property 3 Subtasks T .  can be completed immediately following state t if and only if (. 

Proof: Ti can be completed iff 1. = 0 and all ancestors of T.  are completed, that is 
f . = l i f P . . = l .  Thus, Ti can be completed iff { L l  and Pii { = 0 for all 4 i.e., iff ( l-~?- J - i  <pSr p= 1. 

n: . (P..&= 1 
J = I  r /  J 

From the SPG it is clear that all binary vectors t do not correspond to a feasible task state. Property 

1 gives an explicit test for a valid task state in terms of the SPM. Properties 2 and 3 can be used to 

generate all possible task states. Property 2 gives an expression for finding the complete set of 

possible precedence stares for a given state 't. Thus, starting with the final state t = [l ,  ..., 11 all 

possible state sequences can be generated backward in time. Similarly, Property 3 gives an 

expression for computing the subsequent states which can immediately follow a given state t. 

The number of possible task states for an SPG can be computed by the following algorithm: 

1. Assign a weight of 2 to each subtask node which is a "leaf" in the SPG (note the SPG is 
always a tree). 

'tc is defined as the one's complement of the vector t, ' denotes vector (or matrix) transpose, andindicates component-wise 

'Binary vector addition is defined componentwise with 1 + 1 = 0 in properties 2 and 3 (i.e., + = exclusive or). 

and of the vector arguments. 
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2. The weight assigned to each non-leaf node is equal to the product of the weights from the 
precedent nodes plus one. 

3. Progressing through the branches of the tree, the total number of possible states for the 
SPG is equal to the weight of the root node, which corresponds to the final subtask in the 
assembly sequence. 

Applying these steps to the SPGs in fig. 3 gives 21 and 9 possible task states for the assembly 

sequences in fig. 3(a) and fig. 3(b) respectively. In this example the more parallel structure of end- 

first SPG leads to a higher number of possible states. 

At the task level, assembly system design involves the evaluation of alternative precedence graphs, 

for a given task. Automatic generation and evaluation of alternative precedence graphs based on a 

geometric description of the assembly would be a useful tool for task planning and system design. As 

illustrated in fig. 5, a computer program for this purpose would abstract from a CAD database the 

information necessary for generating the alternative precedence graphs. Methods must be 

developed to efficiently generate acceptable assembly sequences that meet system design 

requirements. Currently, research is underway to determine criteria for selecting alternative 

precedence graphs. These criteria will involve aspects of the more detailed assemblyltask models 

described in the following sections. 

Figure 5: Use of subtask description primitives for Design 
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2.2 Operation Description 

The SPG representation in section 2.1 describes only the joining of components as subtasks of the 

overall assembly task. Design of the assembly system involves assigning devices to each subtask and 

implementing a control algorithm to sequence and synchronize the discrete operations. Assigning of 

devices introduces additional types of operations. Each operation can be classified as one of the 

following types: 

C-C Operation: An operation joining or separating two components or subassemblies. The C-C 
(component-component) operations are the subtasks defined in the previous 
section. 

D-Coperation: An operation involving the joining or separation of a device and a component, 
such as grasping, fixturing, etc. 

D-D Operation An operation between two devices, as when a manipulator acquires a tool. 

A particular implementation of the assembly system results in a sequence of operations with a 

precedence graph which includes the D-C and D-D operations. Figure 6 illustrates an operation 

precedence graph (OPG) for the implementation of the lens-cap subassembly for the flashlight in 

figure 2. The point at which specific devices enter and leave the assembly process are indicated on 

this graph. We note the following relationships between the OPG and the corresponding part of the 

SPG (fig. 3) for this subassembly: 

0 The basic structure of the SPG is obtained when only the C-C nodes are retained in the 
OPG . 

0 In the OPG all D-C operations appear as nodes along branches of the original SPG. 

0 D-D operations introduce new branches to the original SPG. 

The OPG provides a structure for addressing several design issues, including: 
Performance evaluation. For a fixed sequence and assignment of devices, the 

operation time for the overall assembly process can be evaluated based on times for each 
of the operations. Stochastic models can also be used at this level for average 
performance analysis. 

Resource Allocation. If there are alternatives for real-time or off-line assignment of 
devices or the sources of components to the operations, these options can be evaluated to 
optimize the overall assembly time. Graphically, alternative assignments might be 
represented as shown in fig.7 where incoming simple entities can be selected from a 
predetermined set of alternatives for each operation. 

Supervisory Control Design. At the highest level, the control of the assembly 
system involves initiating the operations in the correct sequence. The OPG is a useful 
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mbtuk, operation 0 0 device 

Figure 6: Operations precedence graph for flashlight lens-cap subassembly 
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representation of the system at this level for identifying and monitoring the state of the 
system. This provides a context for modeling the dynamic resource allocation problem. 
Furthermore, the structure of the OPG is directly related to the required structure of the 
supervisory control. For example, distributed monitoring and control can be implemented 
for independent operations on parallel branches of the OPG. 

Figure I :  Representation of alternative entity assignments 
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3 Modeling Continuous Processes in Flexible Assembly 

The operations precedence graph in section 2.2 describes the assembly process as a partially 

ordered set of discrete operations. This level of description is adequate for planning and evaluating 

the feasibility of an assembly strategy, but does not describe the process in sufficient detail to study 

alternative sensing and control strategies to optimize dynamic performance and reliability. For these 

purposes we introduce, in this section, a continuous-parameter process-level description of assembly 

operations to represent the propagation of uncertainty as the assembly task progresses. 

As described in the previous section, the execution of assembly tasks can be decomposed into 

discrete operations, each involving two entities. The objective of sensing, computation, and 

manipulation in assembly is to assure the tolerance requirements are satisfied for each discrete 

operation. Thus, the assembly process can be viewed as a sequence of continuous-parameter 

operations which are defined by relationships between the configurations of pairs of entities. 

In the following section the continuous configuration space and tolerance set for a two-entity 

operation are defined and illustrated by a simple example. Since the objective of the sensing, control 

and manipulation in assembly is to eliminate uncertainty in the system configuration, a fundamental 

modeling issue is the representation of uncertainty. In section 3.2, alternative approaches to 

modeling uncertainty in the system configuration are discussed and illustrated. 

3.1 Configuration Space  and Tolerance Sets 

In the context of the OPG, the continuous processes in assembly task execution occur along the 

branches between operation nodes of the graph, as shown in fig. 8. The processes along each 

branch can be described in the configuration space for the two entities involved in the operation. Let 

the configuration (position and orientation) of entity i be specified by the vector cic Ci where Ci is the 

set of configurations for entity i. For a discrete operation involving entities i and j the tolerance set 

TCC= C,xCj is the set of configurations for which the operation can be successfully performed. The 

goal of the continuous processes along each of the branches in the OPG is to obtain a configuration 

for the pair of entities which is in the tolerance set for the target operation node. 

The problem of performing an assembly operation can be stated formally as: (Given an initial 

configuration co= (c*,c? E C, coordinate the manipulation, sensing and computational processes to i i  
establish a final configuration c!=(c?$$€ l?. 

For example, consider the operation of grasping an object where the uncertainty in position of the 



14 

Figure 8: Continuous processes between discrete operations 

object must fall within the grasping envelope of the hand for it to successfully acquire the object. This 

operation is illustrated in fig. 9: a gripper which has a maximum opening g is to acquire a part of width 

a. The tolerance set is determined by the grasping envelope g and the part size (a). 

Specifying the configuration in terms of the horizontal positions (xl,xJ of the gripper and part, 

respectively, the tolerance set in the two-dimensional configuration space is given by 

The set T is shown in fig. 10 along with the configuration point ( 4 . x )  corresponding to the 

configuration of fig. 9. A similar tolerance relation occurs for parts mating problems where the mating 

envelope of the parts determines the tolerance set in the joint configuration space for the parts. 
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0 

Figure 9: Operation example: grasping a part 

This example illustrates how the specific operations and entities in the discrete description dictate 

the constraints and objectives for the continuous processes. Each node of an OPG corresponds to a 

tolerance set in the configuration space of the two entities involved in the operation. The objective of 

the sensing, manipulation and other processes which occur along the branches leading to the 

successful execution of the operation is described in terms of this set. Given a set of operations and 

devices, the tolerance sets map continuous-space constraints onto the OPG, and provide the primary 

point of connection between the continuous parameter, and discrete operation descriptions of 

assembly systems. 

It is difficult to formulate a configuration space description of the tolerance set for most real 

assembly operations. Several issues must be addressed in order to develop a modeling methodology 

which adequately represents the physical constraints while admitting computationally feasible 

solutions to the design and control problems arising in assembly automation. This approach leads to 

a number of research issues, including: 

0 methods for extracting tolerance information from CAD database representations of 
assembly components and devices, 

0 efficient schemes for representing complex spatial constraints, 
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=2 

T 

Figure 10: Tolerance set for operation of fig. 9 

=1 
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0 "orthogonal" parameterizations of geometric models which permit decompositions of 
tolerance specifications into several independent coordinates, and 

0 approximation methods for simplifying configuration and tolerance specifications while 
guaranteeing the integrity of the model. 

3.2 Modeling Uncertainty 

As described in section 3.1 , the control objective in assembly is to bring the joint configurations of 

entity-pairs into specified tolerance sets for the discrete operations. The formal specification of this 

problem for each operation involves the continuous configuration space C and the tolerance subset 

T. A hard automation system for executing an assembly operation uses fixtures and devices to 

constrain the configurations of the entities so that a fixed sequence of actuator commands 

guarantees the tolerance requirements are met. For hard automation, sensors are used merely to 

indicate success or failure of the operation. 

In flexible assembly systems, the variety of parts to be handled, and assemblies to be produced 

dictate that real-time sensory feedback must be used to eliminate uncertainties in the positions and 

orientations of the entities. For system design and control, it is necessary to quantitatively represent 

this uncertainty as well as the information available from actuators, sensors, and computational 

processes in the system. The set of actuators could include simple relays and solenoids as well as 
sophisticated manipulators with local servo-controllers. Similarly, the set of sensors could include 

limit switches as well as vision systems with independent processors. Computations for estimating 

the system configuration can range from simple scaling operations to sophisticated recursive 

algorithms for updating an internal geometric model. 

There are several approaches to modeling uncertainty, including bounding sets, probability 

distributions, fuzzy sets, and symbolic representations for rule-based reasoning. Each representation 

is suited to a particular class of problems. In the design of assembly systems, since tolerances are of 

primary importance, we propose the use of bounding sets as a natural representation. On the other 

hand, for real-time decision and control it may be useful to include some type of probabilistic 

information to implement efficient search algorithms when the configuration is not known. In this 

section we compare the use of bounding sets versus probability distributions for modeling assembly 

operations for two examples. 

Example 1 : Sequential Placement 

Consider the transfer of a single part through a series of stations by consecutive robots, one robot 
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between each station. For simplicity we consider the representation of this problem in a single 

dimension using the following definitions: 

x(k): part position at stage k 

dk): measured position at stage k 

e (k): error in measurement y, 

dk): acquire (pick) command at station k 

e,(&: error in execution of acquire command a(k) 

m(k): move (place) command from stations k to k+ 1 

em(k): error in execution of move command rn, 

dk distance from stations k to k+ 1 

w i  0.5 [(width of gripper k) [(width of part) ] 

Y 

These definitions are illustrated in Fig. 11 

xk 

station k station k+ 1 

Figure 1 1 : Sequential placement example: transfer of part by robot k 
ftom station k to station k+ 1. 

The commands a(k),m(k) are positions for the end-effector to acquire and place the part, 
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respectively. The actual location of the end-effector when each command is executed is given by 

a(k)  4- e&k) and m(k)+ em(k), respectively. The k'h robot successfully acquires the part from dation k 

when 

that is, when the gripper jaws are opened so that the part is between the jaws. Assuming (2) is 

satisfied, the move command places the part at 

x(k + 1) = x(k)- a(k)- ea( k) + m(k)+ e,(k). (3) 

The sensed location of the part at each stage is given by 

Modeling the uncertainty in this example requires the representation of knowledge about the values 

of the errors e&k),em(k),ey(k). The formulation of the control problem, that is, how to choose the 

command values a(k),m(k), depends on the method of modeling this uncertainty. 

A Probabilistic Mode I; 

Let the errors ea(k),em(k),ey(k) be independent, zero mean, gaussian random variables (rvls) with 

respectively, for all k. Also, let the initial position 40) be a zero mean (px(0)=O), variances u,,u,,u~ 

gaussian rv, independent of the errors, with variance u:co>. In general, the commands a(k),m(k) are 

also'rv's since they may depend on the measurements Ak). From equation (3) the position x(k) of the 

part at each stage will be a rv with mean p i k )  given by 

2 2 2  

where p,(k),p&k) are the mean values of the commands m(&),a(k), respectively. The variance of dk), 
ui(k), is generated by the recursive relation 

(6) 
U)k+ l)=u~(&)+am(&)+u~(&)+~~~,(k)-U,,(&)-u~(k))+ 2 2 2 2 um+um, 2 2  

2 2 
where arm(k),ura(k),u~n(k) denote covariances of the rv's indicated by the subscripts. 

The probability of successful acquisition of the part at stage k, denoted by p(k), is given from 

equation (2) as 
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A reasonable control objective in this modeling framework is to maximize the probability of 

successfully transferring the part through a sequence of N+ 1 stations. This is stated formally as 

Alternative control strategies for this stochastic problem are discussed in Section 4. 

A Boundinq Set Model: 

We now consider a bounding set model for the sequential placement problem. Knowledge of the 

initial position 4 0 )  and the errors e&k),eJk),e,,(k) is represented by sets of possible values for each 

variable. To describe the model in terms of general set notation we first introduce some definitions 

and notation. 

Bounded Variable (bv): An uncertain real-valued variable specified in terms of a set of possible 

values. 

Bounding Set: The set of possible (real) values for bv v denoted by B(v). In the following it will be 

assumed all bounding sets are closed and connected. 

Joint Bounding Set: The set of n-vectors of possible simultaneous values for an ordered set of n 

bv's, ( v ~ ,  . . . ,vJ denoted by B(vl, . . . ,v,$ referred to as an nfh-order bounding set. 

Conditional Bounding Set: The bounding set for bv v1 given the value of bv v2=q ,  denoted by 

B(v1/v2= 9). This bounding set for v1 is given by 

lndependent bounded variables: A set of n bv's 

vl, . . . ,vn are independent if B(vl, . . . ,v,,)= R v J X  - - - XB(v,). 

Sum of sets: For sets A,B of #-order real-valued vectors, the sum A +  B is defined as 

A +  B={x(x=a+ b for ac A,bc B}. (9) 

Scalar multiplication: For set A of #-order real-valued vectors, and real constant c, the product CA 
is defined as 
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C , ~ = ( X ) X = C Q  for O C A } .  

For our example, the bounding sets for the robot command errors ea(k),e,(k) will be denoted 

Epo,Ecm, respectively, representing the positioning accuracy of the robot. The measurement errors 

e ( k )  are in a bounding set Eey representing the resolution and accuracy of the sensors and the initial 

position do) is in bounding set N O ) .  It is assumed e,(k),e,$k).e$k),x(O) are independent bv’s. Due to 

the possible dependence of the the commands a(k),nt(k) on the measurements ~ ( k ) ,  the commands, 

and consequently the x(k) for kz 1, are not necessarily independent bv’s with respect to the initial 

position or the error bv’s. We assume, however, that commands a(k) and m(k) are independent of the 

current command errors and future command and measurement errors. 

Y 

From equation (3), the general expression for the bounding set B(x(k))=X(k) is given by the 

recursive relation 

The bounding set &(k))= Y(k) is given from equation (4) as 

Y( k) = X( k) + Eyl 

and the conditional bounding set of x(k) given measurement y(k)= Y is 

B(x(k)Mk)=P)=[Ey+C +vllnX(k). 

Equations (12)and (13) can be viewed as projections of the joint bounding set for (x(k),y(k)). This is 

illustrated in fig. 12 where X(k) is an interval on the real line (the horizontal axis) and the 

measurement error (independent of x(k)) is in the interval Ey=[-eyeJ, which generates from 

equation (4) the joint bounding set B(x(k)&k)). In fig. 12, the bounding set for Ak) (12) is the 

projection of B(dk),Ak)) onto the vertical axis and the conditional bounding set B(x(k)/y(k)= v )  is the 

projection of B(x(k),y(k)= Y) onto the horizontal axis. 

For this example, where all of the variables are scalars and the bounding sets are connected, the 

ranges of values can be specified by upper and lower bounds. (Note from equation (9) that the sum of 

connected sets is always connected.) The relations in equation (1l)and (12) imply recursive 

equations for the bounds of the connected sets which will be discussed in section 4.2. 

In this modeling framework successful acquisition of the part at stage k is guaranteed when (from 

equation (2)) 
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X 

Figure 12: Joint Bounding Set B(x(k)~.(k)) for X(k),E,,(k) 
given as intervals 

A control objective for this problem would be to successfully trgnsfer the part through N+ 1 stations. 

From equation (14) this objective is stated as 

~ ( x ( k ) - a ( k ) - e ~ k ) ) ~ [ - w ~ ~ f o r  k = ~ ,  . . . fi. (1 5) 

Various control strategies for satisfying equation (1 5) are discussed in Section 4.2. 

Example 2: Stacking Blocks 

Consider the problem of stacking blocks illustrated in fig. 13. For simplicity we consider only a 

single horizontal dimension for this problem using the following variables: 

p(k): command position for placing the k"Mock, 
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e (k) :  error in execution of Ak), 

x(k) :  center-of-mass of the k'h block after placement, 

wk: 0.5 x width of block k ,  

nzk: mass of block k ,  

Ak): measured location of block k, 

e (k) :  error in measurement y,. 

P 

Y 

It is assumed the robot successfully acquires each block and places it on the stack with horizontal 

position p(k)+ e&k) for block k. Also, the blocks are symmetric with 

x ( 4  = d4 + 

and the edges of the krh block are at dk)* wf The measured location of block k is given by 

AN = x(W + e p .  

From static analysis, the condition for successful stacking of to Ph block is 

where for m = l ,  . . . ,k 

and 

We now consider models for the sources of uncertainty in this example which are do), the position 

of the first block, ep(k), the error in the placement of block k, and ey(k), the measurement error. 

A Probdbilistic Model; 

Suppose x(0),ep(k),ey(k) are independent, zero mean, gaussian random variables with variances 

ux(0),uep,ueyl respectively. Since the command positions will, in general, depend on the measured 

values, the kfh command p(k) is a random variable with mean pJk) and variance ci(k). It is assumed 

that p(k)  is independent of e (k) and all future position errors, which implies from equation (16) 

1 1 1  

P 
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Figure 13: Example 2: Stacking of blocks with single dimension of error 
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and 

2 2 2 
ox( k )  = a&k) + uep. 

In contrast to the previous example, the tolerance requirements at each stage are dependent on the 

results of the previous stages. The lower and upper bounding variables Im,& (19) and urn,& (20) are 

random variables with means determined by the mean values of the positioned blocks and variances 

which may include covariance dependencies among the block positions if the commands are 

dependent on sensor information. A natural control objective in this framework is to stack N blocks 

successfully with a given probability. However, even the evaluation of the probability of success at 

each stage (the probability of satisfying equation (18)) is an involved computation when feedback is 

used to determine the control values. 

A Boundina Set Model; 

Using the definitions related to bounding sets given for the previous example, we let Eep,Ecy denote 

the bounding sets for the command errors e (&) and the measurement errors ey(k). The initial position 

~(0) is in the bounding s t  X(0) and it is assumed the x(0),ep(k),ey(k) are independent bv’s. As in the 

previous example we assume that the position command p(k) is independent of the current command 

error and the future command and position errors. Thus, the bounding set for the k‘* position is given 

bY 

P 

where P(k) is the bounding set for the command p(k). 

In the bounding set approach, the objective of the control is to guarantee at each stage that the 

tolerance requirement (18) is satisfied. To state this in terms of the bounding sets, let L,,,pU,,,k be the 

bounding sets for the bv’s Z , , , K ~ m , k  in (19),(20), respectively. Letting Zk be the least upper bound for 

the set L$ - . ULkk and uk be the greatest lower bound for the set ul,ku - - - UV,, then 

satisfaction of (18) requires 

where Tk is the interval 
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Note that evaluation of equation (24) is considerably easier than evaluating the objective in the 

probabilistic formulation. The use of sensor information in the bounding set formulation for control is 

also more straightforward for bounding set models. 

4 Supervisory-Level Feedback Control 

Section 4.1 describes the basic structure of a supervisory control system and identifies, in general 

terms, the types of control schemes used at the supervisory level. Section 4.2 deals with the evolution 

of uncertainty in the on-line knowledge of the system configuration as sensor information is 

incorporated into the control decisions. 

4.1 Discrete Supervisory Control Structures 

An assembly operation is accomplished through the coordination of a set of actuators. The 

supervisory controller issues actuator commands based on the processed sensory information and 

knowledge of the previous command history. The objective of the supervisory control is to 

successfully implement the sequence of subtasks. Thus, the system must be designed to provide 

enough feedback information to identify successful completion of subtasks and satisfaction of 

tolerances. The nature of the feedback scheme depends on several features: the type of decision 

space at each point in the feedback process, the sensor signal space, and the algorithmic structure 

for determining the actuator actions. 

In this section we describe the feedback loops in a sensor-based flexible assembly system. As 

illustrated in fig. 14, a control process in the system combines information from sensors, 

computations and internal timers to issue commands to actuators or other processes in the system. 

We define each of the components in fig. 14 as follows: 

sensors: physical devices with output signals dependent on the configuration of the 
system. 

actuators: physical devices that effect changes in the system configuration. 

control processes: analog or digital combinatorial operations (including simple computations) on 
sensor and memory data to issue actuator commands, initiate computations, or 
set timers. Control processes are initiated by signals from sensors, computational 
processes, timers or other control process. 

computational processes: information processing algorithms which are not simple combinatorial 
operations and generally do not have a fixed operating time. The results of 
computations can update internal parameters and initiate control processes. 
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timer processes: internal timers used to initiate and terminate computational and control 

Interactions among these components are indicated in fig. 14. This disgram of the system is not 

necessarily explicit in a given implementation, but it serves to identify the different ways in which 

sensory information is used to control a robotic system. 

processes. 

! 

Figure 14: Components of sensor-based flexible assembly systems 

A control process is characterized by the following features: 

1. initiating process:' the sensor, computational or timer processes which can initiate the 
control process. 

2. terminating process: the sensor, computational or timer processes which can 
terminate the control process. 

3. inputs: information from sensors, computations, memory and timers used to compute 
the control process commands. 

4. outputs: commands issued to actuators or to initiate computational, timers or other 
control processes. 

5. input-output relation: the relationship between the control process inputs and 
outputs. 



Once the first four aspects of the control process have been specified, the controller design 

problem is reduced to the determination of the input-output relation. This is the design problem 

normally addressed in control engineering. For real-time supervisory control, however, the system 

structure is perhaps more critical in determining the overall system performance, and systematic 

methods for this level of design have not been developed. 

Supervisory control involves multistage decision problems which can be hierarchically classified 

into command sequence decisions and command value decisions. The command sequence decision 

refers to the selection of the actuator to receive a command. This is a discrete decision from the set 

of available actuators and in.many cases it is determined a priori. The command value decision is 

also from a discrete space in most applications; however, it can be modeled as a continuous value 

decision when the command space is large., as in the case of position values for a robot manipulator. 

We classify various supervisory control schemes according to the variety of options for on-line 

implementation of the command-sequence and command-value decisions. In this framework four 

classes of control structures are: 

fixed sequence-fixed value: the mode of control most common in so-called hard automation. The 
supervisor is a sequencer which issues predetermined actuator commands in a 
fixed order. 

variable sequence-fixed value: a more sophisticated version of the sequential controller, the 
actuator sequence depends upon logical relations among the sensor feedback 
signals. This type of control is required for coordinating concurrent processes 
with varying performance times or for implementing error recovery routines. 

fixed sequence-variable value: supervisory commands are issued in a fixed order to. the 
actuators, but the values change based on sensory information or an internal 
model of the configuration. Many robotic manipulators operate in this mode in 
current applications. 

variable sequence-variable value: the supervisor decides, on-line both the actuator to receive a 
command, and the command to be issued. Applications of robots to changing 
tasks in uncertain environments require this mode of control. 

This section has been descriptive since there are presently no standard analytical formulations of 

the control problem at this level. One modeling approach currently being pursued is the use of 

modified Petri nets which represent the discrete sequencing structure of the control interfaced with a 
lower-level model of the continuous processes. The following section f o c u k  on fixed sequence; 

variable value control to simplify the discussion of uncertainty as the feedback process evolves. 
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4.2 Evolution of Uncertainty in the Feedbac.k Process 

The uncertainty in the system configuration changes as actuator commands are executed and 

sensor information becomes available. Analysis of the uncertainty as a function of time and the use of 

feedback information in real-time control decisions depend on the way in which the uncertainty is 

modeled as discussed in section 3.2. In this section alternatives for incorporating feedback 

information are discussed in the context of Example 1 from section 3.2. 

4.2.1 Open-Loop Control 

Fixed sequence-fixed value supervisbry control is essentially open-loop. For the Sequential 

Placement Problem in section 3.2,. a fixed sequence of acquire and move commands 

{(u(O),m(O)),(G(l),ni(l)), . . . } results in ever-increasing uncertainty in the location of the part due to the 

accumulation of errors in the execution of the commands. Since no sensor information is being used, 

the most reasonable open-loop control sequence is given by the recursion 

Probabilistic Model: Since the commands are deterministic, the position of the part at each stage is 

a Gaussian rv with mean given from equations (5) and (26) as 

p,<k>= 
and variance given from (6) as 

The probability of successfully acquiring the part (7) can be computed easily for each stage since 

x(k)-a(k)-ea(k) is a zero mean Gaussian rv with variance a:(k)+ u’,. The only options for improving 

the performance of the open-loop control are to decrease the variance of the initial position or 

improve the accuracy of the robot. 

Boundina Set Model: Under open-loop control the bounding set for the part position is given from 

(1l)as 

X(k)=X(O)+ Ea+ kEm+€x;=ld j  - 
and the acquisition of the part at stage k is guaranteed when 

X(k) + E&[ - WKWJ 

Increasing the number of stages for which the acquisition is successful can be accomplished only by 

decreasing the sizes of X(O),E,, and Em. 



4.2.2 Memoryless Feedback Strategies 

It is not uncommon in robotic systems to use "sense and move" strategies which use only the 

current sensor data. These strategies are memoryless in that the commands at each stage do not 

depend on information from previous measurements. In these strategies, the process of estimating 

the system configuration is usually separated from the control law, that is, the rule for choosing the 

command for a given configuration is independent of the method for computing the configuration. 

Since the commands are not specified a priori, the feedback strategy can only be specified in the 

context of a particular scheme for modeling the uncertainty in the system. We consider below 

memoryless strategies for the Sequential Placement Problem. 

Probabilistic Model: Suppose the current measurement dk) (4) is assumed to be the best estimate 

of the part position at each stage and thecommands are chosen according to the control law 

Q(k)=Hk),  m(k)=)(k)+d&. 
For this memoryless strategy the mean and variance of the part position at each stage given the 

measurement dk) are Ak), u:, respectively. The probability of successfully acquiring the part at 

each stage (7) is improved significantly in comparison to the open-loop approach because 

x(k)-a(k)-en(k)= -e,,(k)-ed(k). Thus, the probability of success at each stage is determined by a 

set of independent, identically distributed random variables. The performance of this strategy can be 

improved by improving the accuracy of the Sensor and robot and is independent of the variance of the 

initial condition. 

.II 

.. 

Boundina Set Model: Assuming the measurement error is in the interval Ey=[-ey'eJ, the control 

strategy is to let a(k)=)(k) and m(k)=)(k)+dp as in the probabilistic case. This reflects the 

assumption that the best way to satisfy the tolerance requirement (14) is to command the robot to go 

to the center of the estimated bounding set X(k). Using only the current measurement to estimate 

X(k) results in a larger bounding set than the exact expression for B(X(k)/y(k)) (13). 

In contrast to the open-loop case, the bounding set for x(k) after each measurement,wk)} 4- Ey is 

of a constant size determined by the bounding set for the measurement error. The part is acquired 

successfully at each stage provided (from (13)) 

E y + E - ( ~ ) C [ - ~ p ~ J  
As for the probabilistic case, the success of this feedback control scheme is independent at each 

stage and does not depend on the initial bounding set X(0). 
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4.2.3 Feedback With Memory 

As a third class of feedback strategies, consider schemes for the Sequential Placement Problem 

which determine the best estimate of the system configuration based on all past measurements, 

commands, and a priori knowledge of the initial part position. What is meant by the "best estimate" 

must be defined within the context of the method for modeling unc'ertainty. The commands are then 

chosen as if the estimate were the true configuration, thus separating the problems of estimation and 

control. 

Probabilistic Model: Since the recursive equations for the part position are linear, a Kalman filter 

can be used to provide the .best estimate of x(k) given all past information including the current 

measurement Ak). Letting x(k/k)  denote this estimate and using the control law 

a(k)= x(k/k),rn(k)=x(k/k)+ dkl we have the.recursive relations 

where a:(k/k) is the variance of the location of the part at stage k given by 

2 2  2 2  
0 (u ( k - 1 / & - 1 ) + u m + u ~  

2 c y x  u -( Wk) = 
A 

2 2  2 2  

ey 
u + ux(k-l/k-l)+ ua+um 

Unlike the memoryless feedback schemes, the uncertainty in the part position is not constant at 

each stage and, in general, improves as more on-line measurements become available. Note that the 

part position variance is independent of the measurement values. Since the control is based on the 

best mean-square error estimate of the part position, the position at each stage is a Gaussian random 

variable and the probability of successfully acquiring the part at each stage is better than for the 

memoryless case. Since the estimation at each stage is given by a simple recursive equation, the 

computational burden is very little for this simple example. 

Bounding S a  Model: The "best" estimate of the system configuration in this context is the center 

of the bounding set for the position at each stage given all previous measurements and commands, 

which we will denote by the same notation used in the probabilistic case, x(Wk). The control law will 

be as before, namely, .~k)=x(Wk),m(k)=x(Wk)+d~ To develop the recursion relations for 

computing x(k/k),  let X(W1) be the bounding set for x(k) given the measurements (and controls) for 

stages 1, . . . J. From (3) and the fact that m(k)- 4k)= dk we have 

X(k/k- 1) = X(k- I l k -  1) + {dk-,} + Ea+ Em. (30) 
Since e$&) is independent of x(k), the joint conditional bounding set for x(k),l(k) given all 
measurements and controls up through stage k-1 is known. Thus, by analogy to (13), we have 
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X( k / k )  = ( EY + b( k ) }  )nX( k / k -  1). 

The desired estimate at each stage is simply given by 

.x(k/k) = O.S(glb(X( k / k ) }  + lub{X( k / k ) }  (32) 

where g/b{ - } , /ub{ - }  denote the greatest lower bound and least upper bound, respectively, of the set 

arguments. 

These relations can be converted directly into the following recursion equations for the glb’s and 

lub’s for the bounding sets. Using the notation q = lub{B(q)}and 3 = glb{B(q)} for bv q,  we have from 

(30), W),  

rs(k/k)= min {e;(@ +y(k),dk-l + x(k- l /k -  1) + F&k- 1) + i?Jk- 1)) 

and 

- x(k/k)  = max G,,( k) + k),dk-l + d k -  1/ k - 1) +ea( k- 1) + .e,C k- 1)). 

The estimate (32) is then given as 

x ( k / k )  = OS(x(k/k) + LE(Wk)). 
Although this estimate is not generated by strictly linear equations, the computations are no more 

complex than those required for the Kalman filter in the probabilistic approach. The use of all prior 

information in computing x(k/k)  results in bounding sets at each stage which are subsets of the 

bounding sets obtained in the memoryless approach. Thus, the number of stages for which the part is 

acquired successfully is potentially larger using the estimation scheme developed above. 

5 Summary of Research Issues 

This report reviews ongoing research in modeling and control of assembly tasks and systems in the 

Flexible Assembly Laboratory at CMU. The results described for modeling and representation of 

assembly tasks provide the framework for the development of systems design tools, and raise a 

number of important issues for continuing research, summarized as follows. 

0 Descriptive Primitives. It is necessary to develop a general taxonomy of assembly 
components, devices and operations that is detailed enough to. be useful, yet concise 
enough to facilitate computationally efficient search algorithms for use in system design 
and optimization procedures. 

0 Design Criteria. significant performance measures to evaluate alternative system 
implementations must be translated into a general method of representing performance 
primitives for the operation. Each level of the system design, the performance evaluation 
should be commensurate with the level of detail in the operation description. 

0 Methods for Representing Uncertainty. The appropriate method for representing 
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uncertainty depends on several factors including the. nature of the a priori information, 
the control objectives, and the computational aspects of estimation and control. Both the 
probabilistic and bounding set methods have useful features. Research in this area 
should focus on criteria for choosing the appropriate representation of uncertainty, and 
techniques for combining methods such as the probabilistic and bounding set 
approaches. 

0 System and Control Structures. The OPG is clearly related to the possible 
alternatives for physical implementation of the assembly system. A method for classifying 
and identifying these structures will be developed. 

0Complexity of Feedback Strategies. Another direction for further work is to 
determine the implications of various system structures for flexible assembly system 
design. For example, simplicity of design may suggest that it is advantageous to use 
simple feedback loops whenever possible with higher level control processes serving 
only to initiate and terminate the lower-level control processes. These higher level 
processes might have simple binary sensory inputs, such as limit switches. It is of interest 
to determine the types of assembly problems for which this an appropriate design 
phi I oso ph y. 

0 Real-time Resource Allocation. For flexible systems with alternative resource 
assignments for on-line implementation, decision strategies are being investigated which 
use feedback information to optimize the system performance. 
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